

Recursion

- A method of defining a function in terms of its own definition

Example: the Fibonacci numbers

- $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$
- $f(0)=f(1)=1$ base case
- In programming recursion is a method call to the same method. In other words, a recursive method is one that calls itself.
- Why write a method that calls itself?
- Recursion is a good problem solving approach
- solve a problem by reducing the problem to smaller subproblems; this results in recursive calls
- Recursive algorithms are elegant, simple to understand and prove correct, easy to implement
- But! Recursive calls can result in a an infinite loop of calls
- recursion needs a base-case in order to stop
- Recursion (repetitive structure) can be found in nature
- shells, leaves
- Topics
- recursion overview
- simple examples
- Sierpinski gasket
- counting blobs in a grid
- Hanoi towers
- READING:
- LC textbook chapter 7
\qquad

Example

- Write a function that computes the sum of numbers from 1 to n int sum (int n)

1. use a loop
2. recursively

Example

- Write a function that computes the sum of numbers from 1 to n int sum (int n)

1. use a loop
2. recursively
/with a loop
int sum (int n) \{
int $\mathrm{s}=0$;
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n} ; \mathrm{i}+$)
$\mathrm{s}+=\mathrm{i}$;
\}
//recursively
int sum (int n) \{
int s;
if ($\mathrm{n}==0$) return 0 ;
//else
$\mathrm{s}=\mathrm{n}+\operatorname{sum}(\mathrm{n}-1) ;$
return s ;
\}
How does it work?

Recursion

- How it works
- Recursion is no different than a function call
- The system keeps track of the sequence of method calls that have been started but not finished yet (active calls)
- order matters
- Recursion pitfalls
- miss base-case
- infinite recursion, stack overflow
- no convergence
- solve recursively a problem that is not simpler than the original one

Perspective

- Recursion leads to solutions that are
- compact
- simple
- easy-to-understand
- easy-to-prove-correct
- Recursion emphasizes thinking about a problem at a high level of abstraction
- Recursion has an overhead (keep track of all active frames). Modern compilers can often optimize the code and eliminate recursion
- First rule of code optimization:
- Don't optimize it..yet
- Unless you write super-duper optimized code, recursion is good
- Mastering recursion is essential to understanding computation.

Recursion examples

- Sierpinski gasket
- Blob counting
- Towers of Hanoi

Sierpinski gasket

- see Sierpinski-skeleton.java
- Fill in the code to create this pattern

Blob check

- Problem: you have a 2 -dimensional grid of cells, each of which may be filled or empty. Filled cells that are connected form a "blob" (for lack of a better word).
- Write a recursive method that returns the size of the blob containing a specified cell (i, j)
- Example

BlobCount $(0,3)=3$ BlobCount $(0,4)=3$ BlobCount $(3,4)=1$ BlobCount $(4,0)=7$

- Solution?
- essentially you need to check the current cell, its neighbors, the neighbors of its neighbors, and so on
- think RECURSIVELY

Blob check

- when calling BlobCheck(i, j)
- (i,j) may be outside of grid
- (i,j) may be EMPTY
- (i,j) may be FILLED
- When you write a recursive method, always start from the base case
- What are the base cases for counting the blob?
- given a call to BlobCkeck(i, j): when is there no need for recursion, and the function can return the answer immediately?
- Base cases
- (i,j) is outside grid
- (i, j) is EMPTY

Blob check

- blobCheck(i, j): if (i, j) is FILLED
- 1 (for the current cell)
- + count blobs of its 8 neighbors
/first check base cases
if (outsideGrid(i,j)) return 0 ;
if (grid[i][j] != FILLED) return 0
blobc $=1$
for ($1=-1 ; 1<=1 ; 1++$)
for ($k=-1$; $k<=1$; $k++$)

skip of middle cell
if ($\mathrm{l}==0 \quad \& \& \mathrm{k}==0$) continue;
blobc $+=$ blobCheck(i+k, $j+1)$;
- Example: blobCheck(1,1)
- blobCount(1,1) calls blobCount($(, 2)$
- blobCount(0,2) calls blobCount(1,1)
- Does it work?
- Problem: infinite recursion. Why? multiple counting of the same cell

Blob check

- blobCheck (i, j): if (i, j) is FILLED
- 1 (for the current cell)
- + count its 8 neighbors
//first check base cases
if (outsideGrid(i,j)) return 0
if (grid[i][j] != FILLED) return 0;
blobc = 1
for ($1=-1$; $1<=1$; $1++$)
for ($k=-1 ; k<=1 ; k++$

//skip of middle cell
if ($1==0 \& \& k==0$) continue;
//count neighbors that are FILLED
if (grid[i+1][j+k] == FILLED) blobc++;
- Does not work: it does not count the neighbors of the neighbors, and their neighbors, and so on.
- Instead of adding +1 for each neighbor that is filled, need to count its blob recursively

Marking your steps

- Idea: once you count a cell, mark it so that it is not counted again by its neighbors.

Correctness

- blobCheck(i, j) works correctly if the cell (i, j) is not filled
- if cell (i, j) is FILLED
- mark the cell
- the blob of this cell is $1+$ blobCheck of all neighbors
- because the cell is marked, the neighbors will not see it as FILLED
- ==> a cell is counted only once
- Why does this stop?
- blobCheck (i, j) will generate recursive calls to neighbors
- recursive calls are generated only if the cell is FILLED
- when a cell is marked, it is NOT FILLED anymore, so the size of the blob of filled cells is one smaller
- ==> the blob when calling blobCheck(neighbor of i, j) is smaller that blobCheck(i, j)
- Note: after one call to blobCheck(i,j) the blob of (i, j) is all marked
- need to do one pass and restore the grid

Try it out!

- Download blobCheckSkeleton.java from class website
- Fill in method blobCount(i,j)

Towers of Hanoi

- Consider the following puzzle
- There are 3 pegs (posts) $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and n disks of different sizes
- Each disk has a hole in the middle so that it can fit on any peg
- At the beginning of the game, all n disks are on peg a , arranged such that the largest is on the bottom, and on top sit the progressively smaller disks, forming a tower
- Goal: find a set of moves to bring all disks on peg c in the same order, that is, largest on bottom, smallest on top
- constraints
- the only allowed type of move is to grab one disk from the top of one peg and drop it on another peg - a larger disk can never lie above a smaller disk, at any time
- The legend says that the world will end when a group of monks, somewhere in a temple, will finish this task with 64 golden disks on 3 diamond pegs. Not known when they started.

a

b

C

Find the set of moves for $n=3$

C

Solving the problem for any n

- Problem: move n disks from A to C using B
- Think recursively.
- Can you express the problem in terms of a smaller problem?
- Subproblem: move $\mathrm{n}-1$ disks from X to Y using Z

Solving the problem for any n

- Problem: move n disks from A to C using B
- Think recursively.
- Can you express the problem in terms of a smaller problem?
- Subproblem: move $\mathrm{n}-1$ disks from X to Y using Z
- Recursive formulation of Towers of Hanoi : move n disks from A to C using B
- move top n -1 disks from A to B
- move bottom disks from A to C
- move $\mathrm{n}-1$ disks from B to C using A
- Correctness
- How would you go about proving that this is correct?

Hanoi-skeleton.java

- Look over the skeleton of the Java program to solve the Towers of Hanoi

It's supposed to ask you for n and then display the set of moves

- no graphics
- finn in the gaps in the method
public void move(sourcePeg, storagePeg, destinationPeg)

Correctness

- Proving recursive solutions correct is done with mathematical induction
- Induction: a technique of proving that some statement is true for any n (natural number)
- known from ancient times (the Greeks)
- Induction proof:
- Base case: prove that the statement is true for some small value of n , usually $\mathrm{n}=1$
- The induction step: assume that the statement is true for all integers $<=\mathrm{n}-1$. Then prove that this implies that it is true for n .
- Exercise: try proving by induction that $1+2+3+\ldots . .+n=n(n+1) / 2$
- Proof sketch for Towers of Hanoi:
- Base case: It works correctly for moving one disk

Assume it works correctly for moving $\mathrm{n}-1$ disks. Then we need to argue that it works correctly for moving n disks.

- A recursive solution is similar to an inductive proof; just that instead of "inducting" from values smaller than n to n, we "reduce" from n to values smaller than n (think $n=$ input size)
- the base case is crucial: mathematically, induction does not hold without it; when programming, the lack of a base-case causes an infinite recursion loop

Analysis

- How close is the end of the world? Let's estimate running time.
- The running time of recursive algorithms is estimated using recurrent functions.
- Let $\mathrm{T}(\mathrm{n})$ be the time to compute the sequence of moves to move n disks from one peg to another.
- We have
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n}-1)+1$, for any $\mathrm{n}>1$
- $\mathrm{T}(1)=1$ (the base case)
- The recurrence solves to $T(n)=O\left(2^{\mathrm{n}}\right) \quad$ [Csci 231]
- It can be shown by induction that $\mathrm{T}(\mathrm{n})=2^{\mathrm{n}}-1$ [Math 200, Csci 231]
- This means, the running time is exponential in n
- slow...
- Exercise:
- 1 GHz processor, $\mathrm{n}=64=>2^{64} \times 10^{-9}=\ldots$ a \log time; hundreds of years

