csci 210: Data Structures

Stacks and Queues in Solution Searching




Summary

Topics
e Using Stacks and Queues in searching
e Applications:

e In-class problem: missionary and cannibals

e In-class problem: finding way out of a maze

e Searching a solution space: Depth-first and breadth-first search (DFS, BFS)

" READING:
e GT ftextbook chapter 5




Searching in a Solution Space

Remember the problems:

Permutations: Write a function fto print all permutations of a given string.
Subsets: Write a function to enumerate all subsets of a given string

Subset sum: Given an array of numbers and a target value, find whether there
exists a subset of those numbers that sum up to the target value.

We saw how to solve them recursively.

e Idea: A recursive solution takes as parameters the partial solution so far. Given
this partial solution, it finds all possible ways to build new solutions.




Recursive Permute

void recPermute(String soFar, String remaining) {

//base case
if (remaining.length() == 0)
System.out.println(soFar);
else {
for (int 1=0; i< remaining.length(); i++) {
String nextSoFar = soFar + remaining[i];

String nextRemaining = remaining.substring(0,i) +
remaining.substring(i+1l);

recPermute(nextSoFar, nextRemaining)
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Searching in a Solution Space

Permutations: Write a function to print all permutations of a given string.
Subsets: Write a function to enumerate all subsets of a given string

Subset sum: Given an array of numbers and a target value, find whether there exists a
subset of those numbers that sum up to the target value.

We saw how to solve them recursively.

e Idea: A recursive solution takes as parameters the partial solution so far. Given this
partial solution, it finds all possible ways to build new solutions.

Another way to look at it:

e |let S = the set of all possible partial solutions so far.
® e.g.S=1{a b c d} /all possible partial solutions of one letter
for each partial solution p in S

e move one step forward and find all possible next solutions from p. Add all these to a new set S'.
® e.g. partial solution p ="a" gives 3 new solutions: “ab”, “ac” , “ad”
repeat with S = S’

e e.g.S ={ab, ac, ad, ba, b, bd, ca, cb, cd, da, db, dc}




Permutations

Recursive permute:
e recPermute(soFar, remaining)
e the function knows about the “current” partial solution

e the system keeps track of the active calls---the free of recursive calls
corresponds to all partial solutions
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abc ach bac S = {abc, acb, bca, bac, cba, cab}

Non-recursive permute

e construct explicitly the set of partial solutions




Building a Solution

Imagine that we encode the partial solution to a problem in some way

e for e.g. for permutations a partial solution could be a tuple s = <soFar, remaining>

//S denotes the set of partial solutions
= empty set
//create the initial state
S = { initial-state}
while S is not empty
e 5’ = {}
¢ go through all partial solution s from S

e for each s generate all possible next solutions from s and add
plem to S’

SEECN = S’

Think of S as the (partial) solution space. Our algorithm will construct it.




Building a Solution

We do not need both S and S’

Think of S as the (partial) solution space. Our algorithm will construct it.

SECIpLYy set
//create the initial state
S = { initial-state}
while S is not empty
e delete the next partial solution s from S

® generate all possible next solutions from s and add them to S




The solution space

Each solution is a state

Each solution generates new solutions
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Building a Solution

Think of S as the solution space. Our algorithm will construct it.

= empty set
//create the initial state
= { initial-state}
while S is not empty
e delete the next partial solution s from S

® generate all possible next solutions from s and add them to S

S is a set of states. How to store S ?
Keep S as a queue

e delefe next solution from the front

e add new solutions to the end of queue
Keep S as a stack

e delefe next solution from the top

e add new solutions to the top




= empty set
//create the initial state
S = { initial-state}
while S is not empty
e delete the next partial solution s from S

e generate all possible next solutions from s and add them to S

S as a queue

SHlS - { <””, “ObC”>}

e partial solution s = <"”, abc> generates 3 new solutions <a, bc>, <b, ac>, <c, ab>

they are all put in S: S = {<a, bc>, <b, ac>, <c, abs}

partial solution s=<a,bc> generates 2 new solutions <ab,c> and <ac,b>; they are
put in S

S = { <b, ac>, <c, ab>, <ab,c>, <ac,b>}

S = { <c, ab>, <ab,c>, <ac,b>, <ba,c>, <bc, a>}

S = §{ <ab,c>, <ac,b>, <ba,c>, <bc, a>, <ca,b>, <cb, a>}

(x4

S = { <abc,””>, <acb,””>, <bac,””>, <bca,””>, <cab,””>, <cba,””>}

s = {}




The solution space

How does the algorithm traverse and construct the solution space when S is a queue?
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= empty set
//create the initial state
S = { initial-state}
while S is not empty
e delete the next partial solution s from S

e generate all possible next solutions from s and add them to S

S as a stack

SHlS - { <””, “ObC”>}

e partial solution s = <"“, abc> generates 3 new solutions <a, bc>, <b, ac>, <c, ab>

they are all put in S: S = {<c, ab>, <b,ac>, <a,bc>}
partial solution s=<c,ab> generates 2 new solutions <ca,b> and <cb,a>; they are
put in S

S = {<cb, a>, <ca,b>, <b,ac>, <a,bc>}




The solution space

How does the algorithm traverse and construct the solution space when S is a stack?
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The solution space

Using a stack mimics recursion < goes depth first
e depth-first search (DFS)

Using a queue goes level by level < goes breadth first
e breadth-first search (BFS)
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Example: The missionary and cannibal problem

You have 3 missionaries, 3 cannibals and a boat sitting on, say, the left side of a
river.

They all need to cross to the other side.
Find a set of moves that brings all é people on the other side safely.

The boat can take at most two people at a time (and at least one).

Anybody can row

If at any point there are more cannibals than missionaries, the missionaries get
eaten.




Missionaries and Cannibals

We want fo frame it as a search in a solution space and use the previous skeleton

How to encode a state?

e write a class MCState
What's the initial state?
What's the final state?

e write MCState:isFinal()
When is a state valid?

e write MCState:isValid()

Given a state, what are the moves you can make ?

What will the set S contain?




Missionaries and Cannibals

Queue<MCState> s = new Queue<MCState>();
//add initial state
s.insert(newMCState(3,3,0,0,1));
while (!s.isEmpty())) §
e MCState crt = s.delete();
e if (crt.isFinal()) { //this is the goal state; break;}

e //generate all possible next states and call s.insert() to add them to s

;
//crt must be the final state; print it

Are there duplicate states in S?

Can a state be inserted in S several times? (This would correspond to a loop --- we
go back to a state that we already explored). Why is this not a problem?

The skeleton above uses a Queue for S. Would a Stack work? Why (not)?
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