
CS107

Introduction to Computer Science

Lecture 1

Introduction

Csci 107

• This class is a broad introduction to CS. The goal is to find
out what CS is about and find out about its applications and
impact in other disciplines.

• Step-by-step introduction into the art of problem solving
using computers

• It does not assume previous knowledge of programming or
computers.

• It does assume that you will keep the pace, work on the labs
in a timely manner, come to the help sessions, etc

• Intended for majors and non-majors

Administrativia
• Lab access

– Searles 128:

• Mon-Friday 8am-5pm (unless class in progress) and 6-10pm

• Sat, Sun noon-10pm

– Searles 117: 6-10pm, Sat-Sun 12-10pm

• Study group

– Leader: Richard Hoang’05

– Time: TBD

– Location: Searles 128

Resources

• Class webpage

http://www.bowdoin.edu/~ltoma/teaching/cs107/spring06/

• Office hours: M, T, W after class

• Grading policy

• Syllabus

• Lab assignments

• Readings

Csci 107

• Goal: learn to think like a computer scientist

• Why???

– Computers are everywhere..

– IT fastest growing industry, largest number of jobs

• so what? Can’t I be a successful

Biologist, Physicist, Chemist, teacher, therapist, geologist,
environmentalist, …

 …without computer science?

– Yes… if you are 70.

– Probably, if you are 18. But knowledge of computers will make
you much more effective in any career you may choose.

What is Computer Science?

• Computer Science is the study of computers (??)
– This leaves aside the theoretical work in CS, which does not make use of real

computers, but of formal models of computers

– A lot of work in CS is done with pen and paper! Actually, the early work in
CS took place before the development of the first computer

– Computer Science is no more about computers than astronomy is about
telescopes, biology is about microscopes, or chemistry is about test tubes.

• Computer Science is the study of how to write computer programs
(programming) (??)

– Programming is a big part of CS.. ..but it is not the most important part.

• Computer Science is the study of the uses and applications of
computers and software (??)

– Learning to use software packages is no more a part of CS than driver’s
education is part of automotive engineering.

– CS is responsible for building and designing software.

What is an algorithm?

• Algorithm: well-defined procedure that allows an agent to

solve a problem.

• Example algorithms

– Cooking a dish

– Making a peanut-butter jelly sandwich

– Shampooing hair

– Programming a VCR

– Making a pie

Example

Is this an algorithm?

• Step 1: Wet hair

• Step 2: Lather

• Step 3: Rinse

• Step 4: Repeat

Would you manage to wash your hair with this algorithm?

How about a robot? Why (not)?

Algorithms

An algorithm must:

1. Be well-ordered and unambiguous

2. Each operation must be effectively executable

3. Terminate.

Algorithm for Programming a VCR

• Step 1: If the clock and calendar are not correctly set, then go to page 9 of the
instruction manual and follow the instructions before proceeding

• Step 2: Place a blank tape into the VCR tape slot

• Step 3: Repeat steps 4 through 7 for each program that you wish to record, up
to a maximum of 10 shows

• Step 4: Enter the channel number that you wish to record, and press the button
labeled CHAN

• Step 5: Enter the start time and press TIME-START

• Step 6: Enter the end time and press END-TIME

• Step 7: This completes the programming of one show. If you do not wish to
program anything else press END-PROG

• Step 8: Press the button labeled TIMER. Your VCR is ready to record.

Types of Operations

• Basic operations

– Wet hair

– Rinse

– Turn on VCR

• Conditional operations

– If batter is too dry add water

• Repeat/looping operations

– Repeat step 1 and 2 three times

– Repeat steps 2,3,4,…10 until batter becomes soft.

Example

• Problem: Given two positive integers, compute their

greatest common divisor

• Euclid’s algorithm:

– Step 1: Get two positive integer values from the user

– Step 2: Assign M and N the value of the larger and smaller of the

two input values, respectively

– Step 3: Divide M by N, and call the remainder R

– Step 4: If R is not 0, then assign M the value of N, assign te value

of R, and return to step 2; otherwise, the greatest common divisor

is the value currently assigned to N

Algorithm

• How to come up with an algorithm?

– Problem solving

• How to represent an algorithm?

– In English??

– In a programming language??

Coming up with algorithms..

• How do people think????

• Puzzle:

– Before A, B, C and D ran a race they made the following
predictions:

• A predicted that B would win

• B predicted that D would be last

• C predicted that A would be third

• D predicted that A’s prediction would be correct.

– Only one of these predictions was true, and this was the prediction
made by the winner.

In what order did A, B, C, D finish the race?

Example

• Problem: Adding two n-digit numbers

 7597831 +

 1287525

 8885356

 How would you write an algorithm to solve this problem?

Assume the basic operation is adding one-digit numbers.

Examples of problems

Here are some problems that we’ll think of during this class

• Searching

– Given a list of student names, and a target name, find out if the name

is in the list or not

– E.g.: search name on Bowdoin website; search a phone number in the

phone book

• Matching

– Given two lists of symbols, find out whether one occurs in the other

– E.g.: ACATTGTACATTG and CAT

• Movie search

– Given a list of movie names, and a keyword, find ou all movies that

contain the keyword

Expressing algorithms

• Is natural language good?

– For daily life, yes…but for CS is lacks structure and
would be hard to follow

– Too rich, ambiguous, depends on context

• How about a programming language?

– Good, but not when we try to solve a problem..we want
to think at an abstract level

– It shifts the emphasis from how to solve the problem to
tedious details of syntax and grammar.

Pseudocode

• Pseudocode = English but looks like programming

• Good compromise

– Simple, readable, no rules, don’t worry about
punctuation.

– Lets you think at an abstract level about the problem.

– Contains only instructions that have a well-defined
structure and resemble programming languages

