Algorithms
Computer Science 140 & Mathematics 168
Instructor: B. Thom
Fall 2004
Homework 2b
Due on Tuesday, 09/14/04 (beginning of class)

1. [15 Points] Heapsort! Implement Heapsort in your favorite high-level language.
Your program should take the length of the array, n, followed by a list of n integers
as input (either from the command line or from standard input is fine). The program
should implement the heapsort algorithm we discussed in class, but should do a (non-
asymptotically) more efficient version — i.e. one that uses loops instead of recursion.
Turn in a printout of your program and a sample session that shows you running the
program on the following test inputs:

(a) 1,2,3,---,20
(b) 20,19,18,---,1

(c¢) Some random permutation of these numbers of your own choosing.
To record a sample session on a Unix machine, you have several options:

(a) Use script (do man script to learn more). Do not create such a script inside an
emacs buffer because it won’t print correctly! In fact, I don’t recommend script
because there are a variety of situations in which it won’t print correctly.

b) Run your program in an emacs shell buffer interactively. Cut and paste the
y g Y
parts of the interaction that show your program running into another buffer, save
as a text file, and then print this.

(c) Once you're sure your program works the way you’d like, you could use redirection
to generate text files. For example, if your program was called foo, expected input
from standard in, and printed to standard out, foo < in > out would read the
input file in into your program and save all of the program’s print statements in
out. To run this again for another script, e.g. inl, and have it append to out,
you'd then use foo < inl >> out.

2. [10 Points] Heapsort Revisited. Recall that Heapsort used two functions: build-
heap and heapify. The buildheap function took the initial array and turned it into
a heap with n elements. We only used buildheap once. Afterwards, we repeatedly
swapped the element at the root of the heap with the element at location n, decrement
the value of n, and called heapify to restore the heap property for the remaining n — 1
elements.

Professor I. Lai of the Massachusetts Institute of Tautologies has proposed the following
variant of Heapsort: “Here’s what you do,” he says excitedly, while gnawing on a foot-
long tootsie roll. “You just use buildheap and you don’t even need the heapify function!
First you call buildheap to get a good heap. Then, you swap the element at the root



with the element at location n and decrement the value of n. Now, rather than calling
heapify, you just call buildheap all over again on the remaining heap of size n — 1.
You repeat this process until the array is sorted. This is so simple and elegant, I can’t
believe that nobody ever though of it before.”

Professor Lai’s variant of heapsort works but it’s running time isn’t so great. How bad
is it? Explain.

3. [20 Points| Curly, Mo, and Larry’s Totally Excellent (?) Sorting Algoithm!
Professors Curly, Mo, and Larry of the Pasadena Institute of Technology have proposed
the following sorting algorithm: First sort the first two-thirds of the elements in the
array. Next sort the last two thirds of the array. Finally, sort the first two thirds again.
Notice that this algorithm does not allocate any extra memory; all the sorting is done
inside array A. Here’s the code:

Stooge-sort (A,i,7)
begin
if Afi] > A[j] then
swap Al[i] and A[j].
ifi+1 > j then
return.
F=[G—i+1)/3)
Stooge-sort(A4,,j — k). Comment: Sort first two-thirds.
Stooge-sort(A,i + k, j). Comment: Sort last two thirds.
Stooge-sort(A,i,j — k). Comment: Sort first two-thirds again!
end

(a) Explain why Stooge-sort(A, 1,n) correctly sorts its input (where n is the length
of the array A).

(b) Find a recurrence relation for the worst-case running time of Stooge-sort.

(c) Next, solve the recurrence relation using the work tree method. In your analysis,
it will be convenient to choose n to be c* for some fixed constant c. (For example,
we used ¢ = 2 when analyzing Mergesort. Here you will want to use a different
value of ¢. This value of ¢ might not even be an integer!)

(d) Explain why the asymptotic running time is still the same even if n is not exactly
equal to ¢*. (For example, we showed that Mergesort runs in time ©(nlgn) even
if n is not a power of 2.)

(e) How does the worst-case running time of Stooge-Sort compare with the worst-
case running times of Insertion Sort, Selection Sort, Quicksort, Heapsort, and
Mergesort?

4. [15 Points| Sorting Partially Sorted Data.

(a) Exercise 8.1-4, page 168. (Note: The reason that the book states that it is “not
rigorous to simply combine the lower bounds for the individual subsequences” is
that this would only show that the lower bound is Q(n lg k) under the assumption

2



that the algorithm just sorted each of those groups. We want to show that no
matter how the algorithm works, Q2(nlg k) is the lower bound - even for algo-
rithms that might do something entirely different from just sorting the individual
groups!)

(b) Now briefly describe how such an array (an array of length n with n/k subse-
quences such that the elements in each subsequence are all smaller than the ele-
ments in the next subsequence) can be sorted in time O(nlogk). From the first
part of this problem, you can now conclude that your algorithm is asymptotically
optimal! Yeehaw!

5. [15 Points] The Index Problem! Let A be an array of n distinct integers where A
is already sorted in ascending order. Our problem is to find an index i,1 < 7 < n,
such that A[i] =i or determine that no such i exists.

(a) Find a ©(logn) algorithm for this problem.

(b) Show that any comparison-based algorithm for this problem must use (logn)
comparisons. (Note: Use an argument very similar to the Q(nlogn) lower bound
we achieved for comparison-based sorting. While the lower bound you're to show
is Q(logn), be as precise as you can; i.e. do not throw away any terms until you
reach the final asymptotic step.)



