Algorithms
Computer Science 140 & Mathematics 168
Instructor: B. Thom
Fall 2004
Homework 3b
Due on Tuesday, 09/21/04 (beginning of class)

1. [15 Points| Multipop Stacks with Automatic Backup!

CLRS Excercise 17.2-1 (page 412). You should also consider why this problem has a
restricted stack size k. Could anything in your analysis change if £ were constant?
What about if £ were a fraction of n?

2. [25 Points] Extendible Arrays Revisited. In class we examined extendible arrays.
We showed that by doubling the length of the array each time we need to perform
an extension, a sequence of n insertions takes time O(n). Now imagine that we allow
deletions in addition to insertions. Just as an insertion always inserted an element at
the end of the array, a deletion always deletes the last element in the array. You can
imagine that an array may become quite large but later, due to deletions, most of the
array becomes empty. In this kind of scenario, it would be nice to contract the size of
the array to give the memory back to the operating system.

Professor I. Lai of the Pasadena Institute of Technology has suggested the following
rule: Use the regular doubling rule to extend arrays. However, when an array becomes
less than half full (because of deletions, presumably), allocate a new array of half the
length of the current array and copy the elements into the new array. (At that point
the old array is released and its memory is recovered by the operating system.)

As in class, in these analyses you should assume that you start with an initially empty
array and that requests for memory are handled in constant time.

(a) Play the role of the “malicious adversary” and describe a sequence of n insert
and delete operations for which Professor Lai’s rule would incur a cost of ©(n?).
Explain your analysis.

(b) Professor Lai was not granted tenure and he was replaced by Professor Anna Litik.
Professor Litik had a much better idea: Use the regular doubling rule to extend
arrays. However, only contract an array when it becomes less than or equal to
1/4 full. At that point, allocate a new array of half the length of the current
array and copy the elements into the new array. Use an amortization argument
to explain why under this scheme any sequence of n inserts and deletes costs a
total of O(n) time. Still use 3 rubles for the insertions but now explain how much
the deletions should pay and why this all works! (While allocating a new block
of memory can be done in constant time, copying k elements from one array to
another takes k time.)

(c) Professor Litik’s colleague, Professor Polly Nomial, has proposed another variant
of extendible arrays: Still just double the array when it becomes full. However,



we contract the array (due to deletions, presumably) only when it becomes less
than or equal to 1/3 full. At that point, allocate a new array of 2/3 the length
of the current array and copy the elements into that new array. Does a sequence
of n inserts and deletes still cost a total of O(n) time in this scheme? If so, give
a clear amortization argument to explain why. If not, describe a sequence of n
inserts and deletes which would cause this scheme to use more than O(n) time.

3. [20 points] Amortizing your Heap! Recall that, for any node i in a heap, heapify(7)
runs in at most the height of the subtree rooted at ¢. This fact is true because heapify
percolates 7 downwards, swapping with one of i’s children until either a leaf is reached
or the desired heap property is maintained. Thus, heapify can be used to build a
heap as follows:

BuildHeap(A[1,...,i,...,n]) {
for i = n downto 1
heapify(i)
}

Since the height of the overall tree is O(logn), the function’s runtime is clearly O(n logn).
Your task in this problem is to use amortization (the accounting method) to argue the
tighter bound mentioned in class: ©(n). As appropriate, use the following notation:
h(7) is the height of the subtree rooted at i.

Here’s how to proceed: Before BuildHeap even runs, give every node some number
of rubles in which to pay for future work. Your goal is then to argue that, with your
proposed payment scheme, heapify’s work at each node i is paid for. This will be easiest
to show via induction. In particular, you’ll want to prove the following invariant: when
BuildHeap is called on node i, there are h(i) rubles available to pay for that heapify
operation. (You’ll want to make this argument with respect to whatever accounting
scheme you propose.) After proving this invariant, link this back into the main task,
i.e. why is BuildHeap O(n)?

4. [15 Points] Order Statistics Revisited. In class we showed that the recursive
Select algorithm runs in time O(nlgn) if the array is partitioned into groups of 3 but
runs in time O(n) if the array is partitioned into groups of 5. Now we’ll investigate
what happens if the algorithm is implemented so that the array is partitioned into
groups of 7. Give the recurrence relation that arises when groups of 7 are used, and
explain why your recurrence relation is correct. Then use the analysis technique that
we used in class to derive the Big-Oh running time of this variant of the algorithm.
Explain your analysis very carefully!



