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csci 210:  Data Structures

Trees



Summary
 Topics

• general trees, definitions and properties

• interface and implementation

• tree traversal algorithms
• depth and height
• pre-order traversal
• post-order traversal

• binary trees 
• properties 
• interface  
• implementation

• binary search trees
• definition 
• h-n relationship
• search, insert, delete 
• performance

 READING:
• LC textbook chapter on Trees and Binary Search Trees
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Trees
 So far we have seen linear structures

• linear:  before and after relationship

• lists, vectors, arrays, stacks, queues, etc
 Non-linear structure:  trees

• probably the most fundamental structure in computing

• hierarchical structure

• Terminology: from family trees (genealogy)
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Trees
 store elements hierarchically

 the top element: root 

 except the root, each element has a parent 

 each element has 0 or more children 

root
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Trees
 Definition

• A tree T is a set of nodes storing elements such that the nodes have a parent-child 
relationship that satisfies the following:

• if T is not empty, T has a special tree called the root that has no parent
• each node v of T different than the root  has a unique parent node w;  each node with parent 

w is a child of w

 Recursive definition 
• T is either empty

• or consists of a node r (the root) and a possibly empty set of trees whose roots are the 
children of r

 Terminology
• siblings: two nodes that have the same parent are called siblings

• internal nodes: nodes that have children

• external nodes or leaves: nodes that don’t have children

• ancestors

• descendants
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Trees
root

internal nodes

leaves
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Trees

ancestors of u

u
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Trees

u

descendants of u

8



Application of trees

 Applications  of trees
• class hierarchy in Java

• file system

• storing hierarchies in organizations
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Tree ADT

 Whatever the implementation of a tree is, its interface contains the following 
• root()

• size()

• isEmpty()

• parent(v)

• children(v)

• isInternal(v)

• isExternal(v)

• isRoot()
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Tree Implementation 

class Tree {

TreeNode root; 

//tree ADT methods..

}

class TreeNode<Type> {

Type data; 

int  size; 

TreeNode parent; 

TreeNode firstChild; 

TreeNode nextSibling; 

//TreeNode methods

getParent();

getChild(); 

getNextSibling();

...

}
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Tree implementation
 Given tree implementation above, sketch the implementation for: 

• root()

• size()

• isEmpty()

• parent(v)

• children(v)

• isInternal(v)

• isExternal(v)

• isRoot()
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 Depth: 
• depth(T, v) is the number of ancestors of v in T, excluding v itself  

 Recursive formulation 
• if v == root, then depth(v) = 0

• else, depth(v) is 1 + depth (parent(v))

 Sketch how to compute the depth of a node v in tree T:    int depth(T, v)

int depth(T,v) {

if T.isRoot(v) return 0;

return 1 + depth(T, T.parent(v));

}

 Analysis: 
• O(number of ancestors of v)  = O(depth of v)

• In the worst case the path is a linked-list and v is the leaf

• ==> O(n), where n is the number of nodes in the tree

Algorithms on trees: Depth
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 Height:
• height of a node v in T  is the length of the longest path from v to any leaf in T

 Recursive formulation: 
• if v is leaf,  then its height is 0

• else height(v) = 1 + maximum height of a child  of v

 Definition: The height of a tree is the height of its root.

 Height and depth are “symmetrical”
 Proposition:  the height of a tree T is the maximum depth of one of its  leaves. 

 Sketch how to compute the height of tree T: int height(T,v)

Algorithms on trees: Height
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Height
 Algorithm: 

int height(T,v) {

if T.isExternal(v) return 0; 

int h = 0; 

for each child w of v in T do 

h = max(h, height(T, w))

return h+1; 

}

 Analysis:  
• total time: the sum of times spent at all nodes in all recursive calls

• the recursion:
• v calls height(w) recursively on all children w of v
• height() will eventually be called on every descendant of v 
• overall:  height() is called on each node precisely once,  because each node has one parent

• aside from recursion 
• for each node v:   go through all children of v

– O(1 + c_v)   where c_v is the number of children of v
• over all nodes:  O(n) + SUM (c_v)

– each node is child of only one node, so its processed precisely once as a child 
– SUM(c_v)  = n - 1

• total:  O(n), where n is the number of nodes in the tree
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Tree traversals
 A traversal is a systematic way to visit all nodes of T. 
 pre-order:     root,  children 

• parent comes before children;  overall root first 

 post-order:   children, root
• parent comes after children; overall root last

void preorder(T, v)

visit v

for each child w of v in T do 

preorder(w)

void postorder(T, v)

for each child w of v in T do 

postorder(w)

visit v

� Analysis:  O(n)   [same arguments as before]
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Examples
 Tree associated with a document

 In what order do you read the document?

Paper

Title Abstract Ch1 Ch2 Ch3 Refs

1.1 1.2 3.1 3.2
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Example
 Tree associated with an arithmetical expression

 Write a method that evaluates the expression. In what order do you traverse the 
tree?

+

3 *

-

12 5

+

1 7
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Binary trees
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Binary trees
 Definition:  A binary tree is a tree such that 

• every node has at most 2 children 

• each node is labeled as being either a left chilld or a right child 

 Recursive definition: 
• a binary tree is empty; 

• or it consists of 

• a node (the root) that stores an element
• a binary tree, called the left subtree of T
• a binary tree, called the right subtree of T

 Binary tree interface

• left(v) 
• right(v)
• hasLeft(v)
• hasRight(v)
• +  isInternal(v), is External(v), isRoot(v), size(), isEmpty()
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 In a binary tree 
• level 0 has <=  1 node

• level 1 has <=  2 nodes

• level 2 has <=  4 nodes

• ...

• level i  has <=  2^i nodes

 Proposition: Let T be a binary tree with n nodes and height h.  Then 

• h+1  <=   n   <=   2 h+1 -1

• lg(n+1)  - 1   <=   h   <=   n-1

Properties of binary trees

d=0

d=1

d=2

d=3
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Binary tree implementation
 each node points to its left and right children ; the tree stores the root node  and 

the size of the tree

 sketch how to implement the following functions: 

• left(v) 
• right(v)
• hasLeft(v)
• hasRight(v)
• isInternal(v)
• is External(v) 
• isRoot(v)
• size()
• isEmpty()

• next  

• insertLeft(v,e)
• insertRight(v,e)
• remove(e)
• addRoot(e) 

data

left right

parentBTreeNode:
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Binary tree operations
 insertLeft(v,e): 

• create and return a new node w storing element e, add w as the left child of v

• an error occurs if v already has a left child

 insertRight(v,e)
• similar

 remove(v): 
• remove node v, replace it with its child, if any,  and return the element stored at v

•  an error occurs if v has 2 children 

 addRoot(e): 
• create and return a new node r  storing element e and make r the root of the tree; 

• an error occurs if the tree is not empty

 attach(v,T1, T2): 
• attach T1 and T2 respectively as the left and right subtrees of the external node v

• an error occurs if v is not external 23



Performance
 all  O(1) 

• left(v) 

• right(v)

• hasLeft(v)

• hasRight(v)

• isInternal(v)

• is External(v) 

• isRoot(v)

• size()

• isEmpty()

• addRoot(e) 

• insertLeft(v,e)

• insertRight(v,e)

• remove(e)
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Binary tree traversals

 Binary tree computations often involve traversals
• pre-order:     root left right

• post-order:   left right root

 Additional traversal for binary trees
• in-order:       left root right

• visit the nodes from left to right

 Exercise: 
• write methods to implement each traversal on binary trees
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Application: Tree drawing 
 Come up with a solution to “draw” a binary tree  in the following way. Essentially,  we 

need to assign coordinate x and y to each node.
• node v in the tree

• x(v)  = ? 
• y(v)  = ? 

0 1 2 3

0

1

2

3

4
4 5 6 7
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Application: Tree drawing 
 We can use an in-order traversal and assign coordinate x and y of each node in the 

following way: 

• x(v) is the number of nodes visited before v in the in-order traversal of v

• y(v) is the depth of v

0 1 2 3

0

1

2

3

4
4 5 6 7
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Binary tree searching
 write search(v, k)

• search for element k in the subtree rooted at v 

• return the node that contains k 

• return null if not found

 performance
• ?
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Binary Search Trees (BST)
 Motivation: 

• want a structure that can search fast 

• arrays: search fast, updates slow 

• linked lists: search slow, updates fast  
 Intuition: 

• tree combines the advantages of arrays and linked lists

 Definition: 
• a BST is a binary tree with the following “search” property

– for any node v allows to search efficientlyv

T1 T2

k

all nodes in T1<= k all node in T2 > k 29



BST
 Example

v

T1 T2

k

<= k > k
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Sorting a BST
 Print the elements in the BST in sorted order
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Sorting a BST
 Print the elements in the BST in sorted order.

 in-order traversal:  left -node-right
 Analysis: O(n)

//print the elements in tree of v in order
sort(BSTNode v)

if  (v == null) return; 
sort(v.left());
print v.getData(); 
sort(v.right());  
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Searching in a BST
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Searching in a BST
//return the node w such that w.getData() == k or null if such a node 

//does not exist

BSTNode search (v, k)   {

if (v == null) return null; 

if (v.getData() == k) return v;

if (k < v.getData()) return search(v.left(), k);

else return search(v.right(), k)

}

 Analysis: 
• search traverses (only) a path down from the root 

• does NOT traverse the entire tree

• O(depth of result node) = O(h), where h is the height of the tree 34



Inserting in a BST
 insert 25
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Inserting in a BST
 insert 25

• There is only one place where 25 can go

 //create and insert node with key k in the right place 
 void insert (v, k)   {

//this can only happen if inserting in an empty tree

if (v == null) return new BSTNode(k); 

if (k <= v.getData()) {

 if (v.left() == null) { 

//insert node as left child of v

u = new BSTNode(k); 

v.setLeft(u); 

} else {

    return insert(v.left(), k);

}

} else //if (v.getData() > k) {

...

}

}

25
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Inserting in a BST
 Analysis: 

• similar with searching 

• traverses a path from the root to the inserted node

• O(depth of inserted node) 

• this is O(h), where h is the height of the tree
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Deleting in a BST
 delete 87
 delete 21
 delete 90

 case 1:  delete a leaf x
• if x is left of its parent, set parent(x).left  = null

• else set parent(x).right  = null

 case 2: delete a node with one child 
• link parent(x) to the child of x 

 case 2: delete a node with 2 children
• ?? 38



Deleting in a BST
 delete 90

 copy in u 94 and delete 94 
• the left-most child of right(x)

 or
 copy in u 87 and delete 87

• the right-most child of left(x) 

u

node has <=1  child

node has <=1  child
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Deleting in a BST

 Analysis: 
• traverses a path from the root to the deleted node

• and sometimes from the deleted node to its left-most child 

• this is O(h), where h is the height of the tree
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BST performance
 Because of search property, all operations follow one root-leaf path 

• insert:    O(h)

• delete:   O(h)

• search:  O(h)

 We know that  in a tree of n nodes 

• h >= lg (n+1) - 1  

• h <= n-1

 So in the worst case h is O(n)
• BST insert, search, delete: O(n)

• just like linked lists/arrays
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BST performance
 worst-case scenario

• start with an empty tree

• insert 1

• insert 2

• insert 3

• insert 4

• ...

• insert n

 it is possible to maintain that the height of the tree is Theta(lg n) at all times
• by adding additional constraints 

• perform rotations during insert and delete to maintain these constraints

 Balanced BSTs:  h is Theta(lg n) 
• Red-Black trees

• AVL trees

• 2-3-4 trees

• B-trees
 to find out more.... take csci231 (Algorithms) 42


