
csci 210: Data Structures

Iterators

Iterators

• An iterator abstracts the process of scanning through a collection of elements one at a time

• An iterator is a class with the following interface

• boolean hasNext()

• return true if there are elements left in the iterator

• Type next()

• return the next element in the iterator

Iterators in Java

• Java.util.Iterator interface
• All classes that implement collections of elements (Vectors, Lists, ArrayList, etc) have

iterators
• they have a method called “iterator()” which returns an iterator of the elements in the

collection
• Example

ArrayList<Type> a;
//Vector<Type> a;

//Stack<Type> a;
//LinkedList<Type> a;

Iterator<Type> it = a.iterator();
while (it.hasNext()) {

Type e = it.next();

//process e
//...

}
//or

for (Iterator<Type> it = a.iterator(); it.hasNext();) {
Type e = it.next();
//...

}

Iterators in Java

• a Java specific for loop that uses iterators (under the hood)

Vector<Type> v;
for (Type x: v) {

//x is the current element in v and the loop iterates
//through all elements of v
System.out.print(“the current element is “ + x);

}

Iterators

• Why use iterators?
• They lead to more generic, high level code
• They hide the details of the specific collection (linked list or array, or whatever else)
• You can change the data structure, and the loop remains the same

List iterators

• The preferred way to access a Java.util.LinkedList is through an iterator

•
• \\

• a ListIterator includes

