
csci 210: Data Structures

Stacks and Queues in Solution Searching

1

Summary
 Topics

• Using Stacks and Queues in searching

• Applications:
• In-class problem: missionary and cannibals
• In-class problem: finding way out of a maze

• Searching a solution space: Depth-first and breadth-first search (DFS, BFS)

 READING:

• GT textbook chapter 5

2

Searching in a Solution Space
 Remember the problems:
 Permutations: Write a function to print all permutations of a given string.
 Subsets: Write a function to enumerate all subsets of a given string
 Subset sum: Given an array of numbers and a target value, find whether there

exists a subset of those numbers that sum up to the target value.

 We saw how to solve them recursively.

• Idea: A recursive solution takes as parameters the partial solution so far. Given
this partial solution, it finds all possible ways to build new solutions.

3

Recursive Permute

void recPermute(String soFar, String remaining) {

//base case

if (remaining.length() == 0)

System.out.println(soFar);

else {

for (int i=0; i< remaining.length(); i++) {

String nextSoFar = soFar + remaining[i];

String nextRemaining = remaining.substring(0,i) +
remaining.substring(i+1);

recPermute(nextSoFar, nextRemaining)

}

}

}

4

Tree of recursive calls

5

“”, abc

a, bc b, ac c, ab

ab, c ba, cac, b cb, aca, bbc, a

abc cbacabbcabacacb

Searching in a Solution Space

 Permutations: Write a function to print all permutations of a given string.
 Subsets: Write a function to enumerate all subsets of a given string
 Subset sum: Given an array of numbers and a target value, find whether there exists a

subset of those numbers that sum up to the target value.

 We saw how to solve them recursively.

• Idea: A recursive solution takes as parameters the partial solution so far. Given this
partial solution, it finds all possible ways to build new solutions.

 Another way to look at it:

• let S = the set of all possible partial solutions so far.
• e.g. S = {a, b, c, d } //all possible partial solutions of one letter

• for each partial solution p in S
• move one step forward and find all possible next solutions from p. Add all these to a new set S’.
• e.g. partial solution p = “a” gives 3 new solutions: “ab”, “ac” , “ad”

• repeat with S = S’
• e.g. S’ = {ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc} 6

Permutations
 Recursive permute:

• recPermute(soFar, remaining)

• the function knows about the “current” partial solution

• the system keeps track of the active calls---the tree of recursive calls
corresponds to all partial solutions

 Non-recursive permute

• construct explicitly the set of partial solutions 7

“”, abc

a, bc b, ac c, ab

ab, c ba, cac, b cb, aca, bbc, a

abc cbacabbcabacacb

S = {“”}

S = {a, b, c}

S = {ab, ac, bc, ba, cb, ca}

S = {abc, acb, bca, bac, cba, cab}

Building a Solution
 Imagine that we encode the partial solution to a problem in some way

• for e.g. for permutations a partial solution could be a tuple s = <soFar, remaining>

 //S denotes the set of partial solutions
 S = empty set
 //create the initial state
 S = { initial-state}
 while S is not empty

• S’ = {}

• go through all partial solution s from S

• for each s generate all possible next solutions from s and add
them to S’

• S = S’

 Think of S as the (partial) solution space. Our algorithm will construct it.

8

Building a Solution
 We do not need both S and S’
 Think of S as the (partial) solution space. Our algorithm will construct it.

 S = empty set
 //create the initial state
 S = { initial-state}
 while S is not empty

• delete the next partial solution s from S

• generate all possible next solutions from s and add them to S

9

The solution space
 Each solution is a state
 Each solution generates new solutions



10

“”, abc

a, bc b, ac c, ab

ab, c ba, cac, b cb, aca, bbc, a

abc cbacabbcabacacb

Building a Solution
 Think of S as the solution space. Our algorithm will construct it.

 S = empty set
 //create the initial state
 S = { initial-state}
 while S is not empty

• delete the next partial solution s from S

• generate all possible next solutions from s and add them to S

 S is a set of states. How to store S ?
 Keep S as a queue

• delete next solution from the front

• add new solutions to the end of queue
 Keep S as a stack

• delete next solution from the top

• add new solutions to the top
11

 S = empty set
 //create the initial state
 S = { initial-state}
 while S is not empty

• delete the next partial solution s from S

• generate all possible next solutions from s and add them to S

 S as a queue

• S = { <””, “abc”>}

• partial solution s = <””, abc> generates 3 new solutions <a, bc>, <b, ac>, <c, ab>

• they are all put in S: S = {<a, bc>, <b, ac>, <c, ab>}

• partial solution s=<a,bc> generates 2 new solutions <ab,c> and <ac,b>; they are
put in S

• S = { <b, ac>, <c, ab>, <ab,c>, <ac,b>}

• S = { <c, ab>, <ab,c>, <ac,b>, <ba,c>, <bc, a>}

• S = { <ab,c>, <ac,b>, <ba,c>, <bc, a>, <ca,b>, <cb, a>}

• ...

• S = { <abc,””>, <acb,””>, <bac,””>, <bca,””>, <cab,””>, <cba,””>}

• S = {} 12

The solution space
 How does the algorithm traverse and construct the solution space when S is a queue?



13

“”, abc

a, bc b, ac c, ab

ab, c ba, cac, b cb, aca, bbc, a

abc cbacabbcabacacb

 S = empty set
 //create the initial state
 S = { initial-state}
 while S is not empty

• delete the next partial solution s from S

• generate all possible next solutions from s and add them to S

 S as a stack

• S = { <””, “abc”>}

• partial solution s = <””, abc> generates 3 new solutions <a, bc>, <b, ac>, <c, ab>

• they are all put in S: S = {<c, ab>, <b,ac>, <a,bc>}

• partial solution s=<c,ab> generates 2 new solutions <ca,b> and <cb,a>; they are
put in S

• S = {<cb, a>, <ca,b>, <b,ac>, <a,bc>}

• ...

14

The solution space
 How does the algorithm traverse and construct the solution space when S is a stack?

15

“”, abc

a, bc b, ac c, ab

ab, c ba, cac, b cb, aca, bbc, a

abc cbacabbcabacacb

The solution space
 Using a stack mimics recursion <----- goes depth first

• depth-first search (DFS)
 Using a queue goes level by level <----- goes breadth first

• breadth-first search (BFS)

16

“”, abc

a, bc b, ac c, ab

ab, c ba, cac, b cb, aca, bbc, a

abc cbacabbcabacacb

Example: The missionary and cannibal problem
 You have 3 missionaries, 3 cannibals and a boat sitting on, say, the left side of a

river.
 They all need to cross to the other side.
 Find a set of moves that brings all 6 people on the other side safely.

• The boat can take at most two people at a time (and at least one).

• Anybody can row

• If at any point there are more cannibals than missionaries, the missionaries get
eaten.

17

Missionaries and Cannibals
 We want to frame it as a search in a solution space and use the previous skeleton

 How to encode a state?

• write a class MCState
 What’s the initial state?
 What’s the final state?

• write MCState:isFinal()
 When is a state valid?

• write MCState:isValid()
 Given a state, what are the moves you can make ?

 What will the set S contain?

18

Missionaries and Cannibals
 Queue<MCState> s = new Queue<MCState>();
 //add initial state
 s.insert(newMCState(3,3,0,0,1));
 while (!s.isEmpty())) {

• MCState crt = s.delete();

• if (crt.isFinal()) { //this is the goal state; break;}

• //generate all possible next states and call s.insert() to add them to s

• ...
 }
 //crt must be the final state; print it

 Are there duplicate states in S?
 Can a state be inserted in S several times? (This would correspond to a loop --- we

go back to a state that we already explored). Why is this not a problem?
 The skeleton above uses a Queue for S. Would a Stack work? Why (not)?

19

