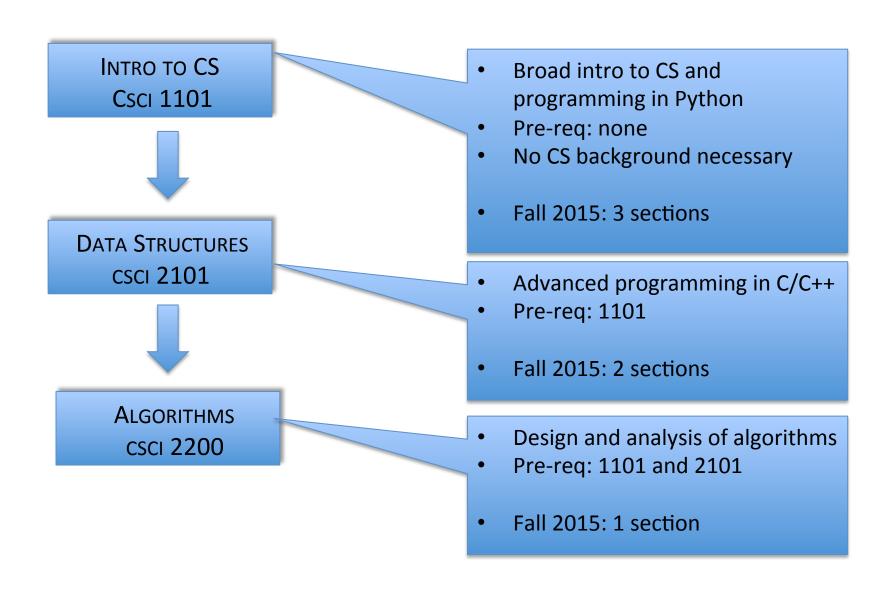
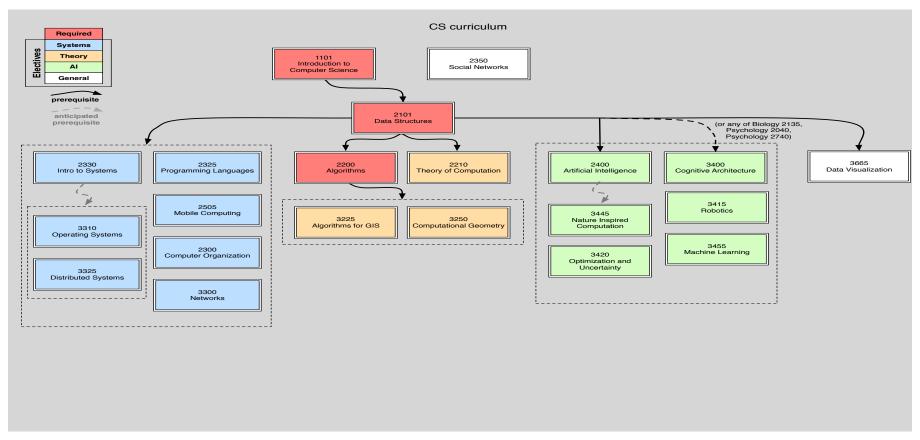
Bowdoin Computer Science


Reasons to study Computer Science

- Computing is part of everything we do!
- Expertise in computing enables you to solve complex problems
- Computing enables you to make a positive difference in the world
- Computing offers many types of careers
- Computing jobs are here to stay

Reasons to study Computer Science


- Knowledge of computing helps you even if your primary career choice is something else
- Computing offers great opportunities for creativity
- Some knowledge of computing is becoming a sign of well-roundedness
- Future possibilities in computing are without boundaries

The CS intro sequence

The CS Major

10 classes: 1101, 2101, 2200 + 7 electives

The CS minor:

5 CS classes: 1101, 2101 + 3 electives

The interdisciplinary Math-CS major:

CS: 1101, 2101, 2200 + 3 electives

Math:...

Entry-level computing-related classes

Intro to CS CSCI 1101

 Introduction to problem solving using computer programming

Intro to DCS

- Study of values, behavior and technologies associated with digital environments
- Includes some Python programming and web apps

Required for CS major/minor

Both offered in Fall'16

Sean Barker

Eric Chown

Clare Congdon (visiting)

Allan Harper (visiting)

Mohammad Irfan (joint with DCS)

Steve Majercik

Laura Toma

CS Research

- Independent studies
- Honors thesis
- Summer research

Distributed systems, cloud computing, sustainability

Projects

- Designing sustainable smart homes through analysis of smart meter data
- Resource management in data centers (ie memory sharing in virtual machines)
- On-demand live migration in cloud-based databases

Sean Barker

Cognitive modeling, soccer-playing robots

Projects

Bowdoin's NorthernBites team competing in RoboCup

Eric Chown

Machine learning, bioinformatics

Projects

- Find patterns in noncoding DNA sequence that appear to have been conserved across evolutionary time
- Find the most plausible evolutionary relationships among species
- Virtual Simulation of the Lobster Fishing Industry in the Gulf of Maine

Clare Congdon

Human-computer interaction, eye tracking

Projects

 Predict how well a user performs a task based on eye movement. Classify users into performance groups. Allen Harper

Computational game theory, social and economic networks, CS and art

Projects

- Modeling influence in economic networks
- Analyzing Kandinsky's art through geometric primitives
- Authentication of Jackson Pollock's paintings

Mohammad Irfan

Nature-inspired computational techniques, swarm intelligence and particle swarm optimization, computation and the arts.

Projects

Jazz improvisation tool using particle swarm optimization (with Frank Mauceri, Music Dept)

 Swarm-based path creation in dynamic environments for search and rescue Steve Majercik

Efficient algorithms for large data; terrain processing in GIS; algorithm engineering; high-performance computing

Projects

- Flow, flooding, sea-level rise, shortest path surfaces, visibility
- ..on very large data
- ..in parallel using Bowdoin's computing grid

Laura Toma

Summer 2016 Research

- Xx students
 - funded by institutional and faculty grants
- Example projects

Computer Science

Location: Searles, 2nd floor

Come talk to us!

CSCI 1101 Introduction to Computer Science

Introduction to problem solving and algorithmic thinking using computer programming. Provides tools and skills that can be used in any discipline. (Note: class is required for CSCI majors and minors, unless they place out).

Topics:

- Problem solving
- Algorithm design
- Fundamentals of programming

High-level questions:

- · How do we design an algorithm to solve a problem?
- · What kinds of problems can we solve with an algorithm?
- How can we use a computer to code and run an algorithm?

Example activities:

- Build interactive games like Pong and 2048
- Animate scenes and pictures
- Encrypt text messages
- · Build a spell checker

Technology used:

Programming in Java (or Python)