Algorithms
Computer Science 140 & Mathematics 168
Instructor: B. Thom
Fall 2004
Homework 5a
Due on Friday, 10/01/04 (5pm in my office or under my door)

1. [5 Points] Reinforcing LCS Show what values would be stored in the Dynamic
Programming Table for the LCS problem if the inputs were

Xm=<10,0,1,0,1,0,1 >
Y, =<0,1,0,1,1,0,1,1,0 >

Also show a corresponding optimal subsequence.

2. [20 Points] More Fun at the Firm of Weil, Proffet, and Howe!

You have been hired as Vice President for Algorithm Design at the Wall Street firm
of Weil, Proffet, and Howe. Consider an array A of values of a share for a particular
company over the last n days. Assume that A is indexed from 1 to n and A[1] corre-
sponds to the value of a share on day 1, A[2] corresponds to the value of a share on
the next day, and so forth.

A monotonically increasing subsequence of the array is a sequence of array elements
Alir], Alis], . . ., Alig] such that Ali;] < Alis] < ... < Alig] and such that i; < is <
... < 1. For example, a monotonically increasing subsequence of the array 5,12,7,9,6
is (5,7,9).

Assume that we are given an array A of length n. Your goal is to find the length
of the longest monotonically increasing subsequence which includes the element A[n]
(that is, A[n| must be the last element in the subsequence). For example, for the
array 5,2,7,3,6, we have n = 5 and the length of the longest monotonically increasing
subsequence which includes A[n] is 3. (The subsequence (2, 3,6).)

(a) The previous Vice President for Algorithm Design, Dr. Juss Dooit, proposed a
brute-force algorithm for finding the length of the longest monotonically increas-
ing subsequence which includes A[n]. This algorithm simply enumerated all pos-
sible subsequences, one-by-one, tested to see if each enumerated subsequence was
monotonically increasing, and if so, compared the length of that subsequence to
the longest monotonically increasing subsequence seen so far. Consider the Cray-
fish 2000 computer that can enumerate and test 10'? subsequences per second.
How long would it take to execute Dr. Dooit’s algorithm on an array of length
100 on the Crayfish? Why was Dr. Dooit fired? (FYI: a back of the envelop
calculation suffices here.)

(b) Professor Rhea Cursive wants to find a recursive algorithm for solving this prob-
lem. The algorithm mono(7) will return the length of the longest monotonically

1



increasing subsequence in A[1],..., A[7] which includes A[i]. Clearly, if she can
write such a recursive algorithm, we can run it with + = n to solve our problem.
(Notice that mono doesn’t take the array A as input. We're assuming that A is
implicit. That is, it’s a global variable that mono can access.) Professor Cursive
has a vague notion that mono(z) can be computed as follows: Look at each j from
1 to ¢ — 1 and check to see if A[j] < A[i]. If so, make a recursive call to compute
mono(j). Now, do something with these mono(j) values to compute the desired
mono(:). Write pseudo-code for mono(i). (It should be comprehensible, but need
not be in any particular programming language.)

(c) Explain why the worst-case running time of the algorithm is at least exponential.
Use a precise lower bound argument similar to the ones we saw in class.

(d) Now convert this algorithm into a dynamic programming algorithm as follows:
Let M be an array indexed from 1 to n. M][i| will store the value of mono(7).
However, we will compute M][1] first, then M[2], and so forth all the way up to
M{[n]. Carefully describe the procedure for computing M[i]. Then, derive the
running time of the algorithm to fill in the entire array M.

(e) Now, assume that the constant in front of your algorithm’s asymptotic run-time
is bad, like 50. Assume also that your dynamic programming algorithm is imple-
mented and executed on a Granny Smith Personal Computer which is only able
to execute 10* instructions per second. How long does it take to solve the client’s
problem (again, for an input of length 100) using this algorithm on the Granny
Smith?

(f) Show the table constructed by your dynamic programming algorithm for the array
4,5,2,7,3,8.

(g) Explain how your algorithm can be modified slightly to find the longest monoton-
ically increasing sequence anywhere in A (in other words, it is no longer required
that the last element be A[n]).

(h) Finally, suppose we wanted to know an actual longest sequence (as opposed to
just the maximal length). Describe how you’d modify your algorithm to report
this information.

3. [25 Points] Load Balancing on the Snapple Computer!

Snapple Computers is an emerging manufacturer of parallel computers. You've been
hired to design algorithms for the operating system of Snapple’s new personal com-
puter, the Snapple Mango Melon Madness (referred to hereafter as the “M3”). The
M3 has two identical UltraSuperSparkingMangoPower processors. When run in batch
mode, the operating system receives an array S of the integer running times of n tasks.
That is S[1],. .., S[n] are integer running times for n tasks. The objective of the oper-
ating system is to find an optimal load balance for these tasks on the two processors.
That is, we wish to find a partition of the tasks in S into two sets (such that the tasks
in one set will be executed on one of the processors and the set of tasks in the other set
will be executed on the second processor in parallel) that minimizes the total elapsed
time required to complete all the tasks.



For example, if S contains five tasks with running times 2, 1, 3, 5, 7 then we can assign
the tasks with running times 2 and 7 to one processor and the tasks with running times
1, 3, and 5 to the other, resulting in an elapsed execution time of 9. On the other hand,
if the five running times had instead been 2, 1, 3, 5, 8 the best we could do is have a
partition of 2, 3, and 5 on one processor and 1 and 8 on the other, with an elapsed
running time of 10.

We will solve this problem in a sequence of steps. Be patient.

(a) Your boss, Dr. I. Steel, has proposed a brute-force algorithm that involves simply
enumerating all possible partitions of the task set S and finding the best one. If
the M3 can evaluate one million partitions per second and the set S contains just
50 tasks, how long does it take the M? to find the optimal load balance? Explain
how you found your answer. (FYI: a back of the envelop calculation suffices here.)

(b) Now consider a variant of this problem called the Partition Problem. In this
problem we are given the set S of n running times and we are also given a positive
integer C. Our objective is return the boolean true if there exists a subset of
S which adds up to exactly C' and otherwise return the boolean false. To this
end, give pseudo-code for a recursive function partition(i, C') which returns the
boolean true if there is a subset of S[1],...,S[i] which adds up to exactly C and
returns false otherwise.

(c) Explain why the worst-case running time of partition(n,C) can take exponential
time. Use a precise lower bound argument similar to the ones we saw in class.

(d) Next, describe a dynamic programming algorithm that takes as input the set S
and a number C and determines if there exists a subset of S that which adds up
to exactly C. Describe your algorithm carefully and explain why it works.

(e) What is the asymptotic running time of your algorithm as a function of n and C?

(f) Now let’s reconsider Snapple’s load balancing problem. Show how your dynamic
programming algorithm can be used to determine an optimal partition of S into
two subsets such that the total elapsed running time of the resulting partition is
minimized. Your approach should compute an actual answer (an optimal division
of jobs to processors). Also, explain (in one or two sentences) why your approach
is correct and briefly analyze its runtime.

4. [25 Points] Ski Optimization!

Your job at Snapple is pleasant but in the winter you’ve decided to become a ski bum.
You've hooked up with the Mount Baldy Ski Resort (they actually happen to have
some snow this year!). They’ll let you ski all winter for free (and drink as much free
Snapple as you want!) in exchange for helping their ski rental shop with an algorithm
to assign skis to skiers.

Ideally, each skier should obtain a pair of skis whose height matches his or her own
height exactly. Unfortunately, this is generally not possible. We define the disparity
between a skier and his or her skis to be the absolute value of the difference between



the height of the skier and the pair of skis. Our objective is to find an assignment of
skis to skiers that minimizes the sum of the disparities. We’ll solve some interesting
subproblems along the way to finding an efficient algorithm for the ski assignment
problem.

(a)

First, let’s assume that there are n skiers and n skis. The previous computer sci-
entist at the ski resort, Professor R. U. Kitting, proposed the following algorithm
for this case. Consider all possible assignments of the n skis to the n skiers. For
each one, compute the sum of the disparities. Finally, select the assignment that
minimizes the sum of the disparities. Explain why Professor Kitting was fired.
How much time would this algorithm take on a computer that performs 1 billion
operations per second if there were 50 skiers and 50 pairs of skis?

While you need to understand the concept discussed in this item to
complete the problem, the proof asked for here is optional (Extra
Credit!) The next computer scientist at the resort, Dr. G. I. M. Fast, spent
most of her time on the slopes. She did however make an interesting discovery
one day on the chair lift. She observed that if we have a short person and a tall
person, it would never be better to give the shorter person a taller pair of skis
than were given to the tall person. Show that this is always true. (It would be a
good idea to split your argument into cases and consider each separately.)

While you need to understand the concept discussed in this item to
complete the problem, the proof asked for here is optional (Extra
Credit!) After Dr. Fast’s brief stint at the ski resort, you were hired. Your
first job is to find a “greedy” algorithm that minimizes the sum of the disparities
assuming that there are n people and n pairs of skis. You—being the brilliant
engineer that you are— notice that if you first sort people by increasing height
and then also sort the skis by increasing height, and then pair each i-th largest
skis with the ¢-th largest person, an optimal solution is indeed found. Argue care-
fully why this algorithm is correct (you’ll want to utilize part b here). In other
words, show that no better solution is possible. What is the time complexity of
your algorithm?

Your next task is to design an efficient dynamic programming algorithm for the
more general case that there are m skiers and n pairs of skis and m < n. Again,
start by sorting the skiers and skis by increasing height. Let h; denote the height
of the " skier in sorted order and let s; denote the height of the j pair of skis
in sorted order. Let A[i,j] be the optimal cost (sum of absolute differences of
heights) for matching the first ¢ skiers with skis from the set {1,2,...,j}. The
solution we seek is then simply A[m,n]. Fill in the blanks below to define A
recursively:

if i =0
Ali, j] = if § = j
if i < j

Now give pseudocode (with explanatory comments) or a concise and complete



English description of a dynamic programming algorithm that solves the optimal
assignment problem of skis to skiers using a table for A[i, j].

(e) What is the running time of your program? Explain.

(f) Briefly describe how your algorithm can be modified to allow you to find an actual
optimal assignment (rather than just the cost) of skis to skiers. How does this
affect the running time of your algorithm?

(g) Tlustrate your algorithm by explicitly filling out the A7, j] table for the following
sample data:
e Ski heights: 1,2,5,7,13,21.
e Skier heights: 3,4,7,11,18.



