csci 210: Data Structures

Recursion

Summary

- Topics
- recursion overview
- simple examples
- Sierpinski gasket
- Hanoi towers
- Blob check
- READING:
- GT textbook chapter 3.5

Recursion

- In general, a method of defining a function in terms of its own definition
- $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$
- $\mathrm{f}(0)=\mathrm{f}(1)=1$;
- In programming, recursion is a call to the same method from a method
- Why write a method that calls itself?
- a method to to solve problems by solving easier instance of the same problem
- Recursive function calls can result in a an infinite loop of calls
- recursion needs a base-case in order to stop
- $\mathrm{f}(0)=\mathrm{f}(1)=1$;
- Recursion (repetitive structure) can be found in nature
- shape of cells, leaves
- Recursion is a good problem solving approach
- Recursive algorithms
- elegant
- simple to understand and prove correct
- easy to implement
- Problem solving technique: Divide-and-Conquer
- break into smaller problems
- solve sub-problems recursively
- assemble solutions
- recursive-algorithm(input) \{
- //base-case
- if (isSmallEnough(input))
- compute the solution and return it
- else
- break input into simpler instances input 1 , input $2, \ldots$
- solution $1=$ recursive-algorithm(input1)
- solution $2=$ recursive-algorithm(input2)
- ...
- figure out solution to this problem from solution 1 , solution $2, \ldots$.
- return solution
- \}
- Problem: write a function that computes the sum of numbers from 1 to n int sum (int n)

1. use a loop
2. recursively

- Problem: write a function that computes the sum of numbers from 1 to n int sum (int n)

1. use a loop
2. recursively
```
int sum (int n) {
    int s = 0;
    for (int i=0; i<n; i++)
        s+= i;
    return s;
}
```

```
int sum (int n) {
    int s;
    if (n == 0) return 0;
    //else
    s = n + sum(n-1);
    return s;
}
```


How does it work?

Recursion

- How it works
- Recursion is no different than a function call
- The system keeps track of the sequence of method calls that have been started but not finished yet (active calls)
- order matters
- Recursion pitfalls
- miss base-case
- infinite recursion, stack overflow
- no convergence
- solve recursively a problem that is not simpler than the original one

Perspective

- Recursion leads to
- compact
- simple
- easy-to-understand
- easy-to-prove-correct
- solutions
- Recursion emphasizes thinking about a problem at a high level of abstraction
- Recursion has an overhead (keep track of all active frames). Modern compilers can often optimize the code and eliminate recursion.
- First rule of code optimization:
- Don’t optimize it..yet.
- Unless you write super-duper optimized code, recursion is good
- Mastering recursion is essential to understanding computation.

Class-work

- Sierpinski gasket
- Fill in the code to create this pattern

Towers of Hanoi

- Consider the following puzzle
- There are 3 pegs (posts) a, b, c
- n disks of different sizes
- each disk has a hole in the middle so that it can fit on any peg
- at the beginning of the game, all n disks are on peg a, arranged such that the largest is on the bottom, and on top sit the progressively smaller disks, forming a tower
- Goal: find a set of moves to bring all disks on peg c in the same order, that is, largest on bottom, smallest on top
- constraints
- the only allowed type of move is to grab one disk from the top of one peg and drop it on another peg
- a larger disk can never lie above a smaller disk, at any time
- PS: the legend says that the world will end when a group of monks, somewhere in a temple, will finish this task with 64 golden disks on 3 diamond pegs. Not known when they started.

a

Find the set of moves for $n=3$

Solving the problem for any n

- Think recursively
- Problem: move n disks from A to C using B
- Can you express the problem in terms of a smaller problem?
- Subproblem:
- move $\mathrm{n}-1$ disks from A to C using B

Solving the problem for any n

- Think recursively
- Problem: move n disks from A to C using B
- Can you express the problem in terms of a smaller problem?
- Subproblem:
- move n -1 disks from A to C using B
- Recursive formulation of Towers of Hanoi
- move n disks from A to C using B
- move top n -1 disks from A to B
- move bottom disks from A to C
- move $\mathrm{n}-1$ disks from B to C using A
- Correctness
- How would you go about proving that this is correct?

Hanoi-skeleton.java

- Look over the skeleton of the Java program to solve the Towers of Hanoi
- It's supposed to ask you for n and then display the set of moves
- no graphics
- finn in the gaps in the method public void move(sourcePeg, storagePeg, destinationPeg)

Correctness

- Proving recursive solutions correct is related to mathematical induction, a technique of proving that some statement is true for any n
- induction is known from ancient times (the Greeks)
- Induction proof:
- Base case: prove that the statement is true for some small value of n, usually $n=1$
- The induction step: assume that the statement is true for all integers $<=\mathrm{n}-1$. Then prove that this implies that it is true for n.
- Exercise: try proving by induction that $1+2+3+\ldots . .+\mathrm{n}=\mathrm{n}(\mathrm{n}+1) / 2$
- A recursive solution is similar to an inductive proof; just that instead of "inducting" from values smaller than n to n, we "reduce" from n to values smaller than n (think $n=$ input size)
- the base case is crucial: mathematically, induction does not hold without it; when programming, the lack of a base-case causes an infinite recursion loop
- proof sketch for Towers of Hanoi:
- It works correctly for moving one disk (base case). Assume it works correctly for moving n-1 disks. Then we need to argue that it works correctly for moving n disks.

Analysis

- How close is the end of the world?
- Let's estimate running time
- the running time of recursive algorithms is estimated using recurrent functions
- let $\mathrm{T}(\mathrm{n})$ be the time it takes to compute the sequence of moves to move n disks fromont peg to another
- then based on the algorithm we have
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n}-1)+1$, for any $\mathrm{n}>1$
- $T(1)=1$ (the base case)
- I can be shown by induction that $T(n)=2^{n}-1$
- the running time is exponential in n
- Exercise:
- 1 GHz processor, $\mathrm{n}=64=>2^{64} \times 10^{-9}=\ldots$ a log time; hundreds of years

