csci 210: Data Structures

Trees

Summary

- Topics
- general trees, definitions and properties
- interface and implementation
- tree traversal algorithms
- depth and height
- pre-order traversal
- post-order traversal
- binary trees
- properties
- interface
- implementation
- binary search trees
- definition
- h-n relationship
- search, insert, delete
- performance
- READING:
- LC textbook chapter on Trees and Binary Search Trees

Trees

- So far we have seen linear structures
- linear: before and after relationship
- lists, vectors, arrays, stacks, queues, etc
- Non-linear structure: trees
- probably the most fundamental structure in computing
- hierarchical structure
- Terminology: from family trees (genealogy)

Trees

- store elements hierarchically
- the top element: root
- except the root, each element has a parent
each element has 0 or more children

Trees

- Definition
- A tree T is a set of nodes storing elements such that the nodes have a parent-child relationship that satisfies the following:
- if T is not empty, T has a special tree called the root that has no parent
- each node v of T different than the root has a unique parent node w; each node with parent w is a child of w
- Recursive definition
- T is either empty
- or consists of a node r (the root) and a possibly empty set of trees whose roots are the children of r
- Terminology
- siblings: two nodes that have the same parent are called siblings
- internal nodes: nodes that have children
- external nodes or leaves: nodes that don't have children
- ancestors
- descendants

Trees

root
internal nodes

Trees
ancestors of u

Trees
descendants of u

Application of trees

Applications of trees

- class hierarchy in Java
- file system
- storing hierarchies in organizations

Tree ADT

- Whatever the implementation of a tree is, its interface contains the following
- root()
- size()
- isEmpty()
- parent(v)
- children(v)
- isInternal(v)
- isExternal(v)
- isRoot()

Tree Implementation

```
class Tree {
    TreeNode root;
```

 //tree ADT methods..
 \}
class TreeNode<Type> \{
Type data;
int size;
TreeNode parent;
TreeNode firstChild;
TreeNode nextSibling;

//TreeNode methods
getParent();
getChild();
getNextSibling();
...

Tree implementation

- Given tree implementation above, sketch the implementation for:
- root()
- size()
- isEmpty()
- parent(v)
- children(v)
- isInternal(v)
- isExternal(v)
- isRoot()

Algorithms on trees: Depth

Depth:

- depth (T, v) is the number of ancestors of v in T, excluding v itself

Recursive formulation

- if $v==$ root, then depth $(v)=0$
- else, $\operatorname{depth}(v)$ is $1+$ depth (parent(v))
- Sketch how to compute the depth of a node v in tree T : int depth(T, v)

```
int depth(T,v) {
            if T.isRoot(v) return 0;
            return 1 + depth(T, T.parent(v));
}
```

- Analysis:
- O (number of ancestors of v) $=O$ (depth of v)
- In the worst case the path is a linked-list and v is the leaf
- $\Rightarrow O(n)$, where n is the number of nodes in the tree

Algorithms on trees: Height

Height:

- height of a node v in T is the length of the longest path from v to any leaf in
- Recursive formulation:
- if v is leaf, then its height is 0
- else height $(v)=1+$ maximum height of a child of v
- Definition: The height of a tree is the height of its root.
- Height and depth are "symmetrical"
- Proposition: the height of a tree T is the maximum depth of one of its leaves.
- Sketch how to compute the height of tree T : int height(T, v)

Height

- Algorithm:

```
int height(T,v) {
    if T.isExternal(v) return 0;
    int h = 0;
    for each child w of v in T do
        h = max(h, height(T, w))
        return h+1;
}
```

- Analysis:
- total time: the sum of times spent at all nodes in all recursive calls
- the recursion:
- v calls height(w) recursively on all children w of v
- height() will eventually be called on every descendant of v
- overall: height() is called on each node precisely once, because each node has one parent
- aside from recursion
- for each node v : go through all children of v
- $O\left(1+c _v\right)$ where $c _v$ is the number of children of v
- over all nodes: $O(n)+$ SUM (c_v)
- each node is child of only one node, so its processed precisely once as a child
- $\operatorname{SUM}\left(\mathrm{c} _\right.$v) $=\mathrm{n}-1$
- total: $O(n)$, where n is the number of nodes in the tree

Tree traversals

- A traversal is a systematic way to visit all nodes of T. pre-order: root, children
- parent comes before children; overall root first
post-order: children, root
- parent comes after children; overall root last

```
void preorder(T, v)
    visit v
    for each child w of v in T do
        preorder(w)
void postorder(T, v)
    for each child w of v in T do
        postorder(w)
    visit v
```

Analysis: $O(n)$ [same arguments as before]

Examples

Tree associated with a document

- In what order do you read the document?

Example

- Tree associated with an arithmetical expression

- Write a method that evaluates the expression. In what order do you traverse the tree?

Binary trees

Binary trees

\square
Definition: A binary tree is a tree such that

- every node has at most 2 children
- each node is labeled as being either a left chilld or a right child

Recursive definition:

- a binary tree is empty;
- or it consists of
- a node (the root) that stores an element
- a binary tree, called the left subtree of T
- a binary tree, called the right subtree of T
- Binary tree interface
- left(v)
- right(v)
- hasLeft(v)
- hasRight(v)
- + isInternal(v), is External(v), isRoot(v), size(), isEmpty()

Properties of binary trees

- In a binary tree
- level 0 has <= 1 node
- level 1 has <= 2 nodes
- level 2 has <= 4 nodes
- level i has <= 2^i nodes

Proposition: Let T be a binary tree with n nodes and height h. Then

- $h+1<=n<=2^{h+1}-1$
- $\lg (\mathrm{n}+1)-1<=h<=n-1$

Binary tree implementation

- each node points to its left and right children; the tree stores the root node and the size of the tree
- sketch how to implement the following functions:
- left(v)
- right(v)
- hasLeft(v)
- hasRight(v)
- isInternal(v)

- is External(v)
- isRoot(v)
- size()
- isEmpty()
- next
- insertLeft(v,e)
- insertRight(v,e)
- remove(e)
- addRoot(e)

Binary tree operations

- insertLeft(v,e):
- create and return a new node w storing element e, add w as the left child of v
- an error occurs if v already has a left child
- insertRight(v,e)
- similar
- remove(v):
- remove node v, replace it with its child, if any, and return the element stored at v
- an error occurs if v has 2 children
addRoot(e):
- create and return a new node r storing element e and make r the root of the tree;
- an error occurs if the tree is not empty
- attach(v,T1, T2):
- attach $T 1$ and $T 2$ respectively as the left and right subtrees of the external node v
- an error occurs if v is not external

Performance

- all $O(1)$
- left(v)
- right(v)
- hasLeft(v)
- hasRight(v)
- isInternal(v)
- is External(v)
- isRoot(v)
- size()
- isEmpty()
- addRoot(e)
- insertLeft(v,e)
- insertRight(v,e)
- remove(e)

Binary tree traversals

- Binary tree computations often involve traversals
- pre-order: root left right
- post-order: left right root
- Additional traversal for binary trees
- in-order: left root right
- visit the nodes from left to right
- Exercise:
- write methods to implement each traversal on binary trees

Application: Tree drawing

- Come up with a solution to "draw" a binary tree in the following way. Essentially, we need to assign coordinate x and y to each node.
- node v in the tree
- $x(v)=$?
- $y(v)=$?

Application: Tree drawing

- We can use an in-order traversal and assign coordinate x and y of each node in the following way:
- $x(v)$ is the number of nodes visited before v in the in-order traversal of v
- $y(v)$ is the depth of v

Binary tree searching

- write $\operatorname{search}(v, k)$
- search for element k in the subtree rooted at v
- return the node that contains k
- return null if not found
- performance
- ?

Binary Search Trees (BST)

- Motivation:
- want a structure that can search fast
- arrays: search fast, updates slow
- linked lists: search slow, updates fast
- Intuition:
- tree combines the advantages of arrays and linked lists
- Definition:
- a BST is a binary tree with the following "search" property
- for any node v

BST

Example

Sorting a BST

- Print the elements in the BST in sorted order

Sorting a BST

- Print the elements in the BST in sorted order.

//print the elements in tree of v in order sort(BSTNode v)
if (v == null) return; sort(v.left()); print v.getData(); sort(v.right());
Analysis: $O(n)$

Searching in a BST

Searching in a BST

```
//return the node w such that w.getData() == k or null if such a node
//does not exist
BSTNode search (v, k) {
    if (v == null) return null;
    if (v.getData() == k) return v;
    if (k < v.getData()) return search(v.left(), k);
    else return search(v.riaht(). k
}
```


- Analysis:
- search traverses (only) a path down from the root
- does NOT traverse the entire tree
- O (depth of result node) $=O(h)$, where h is the height of the tree

Inserting in a BST

- insert 25

Inserting in a BST

- insert 25
- There is only one place where 25 can go


```
//create and insert node with key k in tr
void insert (v, k) {
    //this can only happen if inserting in an empty tree
    if (v == null) return new BSTNode(k);
    if (k <= v.getData()) {
        if (v.left() == null) {
            //insert node as left child of v
            u = new BSTNode(k);
            v.setLeft(u);
            } else {
                return insert(v.left(), k);
            }
        } else //if (v.getData() > k) {
        }
```

 \}

Inserting in a BST

- Analysis:
- similar with searching
- traverses a path from the root to the inserted node
- O(depth of inserted node)
- this is $O(h)$, where h is the height of the tree

Deleting in a BST

- delete 87
delete 21
delete 90

case 1: delete a
- if x is left of its parent, set parent(x).left = null
- else set parent(x).right $=$ null
- case 2: delete a node with one child
- link parent(x) to the child of x
- case 2: delete a node with 2 children

Deleting in a BST

- delete 90

copy in u 94 and delete 94
- the left-most child of right(x)

or
- copy in u 87 and delete 87
- the right-most child of left(x)

Deleting in a BST

- Analysis:
- traverses a path from the root to the deleted node
- and sometimes from the deleted node to its left-most child
- this is $O(h)$, where h is the height of the tree

BST performance

- Because of search property, all operations follow one root-leaf path
- insert: $O(h)$
- delete: $O(h)$
- search: $O(h)$
- We know that in a tree of n nodes
- $h>=\lg (n+1)-1$
- $h<=n-1$
- So in the worst case h is $O(n)$
- BST insert, search, delete: $O(n)$
- just like linked lists/arrays

BST performance

- worst-case scenario
- start with an empty tree
- insert 1
- insert 2
- insert 3
- insert 4
- insert n
- it is possible to maintain that the height of the tree is Theta(lg n) at all times
- by adding additional constraints
- perform rotations during insert and delete to maintain these constraints
- Balanced BSTs: h is Theta(lg n)
- Red-Black trees
- AVL trees
- 2-3-4 trees
- B-trees
- to find out more.... take csci231 (Algorithms)

