csci 210: Data Structures
Recursion

Summary

Topics
* recursion overview
* simple examples
* Sierpinski gasket
* counting blobs in a grid

* Hanoi towers

READING:
* LC textbook chapter 7

Recursion

A method of defining a function in terms of its own definition
Example: the Fibonacci numbers

e f(n)=f(n-1) + f(n-2)

o f(O)=1(1)=1 €——————base case

In programming recursion is a method call to the same method. In other words, a recursive method is
one that calls itself.

Why write a method that calls itself?
Recursion is a good problem solving approach
* solve a problem by reducing the problem to smaller subproblems; this results in recursive calls.
Recursive algorithms are elegant, simple to understand and prove correct, easy to implement
* But! Recursive calls can result in a an infinite loop of calls
* recursion needs a base-case in order to stop
Recursion (repetitive structure) can be found in nature

¢ shells, leaves

Recursive algorithms

To solve a probleme recursively
* break into smaller problems
<«€—— Problem solving technique: Divide-and-Conquer

* solve sub-problems recursively

* assemble sub-solutions

recursive-algorithm(input) {

//base-case

if (isSmallEnough(input))
compute the solution and return it

else
//recursive case
break input into simpler instances inputl, input 2,...
solutionl = recursive-algorithm(inputl)
solution2 = recursive-algorithm(input2)
figure out solution to this problem from solutionl, solution2,...

return solution




Example Example

e Write a function that computes the sum of numbers from 1 to n e Write a function that computes the sum of numbers from 1 to n

int sum (int n)

int sum (int n)

1. use a loop 1. use a loop
2. recursively

2. recursively

. /Irecursively
//with a loop . .
. . int sum (int n) {
int sum (int n) { .

. int s;

int s = 0; .

. . . . if (n == 0) return 0;
for (int i=0; i<n; i++)
) //else
s+= 1i;
s = n + sum(n-1);

return s;

) return s;
}

How does it work?

Recursion

e How it works

* Recursion is no different than a function call

* The system keeps track of the sequence of method calls that have been started but not finished yet (active calls)

¢ order matters

* Recursion pitfalls
* miss base-case
* infinite recursion, stack overflow

* no convergence

¢ solve recursively a problem that is not simpler than the original one

return |+0

return 0




Perspective

Recursion leads to solutions that are
* compact
* simple
* easy-to-understand

¢ easy-to-prove-correct
Recursion emphasizes thinking about a problem at a high level of abstraction

Recursion has an overhead (keep track of all active frames). Modern compilers can often optimize the
code and eliminate recursion.
First rule of code optimization:

* Don’t optimize it..yet.

Unless you write super-duper optimized code, recursion is good

Mastering recursion is essential to understanding computation.

Recursion examples

Sierpinski gasket
Blob counting

Towers of Hanoi

Sierpinski gasket

see Sierpinski-skeleton.java

Fill in the code to create this pattern

Blob check

Problem: you have a 2-dimensional grid of cells, each of which may be filled or empty. Filled cells
that are connected form a “blob” (for lack of a better word).

Write a recursive method that returns the size of the blob containing a specified cell (i,j)

Example
(T el s’ BlobCount(0,3) =3
0 X X BlobCount(0,4) =3
1 s BlobCount(34) =1
SRa fai BlobCount(4,0) =7
BT Oe DS X
CRA DS X

Solution ?
* essentially you need to check the current cell, its neighbors, the neighbors of its neighbors, and so on

+ think RECURSIVELY




Blob check

¢ when calling BlobCheck(i.j)
¢ (i,j) may be outside of grid
* (i,j) may be EMPTY
* (i,j) may be FILLED

When you write a recursive method, always start from the base case

e What are the base cases for counting the blob?

given a call to BlobCkeck(i,j): when is there no need for recursion, and the function can
return the answer immediately ?

* Base cases
* (i) is outside grid
e (i,j) is EMPTY

Blob check

* blobCheck(i,): if (i) is FILLED
* 1 (for the current cell)

* +count its 8 neighbors

//first check base cases

if (outsideGrid(i,j)) return 0;

if (grid[i][j] != FILLED) return 0;
blobc =1
for (1 = -1; 1 <= 1; 1+4+)

for (k = -1; k <= 1; k++)

//skip of middle cell

if (1==0 && k==0) continue;
//count neighbors that are FILLED

if (grid[i+l][j+k] == FILLED) blobc++;

Does not work: it does not count the neighbors of the neighbors, and their neighbors, and so on.

Instead of adding +1 for each neighbor that is filled, need to count its blob recursively.

Blob check

* blobCheck(i,j): if (i) is FILLED
* 1 (for the current cell)

* + count blobs of its 8 neighbors

//first check base cases

if (outsideGrid(i,j)) return 0;

if (grid[i][j] != FILLED) return 0;
blobc = 1
for (1 = -1; 1 <= 1; 1++)

for (k = -1; k <= 1; k++)

//skip of middle cell

if (1==0 && k==0) continue;
blobc += blobCheck(i+k, j+1);

e Example: blobCheck(1,1)
*  blobCount(1,1) calls blobCount(0,2)
* blobCount(0,2) calls blobCount(1,1)
¢ Does it work?

Problem: infinite recursion. Why? multiple counting of the same cell

Marking your steps

Idea: once you count a cell, mark it so that it is not counted again by its neighbors.

blobCheck(l, 1)

X X

Xy *

. . blobc=1
count it and mark it

then find counts of neighbors, recursively
+ blobCheck(0,0)

+ blobCheck(0, )
+blobCheck(0,2)




Correctness

blobCheck(i.j) works correctly if the cell (i,j) is not filled

e ifcell (i, j) is FILLED

* mark the cell

* the blob of this cell is 1 + blobCheck of all neighbors

because the cell is marked, the neighbors will not see it as FILLED

* ==>acell is counted only once

Why does this stop?

blobCheck(i,j) will generate recursive calls to neighbors

recursive calls are generated only if the cell is FILLED
* when a cell is marked, it is NOT FILLED anymore, so the size of the blob of filled cells is one smaller
* ==>the blob when calling blobCheck(neighbor of i,j) is smaller that blobCheck(i.j)

Note: after one call to blobCheck(i.j) the blob of (i,j) is all marked

* need to do one pass and restore the grid

Try it out!

Download blobCheckSkeleton.java from class website

Fill in method blobCount(i,j)

Towers of Hanoi

Consider the following puzzle

There are 3 pegs (posts) a, b, c and n disks of different sizes

Each disk has a hole in the middle so that it can fit on any peg

* At the beginning of the game, all n disks are on peg a, arranged such that the largest is on the bottom, and on

top sit the progressively smaller disks, forming a tower
Goal: find a set of moves to bring all disks on peg ¢ in the same order, that is, largest on bottom, smallest on
top

¢ constraints

the only allowed type of move is to grab one disk from the top of one peg and drop it on another peg
* alarger disk can never lie above a smaller disk, at any time

The legend says that the world will end when a group of monks, somewhere in a temple, will finish
this task with 64 golden disks on 3 diamond pegs. Not known when they started.

Find the set of moves for n=3




Solving the problem for any n

e Problem: move n disks from A to C using B
¢ Think recursively.
¢ Can you express the problem in terms of a smaller problem?

* Subproblem: move n-1 disks from X to Y using Z

Solving the problem for any n

Problem: move n disks from A to C using B
Think recursively.
Can you express the problem in terms of a smaller problem?

* Subproblem: move n-1 disks from X to Y using Z

Recursive formulation of Towers of Hanoi : move n disks from A to C using B
* move top n-1 disks from A to B
* move bottom disks from A to C

* move n-1 disks from B to C using A

Correctness

* How would you go about proving that this is correct?

Hanoi-skeleton.java

* Look over the skeleton of the Java program to solve the Towers of Hanoi
e It’s supposed to ask you for n and then display the set of moves

* no graphics

e finn in the gaps in the method

public void move(sourcePeg, storagePeg, destinationPeg)

Correctness

Proving recursive solutions correct is done with mathematical induction

Induction: a technique of proving that some statement is true for any n (natural number)
* known from ancient times (the Greeks)

Induction proof:
* Base case: prove that the statement is true for some small value of n, usually n=1

* The induction step: assume that the statement is true for all integers <= n-1. Then prove that this implies that it
is true for n.

Exercise: try proving by induction that 1 +2 +3 + ... +n=n(n+1)/2

Proof sketch for Towers of Hanoi:
* Base case: It works correctly for moving one disk.

* Assume it works correctly for moving n-1 disks. Then we need to argue that it works correctly for moving n
disks.

A recursive solution is similar to an inductive proof; just that instead of “inducting” from values
smaller than n to n, we “reduce” from n to values smaller than n (think n = input size)
« the base case is crucial: mathematically, induction does not hold without it; when programming, the lack of a
base-case causes an infinite recursion loop




Analysis

How close is the end of the world? Let’s estimate running time.

The running time of recursive algorithms is estimated using recurrent functions.
Let T(n) be the time to compute the sequence of moves to move n disks from one peg to another.
We have

* T(n)=2T(n-1) + 1, forany n> 1

* T(1)=1 (the base case)

The recurrence solves to T(n) = O(2") [Csci 231]
* It can be shown by induction that T(n) = 2" -1 [Math 200, Csci 231]
This means, the running time is exponential in n

* slow...

Exercise:

* 1GHz processor, n = 64 => 264 x 10 = ... a log time; hundreds of years




