
The Assignment Statement

Use
To assign a value to a variable. Another way to think about this is that you are storing a
value in a particular memory location, and the name of the variable, or its identifier, is a
human-friendly way of indicating which location in memory. When you specify the name,
the computer does the work of figuring out where in memory the current value of the variable
with that name is stored.

Form

variable = expression;

where variable is a valid C++ identifier, the assignment operator (=) is an equal sign, and
expression is either:

• a constant (e.g. 4, 2.89, ’r’)

• another variable to which a value has previously been assigned or read in from user
input, or

• a formula to be evaluated containing constants and/or variables, e.g.

(score / maxScore) * 100

basePrice - discount + (basePrice * SALES_TAX_RATE)

where the type of the value of the expression on the righthand side is compatible with the
type of the variable on the lefthand side. Note that the assignment statement must end with
a semi-colon.

Action
Evaluates the expression on the righthand side and assigns the resulting value to the variable
on the lefthand side. Note that a variable may appear on both the lefthand side and righthand
side of an assignment statement. When this occurs, the original value of the variable is used
to evaluate the righthand side expression and the resulting value is then assigned to that
variable, destroying the original value of the variable. For example, in the second of the
following two statements:

int counter = 0;

counter = counter + 1;

the original value of counter, which is 0, is used to evaluate the expression on the righthand
side. The resulting value of 1 is then assigned to counter. (Notice that, as the first of these
statements indicates, it is possible to declare a variable and assign it a value, or initialize it,
in a single statement.

NOTE: An assignment statement of the form:



indexOfLargest = i;

stores the current value of i in the variable indexOfLargest. It does not mean that
indexOfLargest will have the same value as i from now on.

Examples
Suppose I have the following constants and variables:

const int MAX_SCORE = 90;

const double NORMAL_TEMP = 98.6;

const char MAX_LETTER_GRADE = ’A’;

const int MAX_NUM_SCORES = 3;

double thisPercentGrade;

temperature,

degreesOfFever,

percentAboveNormal;

char grade;

int baseScores[MAX_NUM_SCORES]; // an array holding 3 integers

int extraCredit[MAX_NUM_SCORES]; // another array holding 3 integers

int thisBaseScore,

thisExtraCredit,

thisTotalScore;

Then the following assignment statements are legal:

temperature = 101.5;

degreesOfFever = temperature - NORMAL_TEMP;

percentAboveNormal = (degreesOfFever / NORMAL_TEMP) * 100;

grade = MAX_LETTER_GRADE;

baseScores[0] = 83;

extraCredit[0] = 2;

thisBaseScore = baseScores[0];

thisExtraCredit = extraCredit[0];

thisTotalScore = thisBaseScore + thisExtraCredit;

thisPercentGrade = (thisTotalScore * 100.0) / MAX_SCORE;



Notice a few things:

• I can declare a bunch of variables of the same type by separating their identifiers with
commas.

• I assigned values only to the first items in the baseScores and extraCredit arrays;
the other values in these arrays are garbage at this point. Normally, I would have a
loop that would either initialize each item in the array to a particular initial value or
would get a value from the user for each item in the array.

• Since both totalScore and MAX SCORE are integers, I had to multiply one of them
by a real-valued amount to turn it into a double, so that when percentGrade was
calculated, real division was performed instead of integer divison. Since I knew I
wanted to multiply the result of the division by 100 to get a percent, it made sense
to multiply thisTotalScore by 100.0 before I did the division. Note that this would
have been unnecessary if I had declared MAX SCORE to be a double:

const double MAX_SCORE = 90.0;


