
Algorithms
Computer Science 140 & Mathematics 168

Instructor: B. Thom
Fall 2004

Homework 6b
Due on Tuesday, 10/12/04 (at the beginning of class)

1. [25 Points] Greed Must be used with Extreme Caution! In class we talked
about the problem of finding the maximum number of non-conflicting courses from a
given set of courses. We argued that if the courses are sorted in order of completion
time, then the following greedy algorithm is guaranteed to find the maximum number
of non-conflicting courses: Choose the course with earliest completion time. Cancel
out all courses that conflict with that course. Now repeat the process for the remaining
courses.
Professor I. Lai of the Pasadena Institute of Technology has proposed the following
four alternative greedy algorithms for this problem.

Algorithm 1: Sort the courses by ending time as before. Now, run our original greedy
algorithm in the opposite direction. That is, choose the course that ends latest.
Then cancel out all courses that conflict with that course. Now repeat the process
for the remaining courses.

Algorithm 2: Sort the courses by increasing starting time (rather than ending time).
Now, choose the course that starts first. Then cancel out all courses that conflict
with that course. Now repeat the process for the remaining courses.

Algorithm 3: Forget about sorting the courses. Choose a course of shortest duration
(that is the course that has the least length). Then cancel out all courses that
conflict with that course. Now repeat the process for the remaining courses.

Algorithm 4: Don’t sort the courses. Choose a course that conflicts with the fewest
other courses, breaking ties arbitrarily. Then cancel out the courses that conflict
with that course. Now repeat the process for the remaining courses.

In this problem you will explore various aspects of greed in the context of the Registrar
problem.

(a) To show that an algorithm is incorrect—e.g. in the case of greed, does not always
find an optimal solution—one only needs to demonstrate a specific example in
which the algorithm might select a solution that is suboptimal. Explain in one or
two sentences why this is sufficient to demonstrate an algorithm’s incorrectness.

(b) Show that Professor Lai’s algorithms are incorrect by giving a counterexample for
each. You should explain your counterexample in pictorial form. Also, indicate
in this picture what the greedy algorithm could choose and contrast this a better
solution.

1



(c) Consider a registrar algorithm that first sorts on start time and then uses the
following greedy choice: choose the course with the latest start time (remove
conflicts and repeat). Argue by way of contradiction that the greedy choice is
safe. Be careful and precise, so we can provide good feedback when grading. For
the same reason, don’t take a reasonable “shortcut” here, e.g. simply observing
that, via symmetry, since this algorithm is isomorphic to the one we proved made
a safe choice in class, its choice is also safe.

2. [40 Points] Optimizing Party Fun!

After your success at Snapple, you’ve decided to accept a job as senior algorithm de-
signer at the well-known My-I’m-Soft Corporation. One day, the President of My-I’m-
Soft, Gill Bates, comes to you with the following problem. “I’m throwing a company
party,” Gill says excitedly, “And I need your help! As you know, My-I’m-Soft has a
hierarchical structure. You can think of it as a tree. The president, that’s me, is at the
root of the tree. Oh boy, I love being at the root!” You take a sip of your luke-warm
diet coke (which My-I’m-Soft provides for free—what a perk!) and listen patiently as
Gill continues. “Below the root are supervisors, below them are managers, below them
are team leaders, etc., etc., until you get down to the leaves—the summer interns.
Anyhow, to make the party fun, I thought it best that we don’t invite an employee
along with their immediate boss (their parent in the tree). Also, I’ve personally as-
signed every employee a real number (actually it’s a double precision floating point, but
never-mind that!) called their coefficient of fun. My objective is to invite employees
so as to maximize the total sum of the coefficients of fun of all invited guests, while
not inviting an employee with his or her immediate boss.”

(a) The first algorithm that Gill thought up (some people question Gill’s technical
competence...that’s one reason you were hired) was to simply enumerate all pos-
sible subsets of his employees, throw out those subsets that include an employee
and his or her boss, find the score for each remaining subset, and finally choose
the best one. My-I’m-Soft has 1000 employees and also has just purchased a
Crayfish YMP that can process one trillion (1012) subsets per second. How long
will it take (in years) to find the optimal solution using this brute force approach
on the Crayfish?

(b) Provide pseudocode for a recursive solution to this problem and explain in a few
sentences why it is correct. This recursive solution should take an input (a node
in the tree) and return the optimal fun available for a tree rooted at this node.
Node v can use the following notation: i ∈ Child(v), where i is a member of the
set that contains all of v’s children; i ∈ Grandchild(v) is analogously defined.

(c) Write out the recurrence relation for this pseudocode and then use this to demon-
strate why, in the worst case, run-time can be bounded from below exponentially
(if you choose a specific tree shape for this worst case, be sure to specify what it
is). Here, i ∈ Desc(v, h) will be useful. Desc is the set of all descendents of node
v that lie h “levels” below it. For example: Child(v) is Desc(v, 1), Grandchild(v)
is Desc(v, 2), etc.

2



(d) Provide pseudocode that implements this recursive algorithm as a memoized dy-
namic program and explain in a few sentences what memoization is doing and
how you are handling it. You can assume that each employee is identified by a
unique integer in the range 1 through n (there are n employees overall; Gill is,
naturally, numero uno!).

(e) What call would Gill have to make to find out just how much fun his company
party can be? Use the accounting amortization method to derive what this call’s
overall running time would be.

(f) Will Gill necessarily be invited to his own party? Explain why or why not. If the
answer is no, is there a simply way you could modify your algorithm to ensure
that he was invited (and if so, what is it)?

(g) Suppose Gill later changes his hiring strategy, only offering jobs to applicants that
are as similar to one another as possible (resistance is futile!). Thus, after some
time, it comes to be the case that all of his employees’ coefficients are identical!
Because Gill is ever-paranoid to build the fastest, leanest, most elegant software,
he now calls you back on board to develop a greedy algorithm (in the hopes that
you might be able to streamline this special case):

i. Identify what greedy choice you would use.

ii. By way of contradiction, prove that your greedy choice is safe.

iii. Always eager to save time, you recognize that you can now simply use the
“Greedy Template” we discussed in class! Towards this end:

A. Identify what X, A, A∗ are.

B. How does X need to be modified each time another greedy choice is
added?

C. Will this algorithm necessarily be asymptotically faster than a DP-based
approach? Briefly justify your answer. (Should Gill be fired?)

iv. Provide a (pictorial) counter-example where the greedy choice would fail when
all coefficients were not necessarily the same value.

3


