
Computer Science 210:
Data Structures

Arrays

Summary

• Today

• arrays

• arrays of objects

• in-class: add an entry into an array

• Reading:

Collections of data

• The most common thing you want to do when writing algorithms/code is handle a
bunch of data.

• How?

• Arrays (today)

• Linked lists (next time)

Arrays

int[] a;

//declare a to be an array; a is null

a = new int[10];

//create a: allocate space to hold 10 integers and assign

//a reference to this memory to a

• Accessing an array:

a[0], a[1]...a[9]

a.length

• Assigning arrays

int[] a = new int[10;

int[] b;

b = a;

• Today we!ll see a general example of arrays, namely arrays of objects.

• suppose we have a class that stores game entries that looks like this

 public class GameEntry {

protected String name;! // name of the person earning this score
 protected int score;! // the score value

 /** Constructor to create a game entry */
 public GameEntry(String n, int s) {
 name = n;
 score = s;
 }

 /** Retrieves the name field */
 public String getName() { return name; }

 /** Retrieves the score field */
 public int getScore() { return score; }

 /** Returns a string representation of this entry */
 public String toString() {
 return "(" + name + ", " + score + ")";
 }

 }

Arrays in Java

• Java provide a number of built-in methods for performing common tasks on array

• Java.util.Arrays

• equals (a, b);

• performs an element-by-element comparison of a and b and returns true if all
elements are equal

• binarySearch (a, val)

• toString(a)

• sort(a)

• Note: all static methods

• Why? so that you can use them without having to instantiate an object

Arrays in Java

• Java.util.Arrays

• equals (a, b);

• binarySearch (a, val)

• toString(a)

• sort(a)

import java.util.Arrays;

...

int[] a = new int[100];

//assign values to a ...

//...

System.out.print(“the arrays is: “ + Arrays.toString(a));

Arrays.sort(a);

System.out.print(“The sorted arrays is: “ +
Arrays.toString(a));

2D-arrays

• int[][] a;

• int a = new int [3][5];

• //a is an array of 3 rows ; each row is an array of 5 columns

• a[0].length is 5
a[0]

a[1]

a[2]

a[1].length is 5

a[2].length is 5

a[1][2]

a.length is 3

3D-arrays

• int [][][] a;

• a = new int [3][4][5];

• a is an array of 3 elements; each element of a is a 2D-array [4][5]

• a.length is 3

• a[0].length is 4

• a[0][0].length is 5

Exercise

• Suppose we want to store high scores for a video games. But we don!t want to store
ALL entries. We want store the top 10 highest entries.

• We are going to provide this functionality through a class called Scores

• Class Scores needs to store

• maximum nb of entries

• in our case 10

• this should be a constant

• actual number of entries

• the entries

• array of GameEntries

• Class Scores needs to provide an insert method that inserts a GameEntry while
maintaining the invariant that entries[] represents the top 10 scores seen so far

• To make things easier (for the user, that is), we!re going to maintain entries[] in order
of scores

• decreasing order (why is it better than increasing?)

/** Class for storing high scores in an array in non-decreasing order. */
public class Scores {

 public static final int maxEntries = 10; //number of high scores we keep
 protected int numEntries; //number of actual entries
 protected GameEntry[] entries; // array of game entries (names & scores)

 /** Default constructor */
 public Scores() {
 entries = new GameEntry[maxEntries];
 numEntries = 0;
 }

 /** Returns a string representation of the high scores list */
 public String toString() {
 String s = "[";
 for (int i = 0; i < numEntries; i++) {
 if (i > 0) s += ", "; // separate entries by commas
 s += entries[i];
 }
 return s + "]";
 }

.......
}

Inserting an entry in Scores

• public void insert(GameEntry e)

• How do we want this to behave?

• if entries[] has space:

• insert e in the right spot; shift things to the right; increment numEntries

• if entries[] is full:

• if e is smaller than all scores, do nothing

• else

• find the right spot to insert e

• shift everything to the right one position (thus the last entry is over-written)

• Class-work: come up with an implementation of insert

• works on all cases

• simple to read

public void insert(GameEntry e) {

int newScore = e.getScore();

if (numEntries == MAX_ENTRIES) {

//if array is full

if (newScore < entries[numEntries-1].getScore() return;

} else numEntries++;

//if we are here, e needs to be inserted; numEntries includes the new

//entry; start from end and shift entries to the right until finding an

//entry that’s smaller

int i = numEntries-1;

while (i > 0 && entry[i-1].getScore() < newScore) {

entry[i] = entry[i-1];

i--;

}

//entry[i-1] is the first entry that’s larger than newScore

//entry[i] was copied to the right, so all we need to do is replace it

entry[i] = e;

}

check the entry to the leftfirst check i>0

Inserting an entry into Scores: solution

public void insert(GameEntry e) {

int newScore = e.getScore();

if (numEntries == MAX_ENTRIES) {

//if array is full

if (newScore < entries[numEntries-1].getScore() return;

} else numEntries++;

//if we are here, e needs to be inserted; numEntries includes the new entry

//start from end and shift entries to the right until finding an entry that’s smaller

int i = numEntries-1;

while (i>0 && entry[i-1].getScore() < newScore) {

entry[i] = entry[i-1];

i--;

}

//entry[i] is the first entry that’s larger than newScore; it has been copied to the

//right, so all we need to do is replace it

entry[i] = e;

}

Note: names of variables, commenting, spacing
Is this easy to understand?

Easy to read ===> easy to write, check that it
works, implement, debug

Remove an entry from Scores

public void remove(int i)

• What should this do?

• action: remove entry i

• if i is outside the bounds, print some error message (or throw an exception)

• otherwise shift all entries to the right o f i one position to the left, and decrement
numEntries

Remove an entry from Scores: Solution

• public void remove(int i)

• action: remove entry i

• if i is outside the bounds, print some error message (or throw an exception)

• otherwise shift all entries to the right of i one position to the left, and decrement
numEntries

public void remove (int i) {

if (i < 0 || i >= numEntries) {

System.out.println(“remove: invalid index”);

exit(1);

}

//if we are here then i is a valid index

//shift everything one position to the left; be careful with
last

//element

for (j = i; j < numEntries-1; j++)

entries[j] = entries[j+1];

numEntries--;

}

