
csci 210:  Data Structures

Stacks and Queues in Solution Searching
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Summary
 Topics

• Using Stacks and Queues in searching 

• Applications:  
• In-class problem: missionary and cannibals
• In-class problem:  finding way out of a maze

• Searching a solution space: Depth-first and breadth-first search (DFS, BFS) 

 READING:

• GT textbook chapter 5
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Searching in a Solution Space
 Remember the problems: 
 Permutations: Write a function to print  all permutations of a given string. 
 Subsets:   Write a function to enumerate all subsets of a given string 
 Subset sum: Given an array of numbers and a target value, find whether  there 

exists a subset of those numbers that sum up to the  target value.

 We saw how to solve them recursively. 

• Idea: A recursive solution takes as parameters the partial solution so far.  Given 
this partial solution,  it finds all possible ways to build new solutions. 
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Recursive Permute 

void  recPermute(String soFar, String remaining) {

//base case 

if (remaining.length() == 0) 

System.out.println(soFar); 

else {

for (int i=0; i< remaining.length(); i++) {

String nextSoFar = soFar + remaining[i]; 

String nextRemaining = remaining.substring(0,i) +  
remaining.substring(i+1); 

recPermute(nextSoFar, nextRemaining)

}

}

}
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Tree of recursive calls 
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Searching in a Solution Space

 Permutations: Write a function to print  all permutations of a given string. 
 Subsets:   Write a function to enumerate all subsets of a given string 
 Subset sum: Given an array of numbers and a target value, find whether  there exists a 

subset of those numbers that sum up to the  target value.

 We saw how to solve them recursively. 

• Idea: A recursive solution takes as parameters the partial solution so far.  Given this 
partial solution,  it finds all possible ways to build new solutions. 

 Another way to look at it:  

• let S = the set of all possible partial solutions so far. 
• e.g. S = {a, b, c, d } //all possible partial solutions of one letter

• for each partial solution p in S
• move one step forward and find all possible next solutions from p. Add all these to a new set S’. 
• e.g. partial solution p = “a” gives 3 new solutions: “ab”, “ac” , “ad”

• repeat with S = S’
• e.g. S’ = {ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc} 6



Permutations
 Recursive permute: 

• recPermute(soFar, remaining)

• the function knows about the “current” partial solution

• the system keeps track of the active calls---the tree of recursive calls 
corresponds to all partial solutions

 Non-recursive permute

• construct explicitly the set of partial solutions 7

“”, abc

a, bc b, ac c, ab

ab, c ba, cac, b cb, aca, bbc, a

abc cbacabbcabacacb

S = {“”}

S = {a, b, c}

S = {ab, ac, bc, ba, cb, ca}

S = {abc, acb, bca, bac, cba, cab}



Building a Solution 
 Imagine that we encode the partial solution to a problem in some way 

• for e.g. for permutations a partial solution could be a tuple s = <soFar, remaining>

 //S denotes the set of partial solutions 
 S = empty set  
 //create the initial state 
 S = { initial-state}
 while S is not empty

• S’ = {}   

• go through all partial solution s from  S 

• for each s generate all possible next solutions from s and add 
them to S’ 

• S = S’ 

 Think of S as the (partial) solution space. Our algorithm will construct it. 
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Building a Solution 
 We do not need both S and S’ 
 Think of S as the (partial) solution space. Our algorithm will construct it. 

 S = empty set  
 //create the initial state 
 S = { initial-state}
 while S is not empty

• delete the next partial solution s from  S 

• generate all possible next solutions from s and add them to S 
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The solution space 
 Each solution is a state 
 Each solution generates new solutions 


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Building a Solution 
 Think of S as the solution space. Our algorithm will construct it. 

 S = empty set  
 //create the initial state 
 S = { initial-state}
 while S is not empty

• delete the next partial solution s from  S 

• generate all possible next solutions from s and add them to S 

 S is a set of states.  How to store S ?  
 Keep S as a queue 

• delete next solution from the front 

• add new solutions to the end of queue 
 Keep S as a stack 

• delete next solution from the top 

• add new solutions to the top 
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 S = empty set  
 //create the initial state 
 S = { initial-state}
 while S is not empty

• delete the next partial solution s from  S 

• generate all possible next solutions from s and add them to S 

 S as a queue 

• S = { <””, “abc”>}

• partial solution s = <””, abc>  generates 3 new solutions <a, bc>, <b, ac>, <c, ab>

• they are all put in S:  S = {<a, bc>, <b, ac>, <c, ab>}

• partial solution s=<a,bc> generates 2 new solutions <ab,c> and <ac,b>; they are 
put in S

• S = { <b, ac>, <c, ab>, <ab,c>, <ac,b>}

• S = { <c, ab>, <ab,c>, <ac,b>, <ba,c>, <bc, a>}

• S = { <ab,c>, <ac,b>, <ba,c>, <bc, a>, <ca,b>, <cb, a>}

• ...

• S = { <abc,””>, <acb,””>, <bac,””>, <bca,””>, <cab,””>, <cba,””>}

• S = {} 12



The solution space 
 How does the algorithm traverse and construct the solution space when S is a queue?  


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 S = empty set  
 //create the initial state 
 S = { initial-state}
 while S is not empty

• delete the next partial solution s from  S 

• generate all possible next solutions from s and add them to S 

 S as a stack 

• S = { <””, “abc”>}

• partial solution s = <””, abc>  generates 3 new solutions <a, bc>, <b, ac>, <c, ab>

• they are all put in S:  S = {<c, ab>, <b,ac>, <a,bc>}

• partial solution s=<c,ab> generates 2 new solutions <ca,b> and <cb,a>; they are 
put in S

• S = {<cb, a>, <ca,b>, <b,ac>, <a,bc>}

• ...
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The solution space 
 How does the algorithm traverse and construct the solution space when S is a stack?  
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The solution space 
 Using a  stack mimics recursion   <----- goes depth first 

• depth-first search (DFS) 
 Using a queue goes level by level <----- goes breadth first 

• breadth-first search (BFS)
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Example: The missionary and cannibal problem
 You have 3 missionaries, 3 cannibals and a boat sitting on, say, the left side of a 

river. 
 They all need to cross to the other side. 
 Find a set of moves that brings all 6 people on the other side safely. 

• The boat can take at most two people at a time (and at least one). 

• Anybody can row 

• If at any point there are more cannibals than missionaries, the missionaries get 
eaten.
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Missionaries and Cannibals
 We want to frame it as a search in a solution space  and use the previous skeleton

 How to encode a state? 

• write a class MCState
 What’s the initial state? 
 What’s the final state? 

• write MCState:isFinal()
 When is a state valid? 

• write MCState:isValid()
 Given a state, what are the moves you can make ? 

 What will the set S contain? 
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Missionaries and Cannibals
 Queue<MCState> s = new Queue<MCState>(); 
 //add initial state 
 s.insert(newMCState(3,3,0,0,1));
 while (!s.isEmpty())) {

• MCState crt = s.delete();

• if (crt.isFinal()) { //this is the goal state;  break;}

• //generate all possible next states and call s.insert() to add them to s

• ...
 }
 //crt must be the final state; print it 

 Are there duplicate states in S? 
 Can a state be inserted in S several times?  (This would correspond to a loop --- we 

go back to a state that we already explored). Why is this not a problem? 
 The skeleton above uses a Queue for S. Would a Stack work?  Why (not)? 
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