Available online at www.sciencedirect.com

sctENCE@DlRECT" Journal of
Algorithms

Journal of Algorithms 53 (2004) 186-206 —
www.elsevier.com/locate/jalgor

On external-memory MST, SSSP and multi-way
planar graph separation

Lars Arge**!, Gerth Stglting Brodal?, Laura Tom&*

@ Department of Computer Science, Duke University, USA
bBRICS (Basic Research in Computer Sciencet€ef Danish National Research Foundation),
University of Aarhus, Denmark

Received 15 November 2002

Abstract

Recently external memory graph problems have received considerable attention because massive
graphs arise naturally in many applications involving massive data sets. Even though a large number
of 1/0-efficient graph algoritms have been developed, a rhen of fundamental problems still
remain open.

The results in this paper fall in two main classes. First we develop an improved algorithm for
the problem of computing a minimum spanning tree (MST) of a general undirected graph. Second
we show that on planar undirectgdaphs the problems of computia multi-way graph separation
and single source shortest paths (SSSP) can be reduced I/O-efficiently to planar breadth-first search
(BFS). Since BFS can be trivially reduced to SSSP by assigning all edges weight one, it follows
that in external memory planar BFS, SSSP, and multi-way separation are equivalent. That is, if any
of these problems can be solved 1/O-efficiently, then all of them can be solved I/O-efficiently in the
same bound. Our planar graph results have subsequently been used to obtain I/O-efficient algorithms
for all fundamental problems on planar undirected graphs.

Y An extended abstract version of this paper was presented at the Seventh Scandinavian Workshop on
Algorithm Theory (SWAT 2000) [Lecture Notes in Comput. Sci., vol 1851, 2000, pp. 433-447].

* Corresponding author.

E-mail addressedarge@cs.duke.edu (L. Arge), gerth@briik (G.S. Brodal), laura@cs.duke.edu
(L. Toma).

1 Supported in part by the National Science Fodimtathrough ESS grant EIA-9870734, RI grant EIA-
9972879, CAREER grant CCR-9984099, ITR grant EIA-0112849, and U.S.—Germany Cooperative Research
Program grant INT-0129182.

2 supported in part by the IST Programme of tHe &nder contract number 1ST-1999-14186 (ALCOM-FT)
and by the Carlsberg foundatiemder contract number ANS-0257/20.

0196-6774/$ — see front mattéi 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2004.04.001

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 187

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Recently external memory graph problenas@received considerable attention because
massive graphs arise naturally in many applications involving massive data sets. One
example of a massive graph is AT&T’s 20TB phone-call data graph [12]. Other examples
of massive graphs arise in Geographic Information Systems (GIS). For instance, GIS
terrains are often represented using planar graphs and many common GIS problems can
be formulated as standard graph problems (Arc/Info [4], the most commonly used GIS
package, contains functions that correspond to computing depth-first, breadth-first, and
minimum spanning trees, as well as shortest paths and connected components). When
working with such massive graphs the I/O-communication, and not the internal memory
computation time, is often the bottleneck. Designing efficient external memory algorithms
for such problems can thus lead to consid&rabntime improvements (see, e.g., [8]).

Even though a large number of I/O-efficient graph algorithms have been developed
in recent years, a number of important problems still remain open, especially for sparse
graphs. In this paper we develop an improved 1/O-efficient algorithm for the problem
of computing a minimum spanning tree of a general undirected graph. We also show
that on embedded planar undirected graphdtirvay planar graph separation and single
source shortest path can be reduced to brefidthsearch. Our planar graph results have
subsequently been used to obtain 1/0-efficient algorithms for all fundamental problems on
planar undirected graphs.

1.1. Problem statement

Given a weighted grapty = (V, E) the minimum spanning tree (MST) problem is the
problem of finding a spanning tree far of minimum weight. The single-source shortest
path (SSSP) problem is the problem of finding the shortest paths from a given source vertex
in G to all other vertices irG (the length of a path is the sum of the weights of the edges
on the path). For an undirected gragh= (V, E) and a functionf : N — N, an f(V)-
separatoP of G is a subses of V of size f(V) such that the removal &f disconnects G
into two subgraph&;; and G, each of size at mostl2/3. The vertices inS are called
separator verticed_ipton and Tarjan [25] proved that any planar graph (a graph that can be
embedded in the plane so that no two edges cross except at the endpointsphaéian
separator. For any parametRy this result can be used recursively to partition a planar
graph into®(V/R) subgraphsG; with O(R) vertices each using (V /+/R) separator
vertices, such that there is no edge between a verté€ iand a vertex inG; fori # j.

We call a partition of a grapty into O (V/R) subgraphs withO (R) vertices each using a
set of separator verticeésa multi-way planar graph separatioof G. Graph separation is
often used in the design of dade-and-conquer graph algorithms.

3 For convenience we will use the name of a set to denote both the actual set and its cardinality.

188 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

Throughout this paper we assume tliats given as a list of edges ordered by vertex.
We also assume without loss of generality tGais connected and that no two edges have
the same weight. In our algorithms for planar graphs we assume that a planar embedding
is given. When a BFS treE of G is given, we assume thdt is represented implicitly by
storing with each vertex i its parent inT, and that each edge 6f is marked as being
either a tree or a non-tree edge.

1.2. Previous results on I/O-efficient graph algorithms

We work in the standard two-level I/O model with one (logical) disk [3,22]. The model
defines the following parameters:

N=V+E,
M = number of verticegedges that can fit into internal memory
B = number of verticegdges per disk block

where M < N and 1< B < MY@+9 | for somees > 04 An Input/Output(or simply

I/0) involves reading (or writing) a block ofomsecutive elements from (to) disk into
(from) internal memory. The measure of performance of an algorithm in this model is
the number of 1/Os it performs. The number of 1/0Os needed to réambntiguous items
from disk is scatW) = ® (N/B) (thescanningor linear bound), and the number of I/0Os
required to sortV items is sortV) = © ((N/B)log,,,5(N/B)) [3] (the sorting bound).

For all realistic values oV, B andM, scaiN) < sorf{N) < N. In practice the difference
between an algorithm doiny 1/0Os and one doing scaN) or sor{N) I/Os can be very
significant [8].

I/O-efficient graph algorithms have been considered by a number of authors [1,2,5,6,11,
13,17,20,24,26,29-31,35]. Table 1 reviews the best known algorithms for basic graph theo-
retic problems on general undirected graphs. For directed graphs the best known algorithms
for breadth-first search (BFS) depth-first search (DFS) ugk((V + scanE)) -logV +
sortE)) I/0Os [11]. In generalg2 (min{V, sortV)}) (which is£2 (sorp in all practical cases)
is a lower bound on the number of I/Os needed to solve most graph problems [5,13,30].
Note that noO(sort(E)) (deterministic) algorithm is known faany of the fundamental
graph problems, and that, except for theywercent undirected BFS algorithm of [29], the
best known algorithms for DFS, BFS and SSSP req@i(®) 1/0s. MST and connected
components (CC) can be solveddn(sort(E)) 1/0s with randomized algorithms [1,13].

Improved algorithms have been developed for several special classes of (sparse) graphs.
See [34] for a complete reference. For tre@gsort(V)) algorithms are known for BFS and
DFS numbering, Euler tour computation, expression tree evaluation, topological sorting,
as well as several other problems [11,13]. For grid graplisortN)) algorithms are
known for BFS and SSSP, and @anscan(V)) algorithm for CC [8]. Outerplanar graphs
and bounded treewidth graphs are considered in [26,27]. For planar g@@EwiN))
algorithms are known for CC and MST [13].

4 Often itis only assumed thd < M /2 but sometimes, as in this paper, the realistic assumption that the main
memory is capable of hoIding2 (oras hereBZ+£) elements is made.

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 189

Table 1

Best known upper bounds for basic problems on general undi-
rected graphs: depth-first-search (DFS), breadth-first-search (BFS),
connected-components (CC), minimal spanning tree (MST), and
single-source-shortest-paths (SSSP)

Problem Best know algorithm

DFS ovV+4%) [13]
O((V +scanE)) -logV + sort(E)) [24]

BFS oV + £ .sor(v)) [30]
o(V-E | sor(E) [29]

cc O(sort(E) - loglog L2) [30]

MST O(sor(E) - log 1) [13]
O(sor(E) -log B + scanE) -log V) [24]

Sssp o(V+%£ 10g%) [24]

1.3. Our results

In the first part of this paper, Section 2, we give arisort'E) - loglog(VB/E)) =
O(sortE) - loglogB) algorithm for the MST problem on general undirected weighted
graphs, improving the previous bound @f(sort(E) - log B + scarE) - log V) [24]. The
algorithm uses the same general idea as the CC algorithm of Munagala and Ranade [30]
and consists of two phases: first an edge-contraction algorithm is used to reduce the
number of vertices t@ (E/B), and then arO (V + sort(E)) MST algorithm is used on
the reduced graph. The new contraction algorithm uses ideas similar to the ones used
in [9,15,30], as well as a simplified algorithm for the basic contraction step used in
previous MST algorithms [9,13-15,24,30,33]. The n@W + sort(E)) MST algorithm is
a modified version of Prim’s algorithm. It remains a challenging open problem to develop
an O (sor{(E)) MST algorithm.

Given that even very basic graph problerasm® hard to externalize, it is natural to try
to reduce the problems to one another. la second part of this paper, we show how to
reduce two problems on planar graph to planar BFS. Initial work in this direction was done
by Hutchinson et al. [20] who showed how to reduce the problem of finding @AN)-
separator of a planar graph to planar BFSOisortN)) 1/0s. In Section 3, we give an
O(sort(N)) reduction from the multi-way planar graph separation problem to planar BFS.
More specifically, we show how, given a BFS-tr&e,can be partitioned int@ (N/R)
subgraphs of size& (R) using O(sor{N) + N/+/R) separator vertices i (SOr{(N))

I/Os. This result improves on the straightforward 1/0-boundoafog(N/R) - SOr{(N))

I/Os obtained by recursive use of the result from [20]. Our reduction uses a divide-and-
conquer approach and uses ideas from [19]. In Section 4, we then show how the multi-way
separation of a planar graph can be used to solve the SSSP probi@ari(N)) 1/Os.

The algorithm is a generalization of an I/O-efficient SSSP algorithm for grid graphs [8]
and uses ideas similar to the ones utilized by Frederickson [18].

190 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

Since BFS can be trivially reduced to SSSP by assigning all edges weight one, our
results show that in external memory planar BFS, SSSP and multi-way separation are
essentially equivalent; if any of the problems can be solved I/O-efficiently, then all of
them can be solved |/O-efficiently. In a retgraper, Arge et al. [7] also showed that
planar DFS can be reduced to planar BF®i(sort{N)) I/0s. Recently, Maheshwari and
Zeh [28] developed a (sort(N)) algorithm for computing a multi-way separation of a
planar graph (without assuming that a BFS tree is given) providedWhatR - log? B.5
In combination, the results in [7,28] and this paper show that all fundamental problems on
planar undirected graphs can be solvedigsortN)) 1/0s.

2. General graph minimum spanning tree

In this section we describe our MST algorithm for general undirected weighted graphs.
The basic idea is to use an(sort E) - loglog(V B/ E)) algorithm to reduce the number of
vertices toO(E/B), and then use a®(V + sort(E)) MST algorithm on the resulting
graph. The overall /0 complexity will thus b@&(sortE) - loglog(VB/E) + E/B +
SOrtE)) = O(sortE) - loglog(VB/E)). In Section 2.1 we first describe the(V +
Sort E)) MST algorithm, and in Section 2.2 we then describe the reduction algorithm.
Our result is summarized in the following theorem.

Theorem 1. A minimum spanning tree of an undirected weighted gréph (V, E) can
be found inO (sort(E) - loglog(V B/E)) 1/Os.

2.1. AnO(V + sort(E)) MST algorithm

Our algorithm is a modified version of Prim’s internal memory algorithm [16]. The idea
of Prim’s algorithm is to grow the MST iteratively from a source vertex while maintaining
a priority queue on the vertices not included in the MST so far; the priority of a vertex is
the weight of the minimum weight edge connecting it to the current MST. The algorithm
repeatedly extracts the minimum priority vertexadds it to the MST, and updates the
priority of the vertices adjacent taw. Specifically, the weight) of edge(v, u) is compared
with the priority of vertex: in the priority queue, and a priority update is performed if
is smaller than the current priority. Prim’s algorithm cannot be implemented efficiently in
external memory, mainly because the curngmority of a given vertex cannot in general
be obtained without doing an I/O. A direct implementation would thus lead t& &)

I/O algorithm. Previously known algorithms [13,24] rely instead on edge-contraction
methods [9,14,15].

Our modification of Prim’s algorithm consists of storiedgesin the priority queue
instead of vertices. During the algorithm the priority queue contains (at least) all edges
connecting vertices in the current MST withrtiees not in the tree; it can also contain

5 Even though their algorithm computes a multi-way safian without the use of an efficient BFS algorithm,
we believe our algorithm is of independent interest sithe two algorithms use fundamentally different
approaches.

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 191

edges between two vertices in the MST. The queue is initialized to contain all edges
incident to the source vertex. The algorithm works as follows: The minimum weight
edge(u, v) is repeatedly extracted from the priority queuevlfs already in the MST

the edge is discarded. Otherwisds included in the MST and all edges incidentuitp
except(v, u), are inserted in the priority queue. The correctness of the algorithm follows
directly from the correctness of Prim’s algorithm. The key to its 1/O-efficiency is that we
have a simple way of determiningufis already included in the MST—if bothandv are

in the MST when processing an edge- (u, v), the edge must have been inserted in the
priority queue twice. Thus we can determine i already included in the MST by simply
checking if the next minimal weight edge in the priority queue is identical feor this to
work we use our assumption that any two edges have distinct weights.

Our algorithm performs at least one I/©rfeach vertex in order to read its adjacent
vertices (traverse its adjacency list) erh it is included in the MST. Thus in total,
processing all vertices and edges taked’ + E/B) 1/0s. The algorithm also performs
O (E) operations on the priority queue. Using an external priority queue [6,10] supporting
O (N) operations inO (sort(N)) 1/0Os we obtain:

Lemma 1. The minimum spanning tree of an undirected weighted g@ph(V, E) can
be computed ir0 (V + sort(E)) 1/0s.

2.2. MST vertex reduction algorithm

Our MST vertex reduction algorithm is obtained using ideas from the connected-
component algorithm of Munagala and Ranade [30] (which is based on edge-contraction),
as well as the notion of “blocking values”. The standard MST algorithm based on
edge-contraction proceeds d(log V) phases (oBoruvka step$9]). In each phase the
minimum weight edge gdcent to each vertex is selected and output as part of the
MST. Then the vertices connected by the seldadges are contracted to supervertices.
Proofs of the correctness of this approach can, e.g., be found in [9,13-15,24,30]. Let the
size of a supervertex be the number of vertices it contains from the original graph. After
the ith phase the size of every supervertex is at leasartl thus aftero (log(V /M))
phases the contracted graph fits in memory. In Section 2.2.1 below we discuss how one
contraction phase (a Boruvka step) can be performed(gort E)) 1/0s, resulting in an
O(sor(E) - log(V/M)) algorithm [13]. Kumar and Schwabe [24] obtained an improved
O(sortE) - logB + scan(E) - log V) algorithm by utilizing that afte® (log B) phases,
when the number of vertices has decreased{d/B), a contraction phase can be
performed more efficiently.

As discussed, we will use a contraction algorithm to reduce the number of supervertices
to E/B (and then utilize the algorithms presented in the previous section). To do so we need
to do ®(log(V B/E)) contraction phases, and in Section 2.2.2 we show how to perform
these phases i@ (sort(E) - loglog(V B/E)) I/Os (as opposed tO (sort(E) - log(V B/E)))
by dividing the ® (log(V B/E)) phases inta® (loglog(V B/E)) superphasesequiring
O(sorf(E)) 1/0Os each. This way we obtain the folling Lemma, which together with
Lemma 1 proves Theorem 1.

192 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

Lemma 2. The minimum spanning tree of an undirected weighted g@ph(V, E) can
be reduced to the same problem on a graph vixt&'/B) vertices andO (E) edges in
O(sortE) -loglog(VB/E)) 1/Os.

2.2.1. O(sort(E)) vertex contraction algorithm

Recall that in one contraction step (or Boruvka step [9]) on a gGph (V, E) the
lightest edge incident to each vertex is setelcind contracted to create supervertices. The
relevant lightest incident edges can easily be collecte@ (' /B) 1/0s in a simple scan
of the edge-list representation 6f and severab (sort E)) algorithms for performing the
actual contraction have been developed [13,24,30]. In this section we describe an algorithm
that we believe is simpler than previously developed algorithms.

For each vertexv let C(v) denote the lightest vertex adjacent to (i.e., the
edge(v, C(v)) is the lightest edge incident ig. Let G’ be the graph obtained by selecting
the edge(v, C(v)) for each vertex. Our goal is to contract each connected component
in G', that s, to identify a unique representativertex in each componentand replace each
edge(v, u) in G with the edggv;, u,), wherev, andv, are the unique representatives of
the components containingandu, respectively.

To compute the unique representatives we consider the directed gramibtained
by directing the edgév, C(v)) in G’ from C(v) to v. Note that each vertex i), has
indegree one. The connected component&(f(G’) consist of “pseudo trees” [21]; in
each component two edges = (1, v) andez = (v, u) must have the same (minimal)
weight and form a cycleef andez correspond to the same edgie G ande is the minimal
weight edge incident to botlh andv). If one of these two edges is removed the resulting
component must form a tree (since the number of edges is one less than the number of
vertices) with rootv or u. In this tree each vertex is on a directed path from the root to a
leaf (since each vertex has indegree one) thiedweights of edges along a directed path
are strictly increasing. Refer to Fig. 1.

The structure of the connected componentsGjf allows us to compute unique
representatives |/O-efficiently; we can easily consti@gtand identify all the cycles in
O (sortN)) 1/0Os using a few sorting and scanning steps. After removing one of the edges
in each cycle we are left with a collection akes where we have identified the roots. In
each tree we choose the root as the unique reptasve and distribute this information
to the rest of the nodes in the tree using an idea similar to “time forward processing”

15
©

Fig. 1. Pseudo tree. Tree contains one cycle (the “ramifjsisting of the minimal weight edge, and the weight of
edges along any root-leaf path is increasing.

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 193

[6,13]% Let L be the list of edges i/, sorted in increasing order of weight, where we
after each edgéu, v) store a copy of all other edges incidentioThe list L contains
each edge irG/, twice and can easily be constructeddrsortV)) I/Os in a few sorting
and scanning steps. We process edges in order fravhile maintaining a priority queue
PQ; this queue is conceptually used to send #presentative of already processed vertices
“forward in time” to their immediate successokéore precisely, we maintain the following
invariant:PQ contains each vertex for which the incoming edgé:, v) has not yet been
processed but where the incoming edge: dfas. The priority of vertex in PQ is equal
to the weight of the incoming edge, v) and v is augmented with information about
the unique representative of Note that when is inserted inPQ we have identified its
unigue representative and we can therefore also output this information to an output list.
We initialize PQ to contain each vertex that is an imdiate successor of a root vertex in
G/, if v is an immediate successor of ragtthat is, the edge = (u, v) exists, we insert
v with priority equal to the weight oé and labeled with:. We can easily perform this
initialization in O(sort(V)) 1/0Os by scanning through the edges@jf while inserting the
relevant vertices. To process the next edge (v, w) from L we first extract the minimal
priority vertex fromPQ. Since the edges are processed in increasing order of weight,
must already have been processed andserted inPQ with priority equal to the weight
of e. Since all edges with weight smaller tharmave already been processadmust be
the vertex extracted frolRQ. Thus we have obtained the unique representative faie
can reestablish the invariant by inserting an element for each successdnd?Q with
the appropriate priority (obtained from the information associated aiith’.) and marked
with the unique representative of(andw). Since we perfornO (V) operations orPQ,
we in total useO (sort(V)) 1/0s to perform the priority queue operations [6,10]. Thus we
have identified the unique representative®ifE /B + sortV)) 1/Os.

To finish the contraction we need to replace each €dge) in G with the edg€v,, u,)
between the representativgsof v andv, of u. Given a listE of edges(v,) and a list
R of representative&, v,), we can easily do so i@ (sort(E)) I/Os as follows; we first
sort E andR by the first component. Then we scan the two lists simultaneously, replacing
each edgév, u) in E with (v,, u). Next we replace the second componenkafith their
representatives in a similarly way by sortifigby second component and scanningnd
R simultaneously. Finally, we remove duplicate edges in a simple sorting and scanning
step.

Lemma 3. Given an undirected weighted graggh= (V, E), the lightest edge incident to
each vertex can be contractedn(sort £)) I/Os.

2.2.2. Superphase algorithm

In this section we show how to perforé(log(V B/ E)) contraction phases on a graph
G = (V, E), reducing the number of vertices&y B, in O (loglog(V B/E) -sort{(E)) I/Os.
We do so by performing thé (log(V B/E)) phases in®(loglog(V B/E)) superphases
requiring O (sort(E)) 1/0Os each.

6 The distribution can be done using standard 1/0-efficteee algorithms [11,13] but since the weights along
any root-leaf path are increasing we can use the somewhat simpler algorithm described here.

194 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

Let N; =2G3/2' j.e., Niy+1 = Ni/N;. Superphaseconsists offlog./N; | phases. We
will maintain the invariant that before superphaske number of supervertices is at most
2V/N;.LetG; = (V;, E;) be the graph just prior to superphase&o be efficient, the phases
in superphasgonly work on a subsek’ of the edges irE;. For each vertex, E; contains
the [/N;] lightest edges incident to. Heavier edges = (v, u) incident tov are only
includedinE; if eis among the /N;] lightest edges incident to. Furthermore, we define
the blocking valueof v to be the weight of the¢[/N;] + 1)th lightest edge incident to.
Note thatE! < 2V;[+/N; | and sinceV; < 2V/N; we haveE! < Vi[/N; | < 2V //N;.
The setE’ and blocking values can be computedigsori(E;)) 1/Os using a few scanning
and sorting steps.

We now perform[log+/N;] contraction phases on the reduced grafjh= (Vi, E)).

A phase is performed as in the basic vertex reduction algorithm: For each wewex
consider the incident edge= (v, «) in E; with minimum weight. If the weight ot is
smaller than the blocking value af we selecte for contraction. If the weight o# is
larger than the blocking vaé no edge is selected for(since there might be a lighter
edge adjacent to in E; — E}). The selected edges are contractedisori(E;)) 1/0Os

using the algorithms described in Section 2.2.1 (Lemma 3); after the contraction we
define the blocking value of a supervertex to be the minimum of the blocking values
of the contracted vertices. By induction the remaining edgeB’ofontain all edges of

E; adjacent to supervertaxwith weight smaller than the blocking value of Thus the
algorithm correctly contract only edges that actually belong to the MST. of

That the number of supervertices after fiag ./N;] phases is at most2/ N; 1 can be
seen as follows: if in superphas¢he blocking value of a supervertexprevents us from
selecting an edge far, thenv must be the contraction of at leagtV; vertices fromV;.
This follows from the fact that the blocking value ofcorresponds to the blocking value
of some vertext in V; andv must contain the\/N;] vertices adjacent ta in E.. If
no blocking value prevents us from selecting an edges ften afterflog./N; | phases
v must have size at leasP2v¥: = /N;. Thus using0 (sort(E;) + SOr(E}) - log/N;) =
O(sor{(E)+sort(V//N;)-logs/N;) = O(sort(E)) 1/0Os the number of vertices is reduced
by a factor of at least/N;, i.e., the number of vertices after thimg./N;] contraction
phases is at most; //N; <2V /(Ni</N;) =2V /N 1.

After performing theflog./N;] contraction phases oG’ (that is, considering only
the sampled edgeE;), we need to reincorporate the edgés — E7) in order to finish
superphase; the edge(v, u) should be replaced witkw;, us), wherevy; andug are the
supervertices containingandu, respectively. To do so we maintain during the contraction
phases a lisC containing for each vertex the current supervertex containingthat is,

C contains pairs of the fornw, vy). After each phase (the algorithm in Section 2.2.1) we
obtain a similar listL of vertex-representative pairs and need to updateccordingly.

We can easily do so irO(sori(V;)) 1/0s by sortingC by second component and

by first component, and then scan the two lists simultaneously while replacing each
pair (v, vy), (vs, vy) With (v, vy). In total we useO (log./N; - sort(V;)) = O(log+/N; -
sort(V/N;)) = O(sort(V)) I/Os to maintainL. Given L we can reincorporate (update) the
edges in(E; — E) in O(sortE)) in the same way we updated the edges after a single
contraction in Section 2.2.1.

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 195

Finally, to reduce the number of verticesdhto O (E/B) it is sufficient to perform
superphases such they N; < E/B. Thus it is sufficient to perforn® (loglog(V B/ E))
superphases using(sort(E)) I/Os each, for a total 0o (sortE) - loglog(V B/ E)) 1/Os.
This proves Lemma 2 and concludes the description of our MST algorithm.

3. Multi-way planar graph separation

Given a BFS tred of a planar grapli; = (V, E), Hutchinson et al. [20] showed how to
compute ar0 (v/N)-separator foG in O (sorN)) 1/Os. Their algorithm closely follows
the algorithm by Lipton and Tarjan [25]: the BFS trEdnas the property that no edgetn
crosses two or more levels, and hence every levél ia a separator i;. The “middle”
level ¢1 in T (the level containing the vertex with numh®y2 in the BFS numbering) has
the property that the total number of vertices on levels alBgyas well as on levels below
¢1, is less tharlV /2. The problem is that; may contain more tha/ N vertices. However,
there exists a levelg abovet; and a levels below ¢, with «/N vertices each, such that
0> — €y < +/N (thatis,€o and ¢, are not too far away fromis). Levels¢o and ¢, divide
G into three subgraph§g, G1, andG consisting of the vertices on the levels abdye
between¢g and¢,, and below?;, respectively, with the property thétg and G, contain
less thanV /2 vertices ands1 has a spanning tree of bounded heigfi¥. Refer to Fig. 2.

It can be shown that in order to find a separator@oit is sufficient to find a separator
in G1 [25]. Such a separator can be found using properties ofitla¢graph ofG1. The
dual graphG; = (V*, E*) of a planar graphG, is a planar graph obtained by placing a
vertex in each face af; and connecting two faceg and f; adjacent to a common edge
e = (u,v) of G1 with an edgee* = (f;, f;) in E*. The edgee* in G is called thedual
edgeof e in G1. LetT’ be a subset of the edgesin. It is well known thatl” is a spanning
tree of G1 if and only if (E — T7)* is a spanning tree i6* [23]. Refer to Fig. 3(a). I is a

7
T .
422/ /

Fig. 2. Planar separator algorithm [28}g and G2 have size less thaiv/2 andG1 has a spanning tree of
height+/N.

196 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

(c)

Fig. 3. (a) A triangulated grapt (solid lines), with spanning tre€ (solid thick lines), and dual spanning tree
yul (dotted lines). (b) The weight of each vertex Bf with the attachment verticesf 10-bridges marked. (c)
Subtree ofr T and the induced cycle i6.

spanning tree of bounded heigifiv then adding any edge {tE — T') to T’ creates a cycle
with at most 2/N vertices. Assuming (without loss of generality) tiis triangulated,
Lipton and Tarjan [25] proved that there exists an eelge(E — T') such that the number
of vertices inside and outside the cycle definedelig < 2N /3, and showed how it can
be computed efficiently using a bottom-up traversal of the dual spanningEreeT’)*.
Hutchinson et al. [20] showed how to perform all these operations u3iisoriN)) I/Os
provided that a BFS tree @f is given.

Recall that the multi-way planar graph separation problem is the problem of partitioning
a planar graplG into ® (N/R) subgraphs withO (R) vertices using a sef of separator
vertices. The (two-wayd (v/N)-separator algorithm of Hutchinson et al. [20] can be used
to develop a recursivé® (log(N/R) - sort(N)) 1/O multi-way separator algorithm in a
straightforward way. In this section we show how to improve thi®i@ort(N)) 1/0s by

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 197

partitioningG into (roughly)M /B subgraphs (instead of two) in each recursive step. We

do so using ideas similar to the ones utilized by Goodrich [19]: We identify (roughh

levels inT dividing G into subgraphs of siz& (N/(M/B)). We then use these levels to

find a set of levels with few vertices that divideinto subgraphs such that each subgraph

is either of sizeO(N/(M/B)) or has a spanning tree of bounded height. We subdivide
the subgraphs with bounded height spanning trees using properties of the dual graphs and
recursively subdivide the subgraphs of si2éN/(M/B)). In Section 3.1 below we first
discuss how to subdivide the bounded height subgraphs 1/0-efficiently, and in Section 3.2
we then provide all the details of our algorithm.

3.1. Partitioning a planar graphvith bounded height spanning tree

In this section we describe how we i (sor{N)) 1/0Os can partition a planar graph
G = (V, E) with a spanning tred of height H into ®(N/R) subgraphs of siz& (R)
each usingD ((N/R) - H) separator vertices.

Assume for simplicity thaG is triangulated. (If this is not the case, we can triangulate
it using O (sort(N)) 1/0s [20] and mark the added edges so that they can be removed at the
end of the partitioning. Note thdt remains a spanning tree after the triangulation.)@et
be the dual ofz and letT T = (E — T)* be the spanning tree iG*. Refer to Fig. 3(a). An
edge inT T is the dual of an edge= (u, v) in (E — T) and since there exists a unique path
fromu tov in T, addinge to T creates a cycle. Sinceé has bounded heigt this cycle
contains at most 4 — 1 vertices. This way we can think of each edgdihas defining
a cycle inG of size O (H), which partitionsG into the vertices inside the cycle and the
vertices outside the cycle. The main idea in our algorithm is to émd/ / R) edges/cycles
that partitionG into subgraphs of sizé@ (R). Below we discuss how to fin@ (N /R) edges
in TT such that their removal divide&' into subtrees of siz& (R), and then we discuss
how the duals of these edges defdéV/R) cycles inG with the desired properties.

Parallel algorithms for partitioning a tree into subtrees of approximately equal size
waere studied by Gazit et al. [32]. We briefly review their notations and results. Let
TT be a tree and define the weight(v) of a vertexv in T to be the number of
vertices in the subtree rooted at A vertexv is called R-critical if v is not a leaf and
[w(v)/R] > [w(')/R] for all childrenv’ of v. Let C be a subset of the vertices 7.

Two edges ande’ of TT are calledC-equivalentf there exists a path from to ¢’ that
avoids the vertice€'. The graphs induced by the equivalence classes of tequivalent
edges are called tHeridgesof C. Theattachments verticesf a bridgel are the vertices

in 7 that are also irC. The R-bridgesof 7T are the bridges of the set &fcritical vertices

of T, Refer to Fig. 3(b). Gazit et al. [32] prove the following important properties of
R-bridges of anV vertex tree' T

1. The number oR-critical vertices inT T is at most /R — 1.

2. If TT has bounded degrekthe number ofR-bridges is at mos{ (2N /R — 1).
3. The number of vertices of aR-bridge is at mosR + 1.

4. An R-bridge has at most two attachment vertices.

198 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

Using the above properties we can easily filddV/R) edges such that their removal
dividesT T into O(N/R) subtrees of sizé& (R): TTisa binary tree sinc€ is a triangulated
graph, and thus it has at mosV4R R-bridges of sizeR + 1 each. Thus if the fewer than
2-4N/R attachments vertices (or the at most3- 4N/R = O(N/R) edges incident
to these vertices) are removed, the graph breaksint¥/R) subgraphs (th&-bridges)
of size O(R). That these subgrapltain be used to partitio can be seen as follows.
Consider the (at most) two atthment vertices defining abridgel. The two edges id
incident to these vertices define two cyclesinand the faces inside one of these cycles but
outside the other are exactly thecks corresponding to the verticedinSincel contains
at mostR + 1 vertices (faces i7), the two edges (cycles i&) define a subgraph aff
of size at most B8R + 1). Overall, since each cycle contaidg H) vertices, theO(N/R)
R-bridges and the corrpending adjacent edges defigg(N/R) - H) separator vertices
partitioningG into O (N/R) subgraphs oD (R) vertices.

To compute the partition af usingT we first computes*, and thus't, in O (sort(N))

I/0s [20]. Then we compute the attachment vertices ofRHeridges of7'T. To do so the
only problem we need to solve is the computation of the weight of each vert&X.in
This problem, like most other problems on trees, can be solve@i(sortN)) I/Os [11,
13]. TheR-bridges and therefore the partition 5 can also be computed ifi (Sor{(N))
I/Os using a simple tree traversal. To compute ¢hgN/R) - H) separator vertices and
O(N/R) subgraphs in the partition we scan though théridges and for each vertax

we output the three vertices i@ defining the face dual to to a list L, with each vertex
marked with a unique identifier for the-bridge it corresponds to. This way each vertex
in G can appear many times ih and the vertices that appear with at least two distinct
identifiers are the separator vertices. All copies of a vertex in a given subgraph are marked
with the sameR-bridge identifier. Thus we can compute the partition by first identifying
and remove all vertices that appearZinwith more than one identifier, and then remove
duplicate vertices from the resulting list. This can easily be dor@(®ortN)) 1/0s using

a few sorting and scanning steps.

Lemma 4. A planar graphG with a spanning tred" of heightH can be partitioned into
®(N/R) subgraphs of siz& (R) usingO ((N/R) - H) separator vertices ir0 (Sort'N))
I/Os.

3.2. Separating planar graphs

We are now ready to describe our multi-way separation algorithm in detailGl-et
(V, E) be a planar graph with BFS trgg and letL (i) be the total number of vertices on
levels O through of T. Given a parameteX < N, we define thestarter levelgo be the
levelsi such thatthe intervalL (i), L(i + 1)] contains a multiple of N/ X7. Itis easy to see
that there are at mo&t starter levels and the number of vertices between consecutive starter
levels is smaller thafiN / X7]. Just like the?; level in Lipton and Tarjan’s algorithm [25],
the starter levels divid& in subgraphs of “small” size. However, as previously, the starter
levels can contain many vertices. Therefore we consider the first level above each starter
level, as well as the first level below each starter level, containing at masttices for a
given parameteY < N. We call these levels thrutter levelsNow consider the partition of

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 199

starter levels

cutter levels: <Y vertices

Fig. 4. Starter and cutter levels Th Graphs between two consecutive cutter levels either have size less tan
or a spanning tree of height smaller thaii Y.

G into O (X) subgraph&;; obtained by grouping vertices between two consecutive cutter
levels together. If the two cutter levels definidg are within two (consecutive) starter
levels thenG; has sizeO (N/X). OtherwiseG; has a spanning tree of heigt(N/Y)
since each of the levels @f in G; have more thaiy vertices (note that this is not the case
for a graphG; defined by two cutter levels between the same starter levels). Refer to Fig. 4.

In order to compute a multi-way-separation®fve partition the sbgraphs of bounded
height using the algorithm in Section 3.1 (Lemma 4), and recursively partition the
subgraphs of siz& (N /X). To do so we need a BFS tree for each subgr@pfthe part
of T in that falls within G; is not a BFS tree fof5;, since it is not connected. However,
we can easily produce a BFS tree f6r by introducing a “fake” root; and connecting
it with “fake” edges to all vertices just below the top cutter level definiig Note that
if T is given level-by-level the BFS trees for all subgrajghscan easily be computed in
O(N/B) l/0s. Sincev; replaces at least one vertex on the cutter level, the total size of the
subgraphs on any level of the recursion remaingv). The fake vertices and edges are
marked and removed from the final partitioned graph. This can easily be doh@\iyiB)

I/Os.

To obtain a partition withO (sori(N)) separator vertices we chooke= N/+/R. Each
bounded height subgrapi; of size N; has height/R, and can thus be partitioned
using Lemma 4 into®(N;/R) subgraphs of sizeD(R) using O((N;/R) - VR) =
O(N;/~/R) separator vertices. Apart from th@ (N/+/R) separator vertices used to
partition each of the at most bounded height subgraphs, the at m&stutter levels
contribute O(X - Y) = O(X - N/+/R) separator vertices. Thus the total number of
separator vertices is given B(N) < O(XN/vR) + O(N/~R) + X - S(N/X) (and
S(R) = 0). If we chooseX = (M/B?)1/* and assum® > B+/M, we get thatX N/+/R =
O(N/B) and therefore(N) = O(N/B) + (M/B%Y*. S(N/(M/B%)Y/4). This solves to
O(N/B) Iog(M/Bz)m(N/R), which is O (sortN)) under the assumption thaf > B%*¢.

200 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

That our algorithm use® (sort(N)) I/Os can be seen as follows. The preprocessing
step of representin@ level by level, and thus also computing the BFS level for each
vertex, can easily be performeddh(sortNV)) I/Os using standard tree algorithms [11,13].
Not counting the 1/0s used to partition thebgraphs with bounded height, one recursion
step can be performed it (N/B) 1/Os, and the recurrence for the number of 1/Os is then
T(N)XN/B+X-T(N/X)= O(sor{(N)). Since we do not recurse on subgraphsvith
bounded height but immediately subdivide them usingortG;)) 1/0s, the total cost of
partitioning all such subgraphs over all levels of the recursion adds Gggort(N)).

So far we assume& > B+/M. If we want to partition a grapk into subgraphs of
size R < Bv/M < M we can first use the algorithm above to partitiGrinto subgraphs
of size O(M) and then load each subgraph intoeimtal memory in turn and apply the
algorithm of Lipton and Tarjan [25] recursively until all subgraphs have 6iz®). This
only requires an extr@ (N/B) 1/0Os and introduce® (M /~/R) separator vertices in each
of the O (N /M) subgraphs, for a total @b (N /+/R) vertices. Thus we have the following.

Theorem 2. Let G = (V, E) be a planar graph and” a breadth-first search tree fo&.
For any value ofR, the graph can be partitioned int0 (N /R) subgraphsG; of sizeO (R)
using a sets of O (sor(N) + N/+/R) separator vertices irQ (sortN)) 1/Os.

For every subgrapty; in a multi-way separation, we call the separator vertices adjacent
to G; the boundary verticeof G; or, in short, theboundarydoG; of G; (the union
of a graphG; and its boundaryG; is sometimes called eegion). Frederickson [18]
developed an algorithm for modifying a partitioning obaunded degréeeplanar graph
into S = O(N/+/R) separator vertices anél(N/R) subgraphs of size (R), such that
each subgraph only has(S/(N/R)) = O(~/R) boundary vertices. The algorithm works
by computing a weighted version ofutti-way separation in each subgrapl; U G;.
Using Theorem 2 and choosimysuch that sottV) = O (N/~/R) we obtain a partitioning
with § = O(N/+/R) separator vertices. Since we in this case have

B2 5
R= O(ﬁ) =0(B°)=0(M)

o935 &

(and sinced G; also hasO (M) vertices because of the bounded degree) we can directly
apply Fredrickson’s algorithm (that is, load each subgraph and its boundary in main
memory in turn and apply a weighted separator algorithm) to obtain a separation with
each subgraph having (v R) boundary vertices. Since this takég(N/R) - (R/B)) =
O(N/B) 1/0s we have the following:

Lemmab. LetG = (V, E) be a bounded degree planar graph afic breadth-first search
tree forG. For R = O(B?/ IogM g(N/B)), G can be partitioned ir0 (sort(N)) 1/Os into
O(N/R) subgraphsG; of S|ze0(R) using a sets of O(N/+/R) separator vertices, such
that each subgrapls; has O (+/R) boundary vertices.

7 Any graph can easily be transformed into a graph with each vertex having degree at most 3 [18].

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 201

(b)

Fig. 5. (a) Separation of a graph into subgraphs (boxad)separators (black). (b) A subgraph in the partition
with the boundary sets of its boundary vertices.

A boundary setn a multi-way separation is a maximal subset of separator vertices
such that all vertices in the subset areamgint to exactly the same subgraphs. Refer to
Fig. 5. Frederickson [18] developed algarithm for modifying a partition of a bounded
degree planar graph into= O (N /+/R) separator vertices an@d(N/R) subgraphss; of
size O(R),® such that the number of boundary set)igV/R). The algorithm considers
the connected components in the graph obtained by removing the vertices fhfrom
G and groups them together appropriatelyprly utilizes connected component adjacency
information, that s, it works on the graggh. obtained fronG by contracting the vertices in
each connected component@f (and removing duplicate edges). SinGg is connected
and of bounded degree it haxS) vertices and edges; usiitg. Frederickson’s algorithm
can be used to compute the modified partitioningdaS) 1/0s. Using Theorem 2 and
choosingR such thatV /+/R = O(sori{(N)), thatisR = £2(B?/ IogﬁMB(N/B)), we obtain
a partitioning withS = O (sort(N)) separator vertices. Using an(sor{N)) connected
component algorithm [13] and a few scanning and sorting steps we can then easily compute
G, in O(sorf(N)) 1/Os. SinceG. hasS = O(sortN)) vertices and edges we can then
directly apply Fredrickson’s algorithm [18] and ifi(sort{N)) 1/Os obtain a separation
with O (N/R) boundary sets.

Lemma®6. LetG = (V, E) be a bounded degree planar graph afic breadth-first search
tree forG. For R = 2(B?/ IogﬁMB(N/B)), G can be partitioned im0 (sort(N)) 1/0s into
O(N/R) subgraphsG; of sizeO(R) using a set§ of O(N/+/R) separator vertices, such
that the number of boundary setsi§N/R).

Combining Lemma 5 and Lemma 6 (choosiRg= ® (B2/ IogﬁMB(N/B))) we obtain
following:

Theorem 3. Let G = (V, E) be a bounded degree planar graph afida breadth-first
search tree forG. Then G can be partitioned inO(sor(N)) 1/0s into O((N/B?) -

8 Note that a subgrap@y; is not necessarily connected.

202 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

Iog,zw/B(N/B)) subgraphsG; of sizeO (B?/ Iog,zw/B(N/B)) using$ = O(sori(N)) sepa-
rator vertices such that:

1. The number of boundary vertices of each subgréplis O (B/l0g,;,5(N/B)).
2. The number of boundary sets@s(N/B?) - IogﬁMB(N/B)).

4. Single source shortest pathson planar graphs

Dijkstra’s algorithm [16] is probably the most well-know single source shortest path
algorithm. The algorithm iteratively grows a shortest path tree using a priority queue on
the vertices not yet included in the tree. This is very similar to the way Prim's MST
algorithm [16] grows a minimal spanning tree (and as in the case of Prim’s algorithm,
a direct implementation of Dijkstra’s algorithms is not 1/O-efficient). In this section we
show how to use Theorem 3 to obtain a modified and I/O-efficient version of Dijkstra’s
algorithm for planar graphs of bounded degree. The main idea in our algorithm is to use
multi-way separation to reduce a single smushortest path problem on a (non-planar)
graphG with O(N) vertices and edges to the same problem on a graphdigort{N))
vertices and) (N) edges, and to utilize that each subgraph is adjacent to a small number
of separator vertices to process €N) edges I/O-efficiently. These ideas are similar to
the ones utilized by Frederickson [18].

Let {G; = (V;, E;)} be theO (N /R) subgraphs of siz& (R) obtained by partitioning
G using the algorithm in Theorem 3. Consider a shortest pathetween the source
vertexs and a vertex in G, and let{sg, s1, ...} be the set of separator vertices hin
the order they appear along the path. The parPdietweens; ands;;1 is completely
within some subgraply; and it must be the shortest path betweeands; 1 within G;.

Thus we can find the shortest path franto all separator vertices by solving the SSSP
problem on the grapty® obtained by replacing each subgraghwith a complete graph

on its boundary vertices, where the weight of an edge) is equal to the weight of the
shortest path betweanandv in G;. If the sources is not a separator vertex, it is also
included in GR along with edges to the boundary vertices of the subgraph containing
it. The graphG® has O(sort(N)) vertices, and since the partition @ consists of
O((N/B?) - IogJZWB(N/B)) subgraphs wittO (B/ IogM/B(N/B)) boundary vertices each
ithasO((N/B?) - Iog,zw/B(N/B) - (B/logy,3(N/B))?) = O(N) edges.

After computing the partition ofG using O(sori(N)) 1/0s, G® can be computed
by loading each subgrapfi; and its boundary vertices into main memory in turn, use
an internal memory all-pair-shortest-paths algorithm to compute the weights of the new
edges corresponding t6;, and write these edges back to disk. Since each ofSthe
separator vertices is a boundary vertex for at n@d&) subgraphs (because of the bounded
degree), we us& (N/B + S) = O(sor{N)) 1/Os to load all the subgraphs and their
boundary vertices. We also ugg(N/B) 1/Os to write the new edges, and thGZ can
be computed inD (sortN)) I/Os in total. Similarly to the wayG* is computed fromG
in O(sor(N) 1/0s, the lengths of the shortest paths frento all vertices inG can be

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 203

computed inO(sori{(N)) 1/0s once the lengths of the shortest pathsGifi have been
computed; we simply load each subgraphand its boundary vertices (now marked with
shortest path lengths) into main memory in turn, and use an internal memory algorithm
to compute the shortest pati(s,) from s to each vertex € V; using the formula

8(s, 1) =miny{8(s, v) + &g, (v, 1)}, wherev ranges over all boundary vertices@f.

To solve the the SSSP problem 6t in O(sort(N)) 1/0Os we use a modified version
of Dijkstra’s algorithm. The idea of Dijkstra’s algorithm is to grow a SSSP ftfee
incrementally while maintaining a priority queue on the vertices not yet included in the
tree; the priority of a vertex is the weight of the shortest path from the sourt¢e v such
that all but the last edge is ifi;. The algorithm repeatedly &acts the minimum priority
vertexv, adds it (and the relevant edge incident to itf tg and updates the priority of each
vertexu adjacent taw. Specifically, ifw, is the weight of the edge= (v, u), the weight
8(s, v) + w, of the path froms to u thoroughv is compared to the currently priority af
(weight of the current shortest path 49, and an update is performed if the new weight
is smaller. Even thougiG® only has O(sort(N)) vertices, a direct implementation of
Dijkstra’s algorithm does not lead to an I/Ofiefent algorithm, mainly because the current
priority of a given vertex cannot be obtained without doing an 1/0. Thus processing the
O(N) edges leads to af? (N) algorithm?

To be able to obtain the priority of a vertex I/O-efficiently, and thus be able to perform
O(N) update/decrease-priority i®(sort(N)) 1/Os using a delete and insert operation
on the external priority queues of [6,10], we exploit the grouping of boundary vertices
into boundary sets. The boundary sets allow us to implement Dijkstra’s algorithm 1/O-
efficiently as follows: Apart from the priority queuQ on the vertices, we maintain
a list L of the current priorities of the vertices, that is, we maintain the same priority
information inPQ and L. We store vertices in the same boundary set consecutivdly in
The algorithm now repeatedly extracts the minimal priority vertévom PQ and loads the
O(B/IogM/B(N/B)) = O(B) edges incident te into main memory. Next the priorities
of the O(B/log,,, 5 (N/B)) boundary vertices adjacent toare retrieved fron’, and it
is determined (without further 1/0s) which dfigse vertices need to have their priorities
updated inPQ and L. Finally the relevant updates are performedRi (using a delete
and an insert per update) and the boundary vertices (with updated priorities) are written
back toL.

For each of theO(sortN)) verticesv in G® our algorithm useO(1) I/Os to
load the edges incident to. The number of 1/0Os needed to load (and write) the
O(B/logy, 5(N/B)) boundary vertices adjacent tofrom L can be analyzed as follows.
Since each vertex is adjacent a)(B/IogM/B(N/B)) = O(B) vertices, each boundary
set also contain® (B) vertices. Since they are stored consecutively. jra boundary set

9 This can be improved t® ((N/B)log,(N/B)) 1/Os, orO((logy(N/B))/B) I/Os per edge, using a priority
queue by Kumar and Schwabe [24] that supports a desfedsrity operation where the current prioripyof an
element does not need to be know when the operatioaerfsymed—the update is only actually made if the new
priority is smaller tharp.

204 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

can be loaded ir0 (1) I/Os. During the whole algorithm, each boundary set is accessed
O(B/logy, 5(N/B)) times (once by each of its adjacent vertices), and thus we use

O<L N log? E) = O(sornN))
IOQM/B% B2 M/B g)~

I/Os in total to access th@ ((N/B?) - Iogjzw/B(N/B)) boundary sets irl.. (Note that if
the boundary sets were not stored consecutively e would useO (B/10g,,,5(N/B))
I/Os to load the vertices adjacentitpfor a total of O (B/logy,, 5 N/B - SOM(N)) = O(N)
I/Os for theO (sort(N)) vertices). Finally, our algorithm perfornt®(N) operations oPQ
using O (sort(N)) 1/Os in total [6,10]. We have obtained the following.

Theorem 4. Let G be a bounded degree planar graph afich BFS tree foiG. The weights
of the shortest paths from a given source vestéa all vertices inG can be computed in
O(sort(N)) I/Os.

In the above algorithm we focused on computing the weights of the shortest paths in
G. If we are interested in the actual paths, that is, in the shortest patffigrestandard
techniques can easily be used to augment the algorithm so it outputs the edges in
Given T, Hutchinson et al. [20] showed how to store it such that for any vertéxe
shortest path between the souscand: can be returned iP/B 1/0s, whereP is the
number of vertices on the path.

Corollary 1. Let G be a bounded degree planar graph afida BFS tree forG. A data
structure can be constructed ifi(sort{N)) 1/0s such that the shortest path from a given
source vertex and any vertex can be found irO (P/B) 1/Os, whereP is the number of
vertices on the path.

5. Conclusions and open problems

In this paper we developed an improvedsori(N) - loglog(V B/E)) algorithm for
MST on general undirected graphs. It remains a challenging open problem to develop an
O(sort(N)) 1/0 algorithm. We also showed that planar BFS, multi-way graph separation,
and SSSP are essentially equivalent by providingort'N)) reductions between them.
Recently, it was also shown how to reduce planar undirected DFS to BFS [7]. Very recently,
these reductions lead @(sort(N)) 1/0 algorithms for all fundamental problems on planar
undirected graphs [28]. It remains an open problem to develori N)) algorithms for
planar directed graphs.

References

[1] J. Abello, A.L. Buchsbaum, J.R. Westbrook, A furctal approach to externalaph algorithms, Algorith-
mica 32 (3) (2002) 437-458.

L. Arge et al. / Journal of Algorithms 53 (2004) 186—206 205

[2] P.K. Agarwal, L. Arge, T.M. Murali, K. Varadarajan, J.S. Vitter, 1/O-efficient algorithms for contour line
extraction and planar graph blocking, in: Préa€CM-SIAM Symposium on Discrete Algorithms, 1998,
pp. 117-126.

[3] A. Aggarwal, J.S. Vitter, The Input/Output complexity of sorting and related problems, Comm. ACM 31 (9)
(1988) 1116-1127.

[4] ARC/INFO, Understanding GISthe ARC/INFO method, ARC/INFO, 1993, Rev. 6 for workstations.

[5] L. Arge, The I/O-complexity of ordered binary-des@n diagram manipulationin: Proc. International
Symposium on Algorithms and Computation, iredture Notes in Comput. Sci., vol. 1004, 1995, pp. 82-91.
A complete version appears as BRICS TechhReport RS-96-29, University of Aarhus.

[6] L. Arge, The buffer tree: a technique for designingdbeed external data structures, Algorithmica 37 (1)
(2003) 1-24.

[7] L. Arge, U. Meyer, L. Toma, N. Zeh, On externalemory planar depth first search, J. Graph Algorithms
Appl. 7 (2) (2003) 105-129.

[8] L. Arge, L. Toma, J.S. Vitter, 1/O-efficient algorithms for problems on grid-based terrains, ACM J. Exp.
Algorithmics 6 (1) (2001).

[9] O. Bonivka, O jistém problému minimalnim, Praca Moravskédrlovedecké Spolenosti 3 (1926) 37-58.

[10] G.S. Brodal, J. Katajainen, Worst-case efficienteaxal-memory priority quew in: Proc. Scandinavian
Workshop on Algorithms Theory, in: Lecture Notes in Comput. Sci., vol. 1432, 1998, pp. 107-118.

[11] A.L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, J.R. Westbrook, On external memory graph
traversal, in: Proc. ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 859-860.

[12] A.L. Buchsbaum, J.R. Westbrook, Maintaining faiechical graph views, in: Proc. ACM-SIAM Symposium
on Discrete Algorithms, 2000, pp. 566-575.

[13] Y.-J. Chiang, M.T. Goodrich, E.F. Grove, R. Tamasd$.E. Vengroff, J.S. Vitter, External-memory graph
algorithms, in: Proc. ACM—SIAM Sympasm on Discrete Algorithms, 1995, pp. 139-149.

[14] F. Chin, J. Lam, I. Chen, Efficient parallelgarithms for some graph problems, Comm. ACM 25 (1982)
659-665.

[15] R. Cole, U. Vishkin, Approximate pallel scheduling, Il. Applications to logarithmic-time optimal parallel
graph algorithms, Inform. and Comput. 92 (1) (1991) 1-47.

[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest,rduction to Algorithms, MITPress, Cambridge, MA, 1990.

[17] E. Feuerstein, A. Marchetti-Spaccamela, Memorgipa for connectivity and path problems in graphs, in:
Proc. International Symposium on Algorithms and Quautation, in: Lecture Notes in Comput. Sci., vol. 762,
1993, pp. 416-425.

[18] G.N. Frederickson, Fast algorithms for shortgstths in planar graphs, with applications, SIAM J.
Comput. 16 (1987) 1004-1022.

[19] M. Goodrich, Planar separators and parallelygoh triangulation, J. Comput. System Sci. 51 (3) (1995)
374-389.

[20] D. Hutchinson, A. Maheshkari, N. Zeh, An external-memory datastture for shortest path queries, in:
Proc. Annual Combinatorics and Computing Coefere, in: Lecture Notes in Comput. Sci., vol. 1627,
1999, pp. 51-60.

[21] J.F. JaJa, An Introduction to Parallel Algoritk, Addison—-Wesley, Reading, MA, 1992, Chapter 5, pp.
222-227.

[22] D.E. Knuth, Sorting and Searching, The Art of Goater Programming, vol. 3, second ed., Addison—-Wesley,
Reading, MA, 1998.

[23] D. Kozen, The Design and Analysis of Algorithms, Springer, Berlin, 1992.

[24] V. Kumar, E. Schwabe, Improved algorithms andadstructures for solving graph problems in external
memory, in: Proc. IEEE Symposium on Péband Distributed Processing, 1996, pp. 169-177.

[25] R.J. Lipton, R.E. Tarjan, A separator theor for planar graphs, SIAM J. Appl. Math. 36 (1979) 177-189.

[26] A. Maheshwari, N. Zeh, External memory algonith for outerplanar graphsn: Proc. International
Symposium on Algorithms and Computation, iredture Notes in Comput. Sci., vol. 1741, 1999, pp. 307—
316.

[27] A. Maheshwari, N. Zeh, I/O-efficient algoritis for graphs of bounded treewidth, in: Proc. ACM-SIAM
Symposium on Discrete Algorithms, 2001, pp. 89—90.

[28] A. Maheshwari, N. Zeh, I/0-optimal algorithmsrfplanar graphs using separators, in: Proc. ACM-SIAM
Symposium on Discrete Algorithms, 2002, pp. 372—-381.

206 L. Arge et al. / Journal of Algorithms 53 (2004) 186—206

[29] K. Mehlhorn, U. Meyer, External-memory breadth-first search with sublinear I/O, in: Proc. European
Symposium on Algorithms, in: Lecture Notes in Comput. Sci., vol. 2461, 2002, pp. 723-735.

[30] K. Munagala, A. Ranade, I/O-complexity ofaph algorithms, in: Proc. ACM-SIAM Symposium on
Discrete Algorithms, 1999, pp. 687-694.

[31] M.H. Nodine, M.T. Goodrich, J.S/tter, Blocking for external grapkearching, Algorithmica 16 (2) (1996)
181-214.

[32] J.H. Reif (Ed.), Synthesis of Rallel Algorithms, Morgan Kaufmann, 1993.

[33] R.E. Tarjan, Data Structures and Netw Algorithms, SIAM, Philadelphia, PA, 1983.

[34] L. Toma, External memory graph algorithms armplications to geographic information systems, PhD
thesis, Duke University, 2003.

[35] J.D. Ullman, M. Yannakakis, The input/output comptgof transitive closure, Ann. Math. Artif. Intell. 3
(1991) 331-360.

Further reading

[36] L. Arge, G.S. Brodal, L. Toma, On external memd®ST, SSSP and multi-way phar graph separation, in:
Proc. Scandinavian Workshop on Algorithms Theadny Lecture Notes in Comput. Sci., vol. 1851, 2000,
pp. 433-447.

