
Homework 1 Solutions

(1) Compare and contrast the linearSearch and binarySearch algorithms by
searching for numbers 45 and 54 in the following list: (3, 8, 12, 34, 54, 84, 91, 110).
Answer:
—Searching for 45: 45 does not exist in the list. With linear search you have

to compare all 8 elements to see this. With binary search, you first check the
middle element in position 3 (34), then the element at position 5 (54), then
the element at position 4 (34); so binary search checks 3 elements in total,
while linear search checks 8.

—Searching for 54: Linear search finds it with 5 comparisons. Binary search
needs only 2: first it checks element at position 3 (34), then the element at
position 5 (54).

(2) Consider an array A of n elements, a[0]...a[n − 1] and the pseudocode for
bubbleSort discussed in class:

for k = 1 to n-1 do
for i = 0 to n-1-j

if (A[i] > A[i+1]) swap A[i] and A[i+1]

(a) Describe what happens when you bubblesort an array A that is already
sorted. How many swaps are performed by the inner loop each time? How
many times is the outer loop executed?

Answer: If the array is already sorted, the first iteration of the inner loop
performs no swap, and at that point the outer loop should stop. Instead, the
outer loop executes n-1 times. The inner loop executes n-1-j times; even though
it performs no swaps, it still needs to run n-1-j times. Overall, if the array is
already sorted, Bubblesort as written above takes Θ(n2) time.
(b) Show how you can change the code so that it exits the loop early if the
inner loop performs no swap. Try to add as little extra code as possible. You
can change the if to a while, or, you can look into exiting a loop using break.

Answer: Here is one way to do it:

for k = 1 to n-1 do
//initialize this iteration
swapped = false
for i = 0 to n-1-j

if (A[i] > A[i+1])
swap A[i] and A[i+1]
swapped = true

//if no swap was performed in this iteration, then we’re done

csci210: Data Structures 2009

2 · Java Basics

if swapped== false break

In this case, if the array is already sorted, Bubblesort stops after one iteration
of the inner loop, in Θ(n) total time. With this modification, the best case is
Θ(n) while the worst case is still Θ(n2). Note that the case when the array is
already sorted is just one instance where the running time is improved. Any
other scenario where Bubblesort does not need all n-1 passes will be detected
by the algorithm above and it will exit early.

(3) You are playing a game where your task is to guess the value of a hidden number
that is one of n integers between 0 and n−1. For simplicity, we’ll asume that n
is a power of 2. Each time you make a guess, you are told whether your guess
is too high or too low.
One strategy for playing this game is to guess 0, then 1, then 2, then 3, and so
on, until hitting the hidden number. How long would it take you to guess the
hidden number, in the worst case?
Describe a better strategy for playing this game and analyse it.

Answer: The first strategy take Θ(n) trials in the worst case to guess the
number, since the hidden number can be the very last one we try.
A better strategy is to keep track of the interval where the number can be, and
always guess the number in teh middle of the interval. Initially we know that
the number x is in [0, n − 1]. We guess n − 1/2; if x > n − 1/2 the interval
becomes [(n− 1)/2+1, n− 1]; otherwise the interval becomes [0, (n− 1)/2− 1].
In the worst case this takes Θ(lg n) guesses.

(4) Given an array of n real numbers, sketch how you’d find the pair of numbers
that are closest in value.

Answer: One way to do this is to compute, for every element a[i], its closest
element: that is, the element a[j] such that |a[j] − a[i]| is smallest in value,
among all j = 1..n, j 6= i. Then find the smallest such pair, across all i = 1..n.
For one element, finding its closest element takes Θ(n) time. Doing this for
every element i and finding the overall minimum takes Θ(n2).
Another solution is to sort the array. The claim is that the pair of elements
that are closest in value must be in consecutive indices of the sorted array. You
should at least try to argue why this is true. Let’s assume that the array is
sorted in increasing order.

a[0] ≤ a[1] ≤ a[2] ≤ ...

This means that a[i + 1]− a[i] ≥ 0 for all i. Now let’s look at the difference in
value between two elements at distance 2 apart, a[i + 2] and a[i]:

a[i + 2]− a[i] = a[i + 2]− a[i + 1] + a[i + 1]− a[i]
csci210: Data Structures 2009.

Java Basics · 3

and since both a[i + 2]− a[i + 1] ≥ 0 and a[i + 1]− a[i] ≥ 0 it follows that

a[i + 2]− a[i] ≥ a[i + 2]− a[i + 1]

and

a[i + 2]− a[i] ≥ a[i + 1]− a[i]

With this property, it now suffices to do one pass over the sorted array and
compute differences in value between consecutive elements, and keep track of
the largest one. Once the array is sorted, this takes Θ(n) time. Sorting the
array with teh methods we learnt (insertion sort, bubble sort, selection sort)
takes Θ(n2), so this is not better than the first solution. However we will see
later that it is possible to sort in Θ(n lg n).

(5) Same problem as above, but find the pair of numbers that are farthest apart in
value.

Answer: The observation is that the numbers that are farthest apart are the
smallest and teh largest numbers in the array. One way to solve this is to sort
the array and then output the first and the last. The complexity of this is the
complexity of the sorting algorithm you use.
Another way to do this is to notice that you do not need to sort the array in
order to find the smallest and the largest elements. You can find each of them
in one pass through the array. This approach therefore runs in Θ(n) time.

csci210: Data Structures 2009.

