CSCI 107 Final Practice Problems

December 8th 2004

Open book and notes.

1.
Consider the machine instruction 10001000000000010001, where 10001 is an opcode indicating the STORE X command, meaning to copy the contents of the register R to memory address X.

a)
What is the maximum number of instructions that could be in the instruction set of this machine? Why?

b)
How many memory cells (addresses) does the computer have? Why?

c)
How big are the registers in this machine (i.e. how many bits do they hold)? Why?

2.
Translate the number 42 into 8 bit signed binary notation. Show your work.

3.
Translate the number 11.75 into 16 bit signed binary notation, assuming 6 bit for the decimal part. Show your work.

4.
What is the largest number representable on 8 bits, signed?

5.
Consider the following bit pattern: 1000000010000110

a)
If this is interpreted as a 16-bit unsigned integer, what integer would it represent? Show your work.

b)
If the same bit pattern is interpreted as a 16-bit signed integer, what integer would it represent? Show your work.

c)
If the same bit pattern is interpreted as a machine instruction, what instruction would it represent? Use the chart given in class (attached at the end).

6. Give the Boolean expression and the truth table corresponding to the following circuit.

[image: image1.jpg]-

7.
Give the Boolean expression and the truth table corresponding to the following circuit.

[image: image2.jpg]

8.
Draw a circuit (using only AND, OR, and NOT gates) for the following truth table. You may, but you do not need to, use the sum-of-products approach.

input 1 input 2 output 1

 0 0 1

 0 1 0

 1 0 1

 1 1 0

9. Draw a circuit (using only AND, OR, and NOT gates) for the following truth table. You may, but you do not need to, use the sum-of-products approach. Be sure to indicate which line is output 1 and which line is output 2.

input 1 input 2 input 3 output 1 output 2

 0 0 0 0 1

 0 0 1 0 0

 0 1 0 0 0

 0 1 1 0 0

 1 0 0 1 0

 1 0 1 0 0

 1 1 0 1 0

 1 1 1 0 0

10. Design a truth table for the following expression.

NOT(Found=No AND I<10,000) OR (I <= 0)

Let the logic variables P , Q and R represent the sub-expressions “Found=No” , “I<10,000” and “I <= 0” respectively.

11. Consider the following two logic expressions.

(a). NOT(Found=No AND I<10,000)

(b). NOT(Found=No) OR NOT(I<10,000)

Let the variables P and Q represent the sub-expressions “Found=No” and “I<10,000” respectively.

Determine whether or not the expressions (a) and (b) are equivalent. (To tell whether two logic expressions are equivalent, you can just make their truth tables and compare their right-hand columns.)

12.
Suppose you have two 2-bit binary numbers, x1x2 and y1y2. Each one can be 00, 01, 10, or 11, representing the decimal values 0, 1, 2, and 3 respectively. Design a truth table or a logic circuit that determines whether or not the binary numbers x1x2 and y1y2 are equal.

13. Let a and b be two Boolean variables. Draw the truth table for the following Boolean expressions:

a) NOT (a AND b)

b) (NOT a) OR (NOT b)

Are they equivalent? (Two expression are equivalent if their truth tables are identical).

14.
What does the following assembly language program do? That is, show what changes occur in the variables X, Y, and Z as its steps are executed, and then show the output. Use the attached instruction set.

	Address
	Contents of memory cell

	0
	LOAD 17

	1
	ADD 18

	2
	STORE 17

	3
	INCREMENT 18

	4
	INCREMENT 18

	5
	LOAD 16

	6
	COMPARE 18

	7
	JUMPLT 0

	8
	OUT 17

	9
	HALT

	10
	

	11
	

	12
	

	13
	

	14
	

	15
	

	16
	12

	17
	0

	18
	1

15. Consider the following code:

cin >> a;

cin >> b;

c = 0;

while (b>0) {

c = c+a;

b = b-1;

}

cout << c;

a) Describe what the program does at a high level (e.e it gets two numbers a and b and output a+b).

b) Translate the program into machine instructions (using the attached instruction set). Please do not write your instructions in binary. Use English words for the operators and decimal numbers for the address in your instructions (e.g. LOAD 14, STORE 18). You may not assume that there is a particular value (e.g. zero) in a memory location where a variable is being stored until some instruction puts it there.

	Address
	Contents of memory cell

	0
	

	1
	

	2
	

	3
	

	4
	

	5
	

	6
	

	7
	

	8
	

	9
	

	10
	

	11
	

	12
	

	13
	

	14
	

	15
	

	16
	

	17
	

	18
	

	19
	

	20
	

16. Suppose we try to construct a Turing machine to solve a particular problem, but we are not successful. Does this mean that no Turing machine exists that can solve that problem? Explain and justify your answer.

17. Does the fact that the Halting Problem is not computable mean that we can never tell if a program we have written is going to halt? Explain.

18. Draw the state diagram for a Turing machine that increments a binary number. Assume that the input tape contains at least one non-blank symbol. For example, if the binary representation of 4 is initially on the tape

..b100b..

then the output should be the binary representation of 5,

..b101b..

or if the initial tape contains the binary representation of 11

..b1011b..

then the output should be the binary representation of 12,

..b1100b..

or if the initial tape contains the binary representation of 7

..b111b..

then the output tape should be the binary representation of 8,

..b1000b..

Hint: Note the binary addition finds the rightmost 0 in the representation, sets it to 1, and resets all the following 1‘s to 0.

19. Write a recursive method exp that raises a positive (> 0) integer to a non-negative (>= 0) power; i.e. exp(3,2) should return 9. To do this, it helps to think about exponentiation recursively. If we want to raise m to the n power, we can think as follows:

m n = 1 if n = 0

m n = m x m n-1 if n>0

Suggested test inputs (correct answer after arrow):

exp (3,2) (9

exp(83,0) (1

exp(124, 1) (124

exp(1,124) (1

exp(5,4) (625

exp(10,3) (1000

20. Write a recursive method fib that computes the nth Fibonacci numbers (fib(n)). The Fibonacci numbers are defined as follows:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n-1) + fib(n-2) if n>1

Suggested test inputs (correct answer after arrow):

fib(0) (0

fib(1) (1

fib(2) (1

fib(3) (2

fib(4) (3

fib(10) (55

fib(20) (6765

