
Algorithms
Computer Science 140 & Mathematics 168

Instructor: B. Thom
Fall 2004

Homework 9a
Due on Friday, 10/29/04 (midnight, under my door)

1. [35 Points] Implementing the Floyd-Warshall Algorithm! [Due Friday at
midnight] In this problem you will implement the Floyd-Warshall (FW) shortest
path algorithm in your favorite programming language.

You can assume the graph is input as follows. The first row is a single positive integer
that specifies how many vertices, n, there are. The next n rows specify the adjacency
matrix for these n vertices. In particular, the first row of weights corresponds to
vertex 1, the next to vertex 2, and so on up through vertex n. Within a given row,
weights correspond (left to right) to vertex 1, 2, · · · , n respectively, and weights are
space-separated integers. The edge weight value 10000 represents ∞.

Your program should find the shortest path between every pair of vertices and then,
for each pair, print out two things:

(a) The distance from i to j.

(b) The shortest path (list of vertices) from i to j that correspond to this path.

It is a natural mapping from our discussion in class to getting the first item to work
(I recommend you start by doing this part). The second item is a bit trickier—think
before you code and start early (debugging can be painful). When printing paths, take
care to ensure that no self-loops are printed (i.e. do not include in the output any
0-weight (i, i) edges). Along with your source code, include pseudo-code that
describes it at a high level and analyze its run-time. Your path printing code
should not be exponential!

I provide two graph definition files, fw data1 and fw data2, and corresponding correct
results, fw data1 results and fw data2 results, are available at:

• http://www.cs.hmc.edu/courses/2004/fall/cs140/homework/fw data1

• http://www.cs.hmc.edu/courses/2004/fall/cs140/homework/fw data1 results

• http://www.cs.hmc.edu/courses/2004/fall/cs140/homework/fw data2

• http://www.cs.hmc.edu/courses/2004/fall/cs140/homework/fw data2 results

These files serve to document what your program should read as input, how it should
format its answers, and provide test-cases for debugging your code.

You should turn in a printout of your source code as well as scripts that show your
program’s output on these two graphs (and the aforementioned run-time analysis). I
recommend that you deal with input and output using standard I/O. For example, if
your program was called myFW, run

1



myFW < fw data1 > fw data1 out.

To generate a script, you can then simply: lpr fw data1 out.

You should take effort to write reasonable, comprehensible code. Badly documented
or unmodular code may loose points. Extra credit may be assigned for clean, elegant
efforts.

2


