csci 210: Data Structures

Maps and Hash Tables

Summary

- Topics
- the Map ADT
- Map vs Dictionary
- implementation of Map: hash tables
- READING:
- GT textbook chapter 9.1 and 9.2

Map ADT

- A Map is an abstract data structure similar to a Dictionary
- it stores key-value (k, v) pairs
- there cannot be duplicate keys
- Maps are useful in situations where a key can be viewed as a unique identifier for the object
- the key is used to decide where to store the object in the structure
- in other words, the key associated with an object can be viewed as the address for the object
- maps are sometimes called associative arrays

Map ADT

- size()
- isEmpty()
- get(k):
- if M contains an entry with key k , return it; else return null
- put(k,v):
- if M does not have an entry with key k, add entry (k, v) and return null
- else replace existing value of entry with v and return the old value
- remove(k):
- remove entry $(\mathrm{k}, *)$ from M

Map example

(k, v) key=integer, value=letter

$$
M=\{ \}
$$

- $\operatorname{put}(5, A) \quad M=\{(5, A)\}$
- $\operatorname{put}(7, B) \quad M=\{(5, A),(7, B)\}$
- $\operatorname{put}(2, C) \quad M=\{(5, A),(7, B),(2, C)\}$
- $\operatorname{put}(8, D) \quad M=\{(5, A),(7, B),(2, C),(8, D)\}$
- $\operatorname{put}(2, E) \quad M=\{(5, A),(7, B),(2, E),(8, D)\}$
- get(7) return B
- get(4) return null
- get(2) return E
- remove(5) $M=\{(7, B),(2, E),(8, D)\}$
- remove(2) $M=\{(7, B),(8, D)\}$
- get(2) return null

Example

- Implement a language dictionary with a map
- key = word
- value $=$ definition of word
- get(word)
- returns the definition if the word is in dictionary
- returns null if the word is not in dictionary
- Note: Maps provide an alternative approach to searching

Maps vs Trees

- How are Maps different than Search Trees?

BST:
data $=$ <key, ...>
for any node u: BST property

- Binary search trees also associate keys with values
- In the data of each BST node there exists a field designated as the u key
- the BST is ordered by this key
- e.g: a BST of student records
- data = student record
- key = student ID
- search/insert/delete by student ID are efficient
- Binary trees also support Insert, Delete, Search
- and others
- $\mathrm{O}(\mathrm{n})$ worst-case time
- $\mathrm{O}(\lg \mathrm{n})$ if the tree is balanced

Binary Search Tree

- Note: Want to search/insert/delete efficiently by name ?
- need to build a BST with key=name
- Want to search/insert/delete efficiently by age?
- need to build a BST with key=age
- Want to search/insert/delete efficiently by SSN?
- need to build a BST with key=SSN

Dictionary ADT

- A generic data structure that supports \{INSERT, DELETE, SEARCH\} is called a DICTIONARY
- A Dictionary stores (k, v) key-value pairs called entries
- k is the key
- v is the value
- A Dictionary can have elements with same key
- Note: how does a BST with equal elements look like?
- A DICTIONARY usually keeps track of the order of the elements
- supports other operations like predecessor, successor, traverse--in-order

Java.util.Map

- check out the interface
- additional handy methods
- putAll
- entrySet
- containsValue
- containsKey
- Implementation?

Class-work

- Write a program that reads from the user the name of a text file, counts the word frequencies of all words in the file, and outputs a list of words and their frequency.
- e.g. text file: article, poem, science, etc
- Questions:
- Think in terms of a Map data structure that associates keys to values.
- What will be your <key-value> pairs?
- Sketch the main loop of your program.

Map Implementations

- Linked-list
- Binary search trees
- Hash tables

A LinkedList implementation of Maps

- store the (k, v) pairs in a doubly linked list
- $\operatorname{get}(\mathrm{k})$
- hop through the list until find the element with key k
- put(k,v)
- Node $x=\operatorname{get}(k)$
- if (x != null)
- replace the value in x with v
- else create a new node (k, v) and add it at the front
- remove(k)
- Node $\mathrm{x}=\operatorname{get}(\mathrm{k})$
- if ($x==$ null) return null
- else remove node x from the list
- Note: why doubly-linked? need to delete at an arbitrary position
- Analysis: $\mathrm{O}(\mathrm{n})$ on a map with n elements

Map Implementations

- Linked-list:
- get/search, put/insert, remove/delete: $\mathrm{O}(\mathrm{n})$
- Binary search trees
- search, insert, delete: $O(n)$ if not balanced
- $\mathrm{O}(\lg n)$ if balanced BST
- A new approach
- Hash tables:
- we'll see that (under some assumptions) search, insert, delete: $\mathrm{O}(1)$

Hashing

- A completely different approach to searching from the comparison-based methods (binary search, binary search trees)
- rather than navigating through a dictionary data structure comparing the search key with the elements, hashing tries to reference an element in a table directly based on its key
- hashing transforms a key into a table address

Hashing

- If the keys were integers in the range 0 to 99
- The simplest idea:
- store keys in an array $\mathrm{H}[0 . .99]$
- H initially empty
direct addressing: store key k at index k

- $\operatorname{put}(k$, value $)$
- store <k, value> in H[k]
- get(k)
- check if $\mathrm{H}[\mathrm{K}]$ is empty
issues:
- keys need to be integers in a small range
- space may be wasted is H not full

Hashing

- Hashing has 2 components
- the hash table: an array A of size N
- each entry is thought of a bucket: a bucket array
- a hash function: maps each key to a bucket
- h is a function : \{all possible keys $\}--->\{0,1,2, \ldots, N-1\}$
- key k is stored in bucket $\mathrm{h}(\mathrm{k})$

- The size of the table N and the hash function are decided by the user
- Goal: chose a hash function that distributes keys uniformly throughout the table

Example

- keys: integers
- chose $\mathrm{N}=10$
- \quad chose $h(k)=k \% 10$
- [$\mathrm{k} \% 10$ is the remainder of $\mathrm{k} / 10$]

- $\operatorname{add}(2, *),(13, *),(15, *),(88, *),(2345, *),(100, *)$
- Collision: two keys that hash to the same value
- e.g. 15,2345 hash to slot 5
- Note: if we were using direct addressing: $\mathrm{N}=2^{\wedge} 32$. Unfeasible.

Hashing

- h : \{universe of all possible keys\} ----> \{0,1,2,...,N-1\}
- The keys need not be integers
- e.g. strings
- define a hash function that maps strings to integers
- The universe of all possible keys need not be small
- e.g. strings
- Hashing is an example of space-time trade-off:
- if there were no memory(space) limitation, simply store a huge table
- $\mathrm{O}(1)$ search/insert/delete
- if there were no time limitation, use a linked list and search sequentially
- Hashing: use a reasonable amount of memory and strike a balance space-time
- adjust hash table size
- Under some assumptions, hashing supports insert, delete and search in in $\mathrm{O}(1)$ time

Hashing

- Notation:
- $\mathrm{U}=$ universe of keys
- $\mathrm{N}=$ hash table size
- $\mathrm{n}=$ number of entries
- note: n may be unknown beforehand
- Goal of a hash function:
called "universal hashing"
- the probability of any two keys hashing to the same slot is $1 / \mathrm{N}$
- Essentially this means that the hash function throws the keys uniformly at random into the table
- If a hash function satisfies the universal hashing property, then the expected number of elements that hash to the same entry is n / N
- if $\mathrm{n}<\mathrm{N}: \mathrm{O}(1)$ elements per entry
- if $n>=N: O(n / N)$ elements per entry

Hashing

- Chosing h and N
- Goal: distribute the keys
- n is usually unknown
- If $\mathrm{n}>\mathrm{N}$, then the best one can hope for is that each bucket has $\mathrm{O}(\mathrm{n} / \mathrm{N})$ elements
- need a good hash function
- search, insert, delete in $O(n / N)$ time
- If $\mathrm{n}<=\mathrm{N}$, then the best one can hope for is that each bucket has $\mathrm{O}(1)$ elements
- need a good hash function
- search, insert, delete in $O(1)$ time
- If N is large $==>$ less collisions and easier for the hash function to perform well
- Best: if you can guess n beforehand, chose N order of n
- no space waste

Hash functions

- How to define a good hash function?
- An ideal has function approximates a random function: for each input element, every output should be in some sense equally likely
- In general impossible to guarantee
- Every hash function has a worst-case scenario where all elements map to the same entry
- Hashing = transforming a key to an integer
- There exists a set of good heuristics

Hashing strategies

- Casting to an integer
- if keys are short/int/char:
- $\mathrm{h}(\mathrm{k})=$ (int) k ;
- if keys are float
- convert the binary representation of k to an integer
- in Java: $\mathrm{h}(\mathrm{k})=$ Float.floatToIntBits(k)
- if keys are long long
- $h(k)=$ (int) k
- lose half of the bits
- Rule of thumb: want to use all bits of k when deciding the hash code of k
- better chances of hash spreading the keys

Hashing strategies

- Summing components
- let the binary representation of key $\mathrm{k}=\left\langle\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}-1}\right\rangle$
- use all bits of k when computing the hash code of k
- sum the high-order bits with the low-order bits
- (int) $<\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2},, \mathrm{x}_{31}>+$ (int) $<\mathrm{x}_{32},,, \mathrm{x}_{\mathrm{k}-1}>$
- e.g. String s;
- sum the integer representation of each character
- (int)s[0] + (int)s[1] + (int) s[2] + ...

Hashing strategies

- summation is not a good choice for strings/character arrays
- e.g. $s 1=$ "temp 10 " and $s 2=$ "temp01" collide
- e.g. "stop", "tops", "pots", "spot" collide
- Polynomial hash codes
- $\mathrm{k}=\left\langle\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}-1}\right\rangle$
- take into consideration the position of $\mathrm{x}[\mathrm{i}]$
- chose a number a $>0 \quad(\mathrm{a}!=1)$
- $\mathrm{h}(\mathrm{k})=\mathrm{x}_{0} \mathrm{a}^{\mathrm{k}-1}+\mathrm{x}_{1} \mathrm{a}^{\mathrm{k}-2}+\ldots+\mathrm{x}_{\mathrm{k}-2} \mathrm{a}+\mathrm{x}_{\mathrm{k}-1}$
- experimentally, $\mathrm{a}=33,37,39,41$ are good choices when working with English words
- produce less than 7 collision for 50,000 words!!!
- Java hashCode for Strings uses one of these constants

Hashing strategies

- Need to take into account the size of the table
- Modular hashing
- $\mathrm{h}(\mathrm{k})=\mathrm{i} \bmod \mathrm{N}$
- If take N to be a prime number, this helps the spread out the hashed values
- If N is not prime, there is a higher likelihood that patterns in the distribution of the input keys will be repeated in the distribution of the hash values
- e.g. keys $=\{200,205,210,215,220, \ldots 600\}$
- $\mathrm{N}=100$
- each hash code will collide with 3 others
- $\mathrm{N}=101$
- no collisions

Hashing strategies

- Combine modular and multiplicative:
- $\mathrm{h}(\mathrm{k})=\mathrm{ak} \% \mathrm{~N}$
- chose $\mathrm{a}=$ random value in $[0,1]$
- advantage: the value of N is not critical and need not be prime
- empirically:
- a popular choice is $\mathrm{a}=0.618033$ (the golden ratio)
- chose $\mathrm{N}=$ power of 2

Hashing strategies

- If keys are not integers
- transform the key piece by piece into an integer
- need to deal with large values
- e.g. key = string
- $\mathrm{h}(\mathrm{k})=\left(\mathrm{s}_{0} \mathrm{a}^{\mathrm{k}-1}+\mathrm{s}_{1} \mathrm{a}^{\mathrm{k}-2}+\ldots+\mathrm{s}_{\mathrm{k}-2} \mathrm{a}+\mathrm{s}_{\mathrm{k}-1}\right) \% \mathrm{~N}$
- for e.g. $\mathrm{a}=33$
- Horner's method: $\left.h(k)=\left(\left(\left(s_{0} a+s_{1}\right)^{*} a+s_{2}\right)^{*} a+s_{3}\right)^{*} a+\ldots ..\right)^{*} a+s_{k-1}$

```
int hash (char[] v, int N) {
    int h = 0, a = 33;
    for (int i=0; i< v.length; i++)
        h = (a*h + v[i])
    return h % N;
}
```

- the sum may produce a number than we can represent as an integer
- take $\% \mathrm{~N}$ after every multiplication


```
int hash (char[] v, int N) {
    int h = 0, a = 33;
    for (int i=0; i< v.length; i++)
        h = (a *h + v[i]) %N
        return h;
}
```


Hashing strategies

- Universal hashing
- chose N prime
- chose p a prime number larger than N
- chose a, b at random from $\{0,1, \ldots \mathrm{p}-1\}$
- $h(k)=((a k+b) \bmod p) \bmod N$
- gets very close to having two keys collide with probability $1 / \mathrm{N}$
- i.e. to throwing the keys into the hash table randomly
- Many other variations of these have been studied, particularly has functions that can be implemented with efficient machine instructions such as shifting

Hashing

- Hashing

1. hash function convert keys into table addresses
2. collision handling

- Collision: two keys that hash to the same value Decide how to handle when two kets hash to the same address
- Note: if $\mathrm{n}>\mathrm{N}$ there must be collisions
- Collision with chaining
- bucket arrays
- Collision with probing
- linear probing
- quadratic probing
- double hashing

Collisions with chaining

- Store all elements that hash to the same entry in a linked list (array/vector)
- Can chose to store the lists in sorted order or not
- Insert(k)
- insert k in the linked list of $h(k)$
- Search(k)
- search in the linked list of $h(k)$
under universal hashing:
each list has size $O(n / N)$ with high probability
insert, delete, search: $\mathrm{O}(\mathrm{n} / \mathrm{N})$
- Delete(k)
- find and delete k from the linked list of $\mathrm{h}(\mathrm{k})$

Collisions with chaining

- Pros:
- can handle arbitrary number of collisions as there is no cap on the list size
- don't need to guess n ahead: if N is smaller than n , the elements will be chained
- Cons: space waste
- use additional space in addition to the hash table
- if N is too large compared to n , part of the hash table may be empty
- Choosing N: space-time tradeoff
- Rule of thumb:
- chose $\mathrm{N} 1 / 5$ to $1 / 10$ of the number of keys that we expect in the table, so that keys are expected to have about 10 elements each. Keep lists unsorted.

Collisions with probing

- Idea: do not use extra space, use only the hash table
- Idea: when inserting key k , if slot $\mathrm{h}(\mathrm{k})$ is full, then try some other slots in the table until finding one that is empty
- the set of slots tried for key k is called the probing sequence of k
- Linear probing:
- if slot $h(k)$ is full, try next, try next, ...
- probing sequence: $\mathrm{h}(\mathrm{k}), \mathrm{h}(\mathrm{k})+1, \mathrm{~h}(\mathrm{k})+2, \ldots$
- insert(k)
- search(k)
- delete(k)
- Example: $\mathrm{N}=10, \mathrm{~h}(\mathrm{k})=\mathrm{k} \% 10$, collisions with linear probing
- insert $1,7,4,13,23,25,25$

Linear probing

- Notation: alpha $=\mathrm{n} / \mathrm{N}($ load factor of the hash table $)$
- In general performance of probing degrades inversely proportional with the load of the hash
- for a sparse table (small alpha) we expect most searches to find an empty position within a few probes
- for a nearly full table (alpha close to 1) a search could require a large number of probess
- Proposition:
- Under certain randomness assumption it can be shown that the average number of probes examined when searching for key k in a hash table with linear probing is $1 / 2(1+1 /(1-$ alpha $))$
- [No proof]
- alpha =0: 1 probe
- alpha $=1 / 2$: 1.5 probes (half-full)
- alpha=2/3: 2 probes ($2 / 3$ full)
- alpha =9/10: 5.5 probes
- Collisions with probing: cannot insert more than N items in the table
- need to guess n ahead
- if at any point n is $>\mathrm{N}$, need to re-allocate a new hash table, and re-hash everything. Expensive!

Linear probing

- Pros:
- space efficiency
- Con:
- need to guess n correctly and set $\mathrm{N}>\mathrm{n}$
- if alpha gets large $==>$ high penalty
- the table is resized and and all objects re-inserted into the new table
- Rule of thumb: good performance with probing if alpha stays less than $2 / 3$.

Double hashing

- Empirically linear hashing introduces a phenomenon called clustering:
- insertion of one key can increase the time for other keys with other hash values
- groups of keys clustered together in the table
- Double hashing:
- instead of examining every successive position, use a second hash function to get a fixed increment
- probing sequence: $\mathrm{h} 1(\mathrm{k}), \mathrm{h} 1(\mathrm{k})+\mathrm{h} 2(\mathrm{k}), \mathrm{h} 1(\mathrm{k})+2 \mathrm{~h} 2(\mathrm{k}), \mathrm{h} 1(\mathrm{k})+3 \mathrm{~h} 2(\mathrm{k}), \ldots$
- chose h2 so that it never evaluates to 0 for any key
- would give an infinite loop on first collision
- Rule of thumb:
- chose h2(k) relatively prime to N
- Performance:
- double hashing and linear hashing have the same performance for sparse tables
- empirically double hashing eliminates clustering
- we can allow the table to become more full with double hashing than with linear hashing before performance degrades

Java.util.Hashtable

- This class implements a hash table, which maps keys to values. Any non-null object can be used as a key or as a value.
- java.lang.Object
- java.util.Dictionary
- java.util.Hashtable
- implements Map
- [check out Java docs]
- implements a Map with linear probing; uses .75 as maximal load factor, and rehashes every time the table gets fuller
- Example

```
//create a hashtable of <key=string, value=number> pairs
Hashtable numbers = new Hashtable();
numbers.put("one", new Integer(1));
numbers.put("two", new Integer(2));
numbers.put("three", new Integer(3));
    //retrieve a string
Integer n = (Integer)numbers.get("two");
if (n != null) {
    System.out.println("two = " + n);
}
```


Hash functions in Java

- The generic Object class comes with a default hashCode() method that maps an Object to an integer
- int hashCode()
- Inherited by every Object
- The default hashCode() returns the address of the Object's location in memory
- too generic
- poor choice for most situations
- Typically you want to override it
- e.g. class String
- overrides Strng.hashCode() with a hash function that works well on Strings

Perspective

- Best hashing method depends on application
- Probing is the method of choice if n can be guessed
- Linear probing is fastest if table is sparse
- Double hashing makes most efficient use of memory as it allows the table to become more full, but requires extra time to to compute a second hash function
- rule of thumb: load factor < . 66
- Chaining is easiest to implement and does not need guessing n
- rule of thumb: load factor $<.9$ for $\mathrm{O}(1)$ performance, but not vital
- Hashing can provide better performance than binary search trees if the keys are sufficiently random so that a good hash function can be developed
- when hashing works, better use hashing than BST
- However
- Hashing does not guarantee worst-case performance
- Binary search trees support a wider range of operations

Exercises

- What is the worst-case running time for inserting n key-value pairs into an initially empty map that is implemented with a list?
- Describe how to use a map to implement the basic ops in a dictionary ADT, assuming that the user does not attempt to insert entries with the same key
- Describe how an ordered list implemented as a doubly linked list could be used to implement the map ADT.
- Draw the 11 -entry hash that results from using the hash function $h(i)=(2 i+5) \bmod 11$ to hash keys $12,44,13,88,23,94,11,39,20,16,5$.
- (a) Assume collisions are handled by chaining.
- (b) Assume collisions are handled by linear probing.
- (c) Assume collisions are handled with double hashing, with the secondary hash function $h^{\prime}(k)=7-(k \bmod 7)$.
- Show the result of rehashing this table in a table of size 19 , using teh new hasah function $h(k)$ $=2 \mathrm{k} \bmod 19$.
- Think of a reason that you would not use a hash table to implement a dictionary.

