csci 210: Data Structures

Graph Traversals

Graph traversal (BFS and DFS)

- G can be undirected or directed
- We think about coloring each vertex
- WHITE before we start
- GRAY after we visit a vertex but before we visited all its adjacent vertices
- BLACK after we visit a vertex and all its adjacent vertices
- We store all GRAY vertices---these are the vertices we have seen but we are not done with
- Depending on the structure (queue or list), we get BFS or DFS
- We remember from which vertex a given vertex w is colored GRAY ---- this is the vertex that discovered w, or the parent of w

BFS

- G can be undirected or directed
- Initialize:
- for each v in V
- color(v) = WHITE
- parent(v) $=$ NULL
- Traverse(v)
- $\operatorname{color}(v)=$ GRAY
- create an empty set S
- insert v in S
- while S not empty
- delete node u from S
- for all adjacent edges (u, w) of e in E do
- if color(w) = WHITE
» color(w) $=$ GRAY
» parent(w) $=u$
> insert w in S
- $\operatorname{color}(u)=$ BLACK

Breadth-first search (BFS)

- How it works:
- BFS(v)
- start at v and visit first all vertices at distance $=1$
- followed by all vertices at distance=2
- followed by all vertices at distance=3
- BFS corresponds to computing the shortest path (in terms of number of edges) from v to all other vertices

BFS

- G can be undirected or directed
- BFS-initialize:
- for each v in V
- color(v) = WHITE
- $\mathrm{d}[\mathrm{v}]=$ infinity
- parent $(v)=$ NULL
- BFS(v)
- $\operatorname{color}(v)=$ GRAY
- $d[v]=0$
- create an empty queue Q
- Q.enqueue(v)
- while Q not empty
- Q.dequeue(u)
- for all adjacent edges (u, w) of e in E do
- if color(w) = WHITE
> color(w) = GRAY
» $d[w]=d[u]+1$
> parent(w) $=u$
> Q.enqueue(w)
- $\operatorname{color}(u)=$ BLACK

BFS

- We can classify edges as
- discovery (tree) edges: edges used to discover new vertices
- non-discovery (non-tree) edges: lead to already visited vertices
" The distance $d(u)$ corresponds to its "level"
- For each vertex $u, d(u)$ represents the shortest path from v to u
- justification: by contradiction. If $d[u]=k$, assume there exists a shorter path from v to $u . . .$.
- Assume G is undirected (similar properties hold when G is directed).
- connected components are defined undirected graphs (note: on directed graphs: strong connectivity)
- As for DFS, the discovery edges form a tree, the BFS-tree
- $\operatorname{BFS}(v)$ visits all vertices in the connected component of v
- If (u, w) is a non-tree edges, then $d(u)$ and $d(w)$ differ by at most 1 .
- If G is given by its adjacency-list, $B F S(v)$ takes $O(|V|+|E|)$ time.

BFS

- Putting it all together:
- Proposition: Let $G=(V, E)$ be an undirected graph represented by its adjacency-list. A BFS traversal of G can be performed in $O(|V|+|E|)$ time and can be used to solve the following problems:
- testing whether G is connected
- computing the connected components (CC) of G
- computing a spanning tree of the CC of v

DFS

- computing a path between 2 vertices, if one exists
- computing a cycle, or reporting that there are no cycles in G
- computing the shortest paths from v to all vertices in the CC ov v

Depth-first search (DFS)

- G can be directed or undirected
- use Traverse(v) with $S=$ stack
- or recursively

DFS(v)

- mark v visited
- for all adjacent edges (v, w) of v do
- if w is not visited
- parent $(w)=v$
- (v, w) is a discovery (tree) edge
- DFS(w)
- else (v, w) is a non-discovery (non-tree) edge

DFS

- Assume G is undirected (similar properties hold when G is directed).
- DFS(v) visits all vertices in the connected component of v
- The discovery edges form a tree: the DFS-tree of v
- justification: never visit a vertex again==> no cycles
- we can keep track of the DFS tree by storing, for each vertex w, its parent
- The non-discovery (non-tree) edges always lead to a parent
- If G is given as an adjacency-list of edges, then DFS(v) takes $O(|V|+|E|)$ time.

DFS

- Putting it all together:
- Proposition: Let $G=(V, E)$ be an undirected graph represented by its adjacency-list. A DFS traversal of G can be performed in $O(|V|+|E|)$ time and can be used to solve the following problems:
- testing whether G is connected
- computing the connected components (CC) of G
- computing a spanning tree of the $C C$ of v
- computing a path between 2 vertices, if one exists
- computing a cycle, or reporting that there are no cycles in G

