
Algorithms
Computer Science 140 & Mathematics 168

Instructor: B. Thom
Fall 2004

Homework 8b
Due on Tudes, 10/26/04 (beginning of class)

1. [35 Points] Some Prim and Kruskal Games!

Suppose that all the edges in a graph are integers in the range from 1 to |V |. Knowing
this, how fast can you make Kruskal’s algorithm run? What about Prim’s? How
about if the edge weights are integers in the range from 1 to W for some constant W?
In answering these questions, outline how you’d modify each algorithm to achieve a
particular runtime, and explain why this runtime is correct. Feel free to rely on any
results you’ve already seen in class, but if you choose to do so, explain what these
results are and why you are using them. If you are doing clever things with your data-
structures to achieve these run-times, be sure to address these issues (you don’t need
to write a novel...a picture and an accompanying sentence might nicely suffice).

After you’ve answered these questions, enter your runtime results in the table provided
below. (This provides useful vantage points from which to view performance). The
top row of this table is filled in for you with the run-times derived in class (i.e. no
restrictions on edge weights are made). As a result of these entries, you can infer
what the definitions of sparse and dense graphs are (sparse: E ∈ O(V); dense: E ∈
O(V 2)). You’ll also want to use this information to reduce your algorithms’ run-
times to functions of one variable. Finally, you’ll want to provide a couple sentences
commenting on why your modified run-times behave as they do—what aspects of the
algorithms themselves result in the behaviors you see given various graph and weight
conditions?

Prim Kruskal
Sparse Dense Sparse Dense
Graph Graph Graph Graph

w ∈ R O(V log V) O(V 2 log V) O(V log V) O(V 2 log V)
w ∈ {1, 2, · · · ,W}
w ∈ {1, 2, · · · , V }

2. [30 Points] Baru̇vka’s Algorithm! In class we mentioned that the first algorithm
for computing minimum spanning trees was published by the Czech mathematician
Otakar Baru̇vka in 1926. The algorithm works like this:

E_f = {}; /* Comment: E_f is a subset of a MST */

Treat the V vertices in the graph as V connected components;

while E_f contains fewer than V-1 edges

{

1

for each connected component C

{

Find the least weight edge (u,v) with one

vertex in C and one vertex not in C;

Add edge (u,v) to E_f;

}

Compute the new connected components;

}

return E_f /* Comment: E_f is now a MST! */

Notice that if C1 and C2 are two different connected components before we begin the
for loop, then inside the for loop the algorithm will choose the least weight edge coming
out of component C1 and also the least weight edge coming out of C2. The edge chosen
by C1 might join C1 and C2 into a new connected component, but this new connected
component will not be discovered until the for loop has ended! In other words, both
C1 and C2 will each get an opportunity to choose the least weight edges coming out of
their components!

(a) Give a counter-example that shows that Boru̇vka’s Algorithm doesn’t work! Show
your counter-example graph and explain carefully why Boru̇vka’s Algorithm would
not compute a minimum spanning tree in this case.

(b) Now assume that no two edges in the graph have the same weight. By the
OPTIONAL BONUS PROBLEM below, such a graph has exactly one minimum
spanning tree (you may just use this fact here, although you are encouraged to
prove it in the bonus problem!). Under this assumption, prove that Boru̇vka’s
Algorithm is correct.

(c) Why doesn’t your proof from part (b) work if some edges in the graph have the
same weights?

(d) How could Boru̇vka’s Algorithm be modified slightly to work in the most general
case that edge weights are not necessarily distinct? Your modification should be
simple and elegant.

(e) Describe an implementation (how the algorithm would be implemented using
appropriate data structures) for Boru̇vka’s Algorithm and derive its running time.
Try to make your implementation as fast as you can.

(f) [15 Points OPTIONAL BONUS PROBLEM (due Tuesday in class as
well)] Let G be a connected undirected graph in which each edge has a distinct
edge weight (that is, no two edges have the same weight). Show that there is a
unique minimum spanning tree in the graph.

2

