csci 210: Data Structures

Stacks and Queues in Solution Searching

Summary

- Topics
- Using Stacks and Queues in searching
- Applications:
- In-class problem: missionary and cannibals
- In-class problem: finding way out of a maze
- Searching a solution space: Depth-first and breadth-first search (DFS, BFS)
- READING:
- GT textbook chapter 5

Searching in a Solution Space

- Remember the problems:
- Permutations: Write a function to print all permutations of a given string.
- Subsets: Write a function to enumerate all subsets of a given string
- Subset sum: Given an array of numbers and a target value, find whether there exists a subset of those numbers that sum up to the target value.
- We saw how to solve them recursively.
- Idea: A recursive solution takes as parameters the partial solution so far. Given this partial solution, it finds all possible ways to build new solutions.

Recursive Permute

```
void recPermute(String soFar, String remaining) {
    //base case
    if (remaining.length() == 0)
        System.out.println(soFar);
    else {
        for (int i=0; i< remaining.length(); i++) {
            String nextSoFar = soFar + remaining[i];
            String nextRemaining = remaining.substring(0,i) +
            remaining.substring(i+1);
            recPermute(nextSoFar, nextRemaining)
        }
    }
}
```


Tree of recursive calls

Searching in a Solution Space

- Permutations: Write a function to print all permutations of a given string.
- Subsets: Write a function to enumerate all subsets of a given string
- Subset sum: Given an array of numbers and a target value, find whether there exists a subset of those numbers that sum up to the target value.
- We saw how to solve them recursively.
- Idea: A recursive solution takes as parameters the partial solution so far. Given this partial solution, it finds all possible ways to build new solutions.
- Another way to look at it:
- let $S=$ the set of all possible partial solutions so far.
- e.g. $S=\{a, b, c, d\}$ //all possible partial solutions of one letter
- for each partial solution P in S
- move one step forward and find all possible next solutions from p. Add all these to a new set S^{\prime}.
- e.g. partial solution $p=" a$ " gives 3 new solutions: " $a b$ ", " $a c$ ", " $a d$ "
- repeat with $S=S^{\prime}$
- e.g. $S^{\prime}=\{a b, a c, a d, b a, b c, b d, c a, c b, c d, d a, d b, d c\}$

Permutations

- Recursive permute:
- recPermute(soFar, remaining)
- the function knows about the "current" partial solution
- the system keeps track of the active calls---the tree of recursive calls corresponds to all partial solutions

- Non-recursive permute
- construct explicitly the set of partial solutions

Building a Solution

- Imagine that we encode the partial solution to a problem in some way
- for e.g. for permutations a partial solution could be a tuple $s=$ <soFar, remaining>

```
//S denotes the set of partial solutions
```

S = empty set
//create the initial state
$S=\{$ initial-state $\}$

- while S is not empty
- $S^{\prime}=\{ \}$
- go through all partial solution s from S
- for each s generate all possible next solutions from s and add them to S^{\prime}
- $S=S^{\prime}$
- Think of S as the (partial) solution space. Our algorithm will construct it.

Building a Solution

- We do not need both S and S^{\prime}
- Think of S as the (partial) solution space. Our algorithm will construct it.
- S = empty set
//create the initial state
S = \{ initial-state\}
while S is not empty
- delete the next partial solution s from S
- generate all possible next solutions from s and add them to S

The solution space

- Each solution is a state
- Each solution generates new solutions

Building a Solution

- Think of S as the solution space. Our algorithm will construct it.

S = empty set

- //create the initial state
" S = \{ initial-state\}
- while S is not empty
- delete the next partial solution s from S
- generate all possible next solutions from s and add them to S
- S is a set of states. How to store S ?
- Keep S as a queue
- delete next solution from the front
- add new solutions to the end of queue
- Keep S as a stack
- delete next solution from the top
- add new solutions to the top
- S = empty set

//create the initial state

$S=$ \{ initial-state $\}$
while S is not empty

- delete the next partial solution s from S
- generate all possible next solutions from s and add them to s
S as a queue
- $S=\{\langle " \prime, " a b c "\rangle\}$
- partial solution $s=\langle " \prime, a b c\rangle$ generates 3 new solutions <a, $b c\rangle,\langle b, a c\rangle,\langle c, a b\rangle$
- they are all put in $S: S=\{\langle a, b c\rangle,\langle b, a c\rangle,\langle c, a b\rangle\}$
- partial solution $s=\langle a, b c\rangle$ generates 2 new solutions $\langle a b, c\rangle$ and $\langle a c, b\rangle$; they are put in S
- $S=\{\langle b, a c\rangle,\langle c, a b\rangle,\langle a b, c\rangle,\langle a c, b\rangle\}$
- $S=\{\langle c, a b\rangle,\langle a b, c\rangle,\langle a c, b\rangle,\langle b a, c\rangle,\langle b c, a\rangle\}$
- $S=\{\langle a b, c\rangle,\langle a c, b\rangle,\langle b a, c\rangle,\langle b c, a\rangle,\langle c a, b\rangle,\langle c b, a\rangle\}$
- $S=\left\{\langle a b c, " \prime \prime\rangle,\left\langle a c b,{ }^{\prime \prime \prime \prime}\right\rangle,\langle b a c, " \prime \prime\rangle,\langle b c a, " \prime \prime\rangle,\left\langle c a b,{ }^{\prime \prime \prime \prime}\right\rangle,\langle c b a, " \prime \prime\rangle\right.$
- $S=\{ \}$

The solution space

- How does the algorithm traverse and construct the solution space when S is a queue?

- S = empty set
//create the initial state
S = \{ initial-state\}
while S is not empty
- delete the next partial solution s from S
- generate all possible next solutions from s and add them to S
- S as a stack
- $S=\{\langle " \prime \prime, " a b c "\rangle\}$
- partial solution $s=\langle " \prime, a b c\rangle$ generates 3 new solutions <a, $b c\rangle,\langle b, a c\rangle,\langle c, a b\rangle$
- they are all put in $S: S=\{\langle c, a b\rangle,\langle b, a c\rangle,\langle a, b c\rangle\}$
- partial solution $s=\langle c, a b\rangle$ generates 2 new solutions $\langle c a, b\rangle$ and $\langle c b, a\rangle$; they are put in S
- $S=\{\langle c b, a\rangle,\langle c a, b\rangle,\langle b, a c\rangle,\langle a, b c\rangle\}$

The solution space

- How does the algorithm traverse and construct the solution space when S is a stack?

The solution space

- Using a stack mimics recursion <----- goes depth first
- depth-first search (DFS)
- Using a queue goes level by level <----- goes breadth first
- breadth-first search (BFS)

Example: The missionary and cannibal problem

- You have 3 missionaries, 3 cannibals and a boat sitting on, say, the left side of a river.
- They all need to cross to the other side.
- Find a set of moves that brings all 6 people on the other side safely.
- The boat can take at most two people at a time (and at least one).
- Anybody can row
- If at any point there are more cannibals than missionaries, the missionaries get eaten.

Missionaries and Cannibals

- We want to frame it as a search in a solution space and use the previous skeleton
- How to encode a state?
- write a class MCState
- What's the initial state?
- What's the final state?
- write MCState:isFinal()
- When is a state valid?
- write MCState:isValid()
- Given a state, what are the moves you can make ?
- What will the set S contain?

Missionaries and Cannibals

- Queue<MCState>s = new Queue<MCState>();
- //add initial state
- s.insert(newMCState($3,3,0,0,1$));
- while (!s.isEmpty())) \{
- MCState crt = s.delete();
- if (crt.isFinal()) \{ //this is the goal state; break; $\}$
- //generate all possible next states and call s.insert() to add them to s
- ...
\}
- //crt must be the final state; print it
- Are there duplicate states in S ?
- Can a state be inserted in S several times? (This would correspond to a loop --- we go back to a state that we already explored). Why is this not a problem?
- The skeleton above uses a Queue for S. Would a Stack work? Why (not)?

