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Abstract

Recently external memory graph problems have received considerable attention because
graphs arise naturally in many applications involving massive data sets. Even though a large
of I/O-efficient graph algorithms have been developed, a number of fundamental problems st
remain open.

The results in this paper fall in two main classes. First we develop an improved algorith
the problem of computing a minimum spanning tree (MST) of a general undirected graph. S
we show that on planar undirectedgraphs the problems of computing a multi-way graph separatio
and single source shortest paths (SSSP) can be reduced I/O-efficiently to planar breadth-firs
(BFS). Since BFS can be trivially reduced to SSSP by assigning all edges weight one, it f
that in external memory planar BFS, SSSP, and multi-way separation are equivalent. That is
of these problems can be solved I/O-efficiently, then all of them can be solved I/O-efficiently
same bound. Our planar graph results have subsequently been used to obtain I/O-efficient alg
for all fundamental problems on planar undirected graphs.
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1. Introduction

Recently external memory graph problems have received considerable attention beca
massive graphs arise naturally in many applications involving massive data sets
example of a massive graph is AT&T’s 20TB phone-call data graph [12]. Other exam
of massive graphs arise in Geographic Information Systems (GIS). For instance
terrains are often represented using planar graphs and many common GIS proble
be formulated as standard graph problems (Arc/Info [4], the most commonly use
package, contains functions that correspond to computing depth-first, breadth-fir
minimum spanning trees, as well as shortest paths and connected components)
working with such massive graphs the I/O-communication, and not the internal me
computation time, is often the bottleneck. Designing efficient external memory algor
for such problems can thus lead to considerable runtime improvements (see, e.g., [8]).

Even though a large number of I/O-efficient graph algorithms have been deve
in recent years, a number of important problems still remain open, especially for s
graphs. In this paper we develop an improved I/O-efficient algorithm for the pro
of computing a minimum spanning tree of a general undirected graph. We also
that on embedded planar undirected graphs, multi-way planar graph separation and sing
source shortest path can be reduced to breadth-first search. Our planar graph results ha
subsequently been used to obtain I/O-efficient algorithms for all fundamental proble
planar undirected graphs.

1.1. Problem statement

Given a weighted graphG = (V ,E) the minimum spanning tree (MST) problem is t
problem of finding a spanning tree forG of minimum weight. The single-source shorte
path (SSSP) problem is the problem of finding the shortest paths from a given source
in G to all other vertices inG (the length of a path is the sum of the weights of the ed
on the path). For an undirected graphG = (V ,E) and a functionf :N → N , anf (V )-
separator3 of G is a subsetS of V of sizef (V ) such that the removal ofS disconnects G
into two subgraphsG1 andG2, each of size at most 2V /3. The vertices inS are called
separator vertices. Lipton and Tarjan [25] proved that any planar graph (a graph that ca
embedded in the plane so that no two edges cross except at the endpoints) has anO(

√
V )-

separator. For any parameterR, this result can be used recursively to partition a pla
graph intoΘ(V/R) subgraphsGi with O(R) vertices each usingO(V/

√
R) separator

vertices, such that there is no edge between a vertex inGi and a vertex inGj for i �= j .
We call a partition of a graphG into O(V/R) subgraphs withO(R) vertices each using
set of separator verticesS a multi-way planar graph separationof G. Graph separation i
often used in the design of divide-and-conquer graph algorithms.

3 For convenience we will use the name of a set to denote both the actual set and its cardinality.
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Throughout this paper we assume thatG is given as a list of edges ordered by vert
We also assume without loss of generality thatG is connected and that no two edges h
the same weight. In our algorithms for planar graphs we assume that a planar emb
is given. When a BFS treeT of G is given, we assume thatT is represented implicitly by
storing with each vertex inG its parent inT , and that each edge ofG is marked as being
either a tree or a non-tree edge.

1.2. Previous results on I/O-efficient graph algorithms

We work in the standard two-level I/O model with one (logical) disk [3,22]. The mo
defines the following parameters:

N = V + E,

M = number of vertices/edges that can fit into internal memory,

B = number of vertices/edges per disk block,

whereM < N and 1� B � M1/(2+ε), for someε > 0.4 An Input/Output(or simply
I/O) involves reading (or writing) a block of consecutive elements from (to) disk in
(from) internal memory. The measure of performance of an algorithm in this mod
the number of I/Os it performs. The number of I/Os needed to readN contiguous items
from disk is scan(N) = Θ(N/B) (thescanningor linear bound), and the number of I/O
required to sortN items is sort(N) = Θ((N/B) logM/B(N/B)) [3] (the sorting bound).
For all realistic values ofN,B andM, scan(N) < sort(N) � N . In practice the differenc
between an algorithm doingN I/Os and one doing scan(N) or sort(N) I/Os can be very
significant [8].

I/O-efficient graph algorithms have been considered by a number of authors [1,2,5
13,17,20,24,26,29–31,35].Table 1 reviews the best known algorithms for basic grap
retic problems on general undirected graphs. For directed graphs the best known alg
for breadth-first search (BFS) and depth-first search (DFS) useO((V + scan(E)) · logV +
sort(E)) I/Os [11]. In general,Ω(min{V,sort(V )}) (which isΩ(sort) in all practical cases
is a lower bound on the number of I/Os needed to solve most graph problems [5,1
Note that noO(sort(E)) (deterministic) algorithm is known forany of the fundamenta
graph problems, and that, except for the very recent undirected BFS algorithm of [29], th
best known algorithms for DFS, BFS and SSSP requireΩ(V ) I/Os. MST and connecte
components (CC) can be solved inO(sort(E)) I/Os with randomized algorithms [1,13].

Improved algorithms have been developed for several special classes of (sparse)
See [34] for a complete reference. For trees,O(sort(N)) algorithms are known for BFS an
DFS numbering, Euler tour computation, expression tree evaluation, topological so
as well as several other problems [11,13]. For grid graphsO(sort(N)) algorithms are
known for BFS and SSSP, and anO(scan(N)) algorithm for CC [8]. Outerplanar graph
and bounded treewidth graphs are considered in [26,27]. For planar graphs,O(sort(N))

algorithms are known for CC and MST [13].

4 Often it is only assumed thatB � M/2 but sometimes, as in this paper, the realistic assumption that the
memory is capable of holdingB2 (or as here,B2+ε) elements is made.
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Table 1
Best known upper bounds for basic problems on general undi-
rected graphs: depth-first-search (DFS), breadth-first-search (BFS),
connected-components (CC), minimal spanning tree (MST), and
single-source-shortest-paths (SSSP)

Problem Best know algorithm

DFS O
(
V + V

M
E
B

)
[13]

O((V + scan(E)) · logV + sort(E)) [24]

BFS O
(
V + E

V
· sort(V )

)
[30]

O
(√

V ·E
B

+ sort(E)
)

[29]

CC O
(
sort(E) · log log V B

E

)
[30]

MST O
(
sort(E) · log V

M

)
[13]

O(sort(E) · logB + scan(E) · logV ) [24]

SSSP O
(
V + E

B
· log V

B

)
[24]

1.3. Our results

In the first part of this paper, Section 2, we give anO(sort(E) · log log(V B/E)) =
O(sort(E) · log logB) algorithm for the MST problem on general undirected weigh
graphs, improving the previous bound ofO (sort(E) · logB + scan(E) · logV ) [24]. The
algorithm uses the same general idea as the CC algorithm of Munagala and Rana
and consists of two phases: first an edge-contraction algorithm is used to redu
number of vertices toO(E/B), and then anO(V + sort(E)) MST algorithm is used on
the reduced graph. The new contraction algorithm uses ideas similar to the one
in [9,15,30], as well as a simplified algorithm for the basic contraction step us
previous MST algorithms [9,13–15,24,30,33]. The newO(V +sort(E)) MST algorithm is
a modified version of Prim’s algorithm. It remains a challenging open problem to de
anO(sort(E)) MST algorithm.

Given that even very basic graph problems seem hard to externalize, it is natural to t
to reduce the problems to one another. In the second part of this paper, we show how
reduce two problems on planar graph to planar BFS. Initial work in this direction was
by Hutchinson et al. [20] who showed how to reduce the problem of finding anO(

√
N )-

separator of a planar graph to planar BFS inO(sort(N)) I/Os. In Section 3, we give a
O(sort(N)) reduction from the multi-way planar graph separation problem to planar
More specifically, we show how, given a BFS-tree,G can be partitioned intoO(N/R)

subgraphs of sizeO(R) using O(sort(N) + N/
√

R ) separator vertices inO(sort(N))

I/Os. This result improves on the straightforward I/O-bound ofO(log(N/R) · sort(N))

I/Os obtained by recursive use of the result from [20]. Our reduction uses a divide
conquer approach and uses ideas from [19]. In Section 4, we then show how the mu
separation of a planar graph can be used to solve the SSSP problem inO(sort(N)) I/Os.
The algorithm is a generalization of an I/O-efficient SSSP algorithm for grid graph
and uses ideas similar to the ones utilized by Frederickson [18].
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Since BFS can be trivially reduced to SSSP by assigning all edges weight on
results show that in external memory planar BFS, SSSP and multi-way separati
essentially equivalent; if any of the problems can be solved I/O-efficiently, then a
them can be solved I/O-efficiently. In a recent paper, Arge et al. [7] also showed th
planar DFS can be reduced to planar BFS inO(sort(N)) I/Os. Recently, Maheshwari an
Zeh [28] developed anO(sort(N)) algorithm for computing a multi-way separation o
planar graph (without assuming that a BFS tree is given) provided thatM � R · log2 B.5

In combination, the results in [7,28] and this paper show that all fundamental proble
planar undirected graphs can be solved inO(sort(N)) I/Os.

2. General graph minimum spanning tree

In this section we describe our MST algorithm for general undirected weighted gr
The basic idea is to use anO(sort(E) · log log(V B/E)) algorithm to reduce the number
vertices toO(E/B), and then use anO(V + sort(E)) MST algorithm on the resulting
graph. The overall I/O complexity will thus beO(sort(E) · log log(V B/E) + E/B +
sort(E)) = O(sort(E) · log log(V B/E)). In Section 2.1 we first describe theO(V +
sort(E)) MST algorithm, and in Section 2.2 we then describe the reduction algor
Our result is summarized in the following theorem.

Theorem 1. A minimum spanning tree of an undirected weighted graphG = (V ,E) can
be found inO(sort(E) · log log(V B/E)) I/Os.

2.1. AnO(V + sort(E)) MST algorithm

Our algorithm is a modified version of Prim’s internal memory algorithm [16]. The
of Prim’s algorithm is to grow the MST iteratively from a source vertex while maintain
a priority queue on the vertices not included in the MST so far; the priority of a vert
the weight of the minimum weight edge connecting it to the current MST. The algo
repeatedly extracts the minimum priority vertexv, adds it to the MST, and updates t
priority of the verticesu adjacent tov. Specifically, the weightw of edge(v,u) is compared
with the priority of vertexu in the priority queue, and a priority update is performed iw

is smaller than the current priority. Prim’s algorithm cannot be implemented efficien
external memory, mainly because the currentpriority of a given vertex cannot in gener
be obtained without doing an I/O. A direct implementation would thus lead to anΩ(E)

I/O algorithm. Previously known algorithms [13,24] rely instead on edge-contra
methods [9,14,15].

Our modification of Prim’s algorithm consists of storingedgesin the priority queue
instead of vertices. During the algorithm the priority queue contains (at least) all
connecting vertices in the current MST with vertices not in the tree; it can also conta

5 Even though their algorithm computes a multi-way separation without the use of an efficient BFS algorithm
we believe our algorithm is of independent interest since the two algorithms use fundamentally differe
approaches.
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edges between two vertices in the MST. The queue is initialized to contain all
incident to the source vertex. The algorithm works as follows: The minimum we
edge(u, v) is repeatedly extracted from the priority queue. Ifv is already in the MST
the edge is discarded. Otherwisev is included in the MST and all edges incident tov,
except(v,u), are inserted in the priority queue. The correctness of the algorithm fo
directly from the correctness of Prim’s algorithm. The key to its I/O-efficiency is tha
have a simple way of determining ifv is already included in the MST—if bothu andv are
in the MST when processing an edgee = (u, v), the edgee must have been inserted in th
priority queue twice. Thus we can determine ifv is already included in the MST by simp
checking if the next minimal weight edge in the priority queue is identical toe. For this to
work we use our assumption that any two edges have distinct weights.

Our algorithm performs at least one I/O for each vertex in order to read its adjace
vertices (traverse its adjacency list) when it is included in the MST. Thus in tota
processing all vertices and edges takesO(V + E/B) I/Os. The algorithm also perform
O(E) operations on the priority queue. Using an external priority queue [6,10] suppo
O(N) operations inO(sort(N)) I/Os we obtain:

Lemma 1. The minimum spanning tree of an undirected weighted graphG = (V ,E) can
be computed inO(V + sort(E)) I/Os.

2.2. MST vertex reduction algorithm

Our MST vertex reduction algorithm is obtained using ideas from the conne
component algorithm of Munagala and Ranade [30] (which is based on edge-contra
as well as the notion of “blocking values”. The standard MST algorithm base
edge-contraction proceeds inO(logV ) phases (orBoruvka steps[9]). In each phase th
minimum weight edge adjacent to each vertexv is selected and output as part of t
MST. Then the vertices connected by the selected edges are contracted to supervertic
Proofs of the correctness of this approach can, e.g., be found in [9,13–15,24,30]. L
size of a supervertex be the number of vertices it contains from the original graph.
the ith phase the size of every supervertex is at least 2i and thus afterO(log(V /M))

phases the contracted graph fits in memory. In Section 2.2.1 below we discuss ho
contraction phase (a Boruvka step) can be performed inO(sort(E)) I/Os, resulting in an
O(sort(E) · log(V /M)) algorithm [13]. Kumar and Schwabe [24] obtained an impro
O(sort(E) · logB + scan(E) · logV ) algorithm by utilizing that afterΘ(logB) phases
when the number of vertices has decreased toO(V/B), a contraction phase can b
performed more efficiently.

As discussed, we will use a contraction algorithm to reduce the number of superv
toE/B (and then utilize the algorithms presented in the previous section). To do so w
to do Θ(log(V B/E)) contraction phases, and in Section 2.2.2 we show how to per
these phases inO(sort(E) · log log(V B/E)) I/Os (as opposed toO(sort(E) · log(V B/E)))
by dividing theΘ(log(V B/E)) phases intoΘ(log log(V B/E)) superphasesrequiring
O(sort(E)) I/Os each. This way we obtain the following Lemma, which together wit
Lemma 1 proves Theorem 1.



192 L. Arge et al. / Journal of Algorithms 53 (2004) 186–206

The

orithm

ng
ent

ach
of

n
l)

ting
ber of

to a
ath

e

dges
In
n
sing”

t of
Lemma 2. The minimum spanning tree of an undirected weighted graphG = (V ,E) can
be reduced to the same problem on a graph withO(E/B) vertices andO(E) edges in
O(sort(E) · log log(V B/E)) I/Os.

2.2.1. O(sort(E)) vertex contraction algorithm
Recall that in one contraction step (or Boruvka step [9]) on a graphG = (V ,E) the

lightest edge incident to each vertex is selected and contracted to create supervertices.
relevant lightest incident edges can easily be collected inO(E/B) I/Os in a simple scan
of the edge-list representation ofG, and severalO(sort(E)) algorithms for performing the
actual contraction have been developed [13,24,30]. In this section we describe an alg
that we believe is simpler than previously developed algorithms.

For each vertexv let C(v) denote the lightest vertex adjacent tov (i.e., the
edge(v,C(v)) is the lightest edge incident tov). LetG′ be the graph obtained by selecti
the edge(v,C(v)) for each vertexv. Our goal is to contract each connected compon
in G′, that is, to identify a unique representative vertex in each component and replace e
edge(v,u) in G with the edge(vr , ur), wherevr andvu are the unique representatives
the components containingv andu, respectively.

To compute the unique representatives we consider the directed graphG′
d obtained

by directing the edge(v,C(v)) in G′ from C(v) to v. Note that each vertex inG′
d has

indegree one. The connected components ofG′
d (G′) consist of “pseudo trees” [21]; i

each component two edgese1 = (u, v) and e2 = (v,u) must have the same (minima
weight and form a cycle (e1 ande2 correspond to the same edgee in G ande is the minimal
weight edge incident to bothu andv). If one of these two edges is removed the resul
component must form a tree (since the number of edges is one less than the num
vertices) with rootv or u. In this tree each vertex is on a directed path from the root
leaf (since each vertex has indegree one) andthe weights of edges along a directed p
are strictly increasing. Refer to Fig. 1.

The structure of the connected components ofG′
d allows us to compute uniqu

representatives I/O-efficiently; we can easily constructG′
d and identify all the cycles in

O(sort(N)) I/Os using a few sorting and scanning steps. After removing one of the e
in each cycle we are left with a collection of trees where we have identified the roots.
each tree we choose the root as the unique representative and distribute this informatio
to the rest of the nodes in the tree using an idea similar to “time forward proces

Fig. 1. Pseudo tree. Tree contains one cycle (the “root”)consisting of the minimal weight edge, and the weigh
edges along any root-leaf path is increasing.
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[6,13]:6 Let L be the list of edges inG′
d sorted in increasing order of weight, where

after each edge(u, v) store a copy of all other edges incident tov. The list L contains
each edge inG′

d twice and can easily be constructed inO(sort(V )) I/Os in a few sorting
and scanning steps. We process edges in order fromL while maintaining a priority queu
PQ; this queue is conceptually used to send the representative of already processed vert
“forward in time” to their immediate successors. More precisely, we maintain the followin
invariant:PQ contains each vertexv for which the incoming edge(u, v) has not yet been
processed but where the incoming edge ofu has. The priority of vertexv in PQ is equal
to the weight of the incoming edge(u, v) and v is augmented with information abo
the unique representative ofu. Note that whenv is inserted inPQ we have identified its
unique representative and we can therefore also output this information to an outp
We initializePQ to contain each vertex that is an immediate successor of a root vertex
G′

d ; if v is an immediate successor of rootu, that is, the edgee = (u, v) exists, we inser
v with priority equal to the weight ofe and labeled withu. We can easily perform thi
initialization in O(sort(V )) I/Os by scanning through the edges ofG′

d while inserting the
relevant vertices. To process the next edgee = (v,w) from L we first extract the minima
priority vertex fromPQ. Since the edges are processed in increasing order of weigv

must already have been processed andw inserted inPQ with priority equal to the weigh
of e. Since all edges with weight smaller thane have already been processed,w must be
the vertex extracted fromPQ. Thus we have obtained the unique representative forw. We
can reestablish the invariant by inserting an element for each successor ofw in PQ with
the appropriate priority (obtained from the information associated withe in L) and marked
with the unique representative ofv (andw). Since we performO(V ) operations onPQ,
we in total useO(sort(V )) I/Os to perform the priority queue operations [6,10]. Thus
have identified the unique representatives inO(E/B + sort(V )) I/Os.

To finish the contraction we need to replace each edge(v,u) in G with the edge(vr , ur )

between the representativesvr of v andvu of u. Given a listE of edges(v,u) and a list
R of representatives(v, vr ), we can easily do so inO(sort(E)) I/Os as follows; we first
sortE andR by the first component. Then we scan the two lists simultaneously, repl
each edge(v,u) in E with (vr , u). Next we replace the second component ofE with their
representatives in a similarly way by sortingE by second component and scanningE and
R simultaneously. Finally, we remove duplicate edges in a simple sorting and sca
step.

Lemma 3. Given an undirected weighted graphG = (V ,E), the lightest edge incident t
each vertex can be contracted inO(sort(E)) I/Os.

2.2.2. Superphase algorithm
In this section we show how to performΘ(log(V B/E)) contraction phases on a gra

G = (V ,E), reducing the number of vertices toE/B, in O(log log(V B/E) ·sort(E)) I/Os.
We do so by performing theΘ(log(V B/E)) phases inΘ(log log(V B/E)) superphases
requiringO(sort(E)) I/Os each.

6 The distribution can be done using standard I/O-efficient tree algorithms [11,13] but since the weights alo
any root-leaf path are increasing we can use the somewhat simpler algorithm described here.
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Let Ni = 2(3/2)i , i.e.,Ni+1 = Ni

√
Ni . Superphasei consists of�log

√
Ni � phases. We

will maintain the invariant that before superphasei the number of supervertices is at mo
2V/Ni . LetGi = (Vi,Ei) be the graph just prior to superphasei. To be efficient, the phase
in superphasei only work on a subsetE′

i of the edges inEi . For each vertexv, E′
i contains

the �√Ni � lightest edges incident tov. Heavier edgese = (v,u) incident tov are only
included inE′

i if e is among the�√Ni � lightest edges incident tou. Furthermore, we defin
theblocking valueof v to be the weight of the(�√Ni � + 1)th lightest edge incident tov.
Note thatE′

i � 2Vi�√Ni � and sinceVi � 2V/Ni we haveE′
i � Vi�√Ni � < 2V/

√
Ni .

The setE′
i and blocking values can be computed inO(sort(Ei)) I/Os using a few scannin

and sorting steps.
We now perform�log

√
Ni � contraction phases on the reduced graphG′

i = (Vi,E
′
i ).

A phase is performed as in the basic vertex reduction algorithm: For each vertexv we
consider the incident edgee = (v,u) in E′

i with minimum weight. If the weight ofe is
smaller than the blocking value ofv, we selecte for contraction. If the weight ofe is
larger than the blocking value no edge is selected forv (since there might be a lighte
edge adjacent tov in Ei − E′

i ). The selected edges are contracted inO(sort(E′
i )) I/Os

using the algorithms described in Section 2.2.1 (Lemma 3); after the contractio
define the blocking value of a supervertex to be the minimum of the blocking v
of the contracted vertices. By induction the remaining edges ofE′

i contain all edges o
Ei adjacent to supervertexv with weight smaller than the blocking value ofv. Thus the
algorithm correctly contract only edges that actually belong to the MST ofG.

That the number of supervertices after the�log
√

Ni � phases is at most 2V/Ni+1 can be
seen as follows: if in superphasei the blocking value of a supervertexv prevents us from
selecting an edge forv, thenv must be the contraction of at least

√
Ni vertices fromVi .

This follows from the fact that the blocking value ofv corresponds to the blocking valu
of some vertexu in Vi and v must contain the�√Ni � vertices adjacent tou in E′

i . If
no blocking value prevents us from selecting an edges forv, then after�log

√
Ni � phases

v must have size at least 2log
√

Ni = √
Ni . Thus usingO(sort(Ei) + sort(E′

i ) · log
√

Ni ) =
O(sort(E)+sort(V /

√
Ni ) · log

√
Ni ) = O(sort(E)) I/Os the number of vertices is reduc

by a factor of at least
√

Ni , i.e., the number of vertices after the�log
√

Ni � contraction
phases is at mostVi/

√
Ni � 2V/(Ni

√
Ni) = 2V/Ni+1.

After performing the�log
√

Ni � contraction phases onG′ (that is, considering only
the sampled edgesE′

i ), we need to reincorporate the edges(Ei − E′
i ) in order to finish

superphasei; the edge(v,u) should be replaced with(vs, us), wherevs andus are the
supervertices containingv andu, respectively. To do so we maintain during the contrac
phases a listC containing for each vertexv the current supervertex containingv, that is,
C contains pairs of the form(v, vs ). After each phase (the algorithm in Section 2.2.1)
obtain a similar listL of vertex-representative pairs and need to updateC accordingly.
We can easily do so inO(sort(Vi)) I/Os by sortingC by second component andL
by first component, and then scan the two lists simultaneously while replacing
pair (v, vs ), (vs, vs ′) with (v, vs ′). In total we useO(log

√
Ni · sort(Vi)) = O(log

√
Ni ·

sort(V /Ni)) = O(sort(V )) I/Os to maintainL. GivenL we can reincorporate (update) t
edges in(Ei − E′

i ) in O(sort(E)) in the same way we updated the edges after a si
contraction in Section 2.2.1.
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Finally, to reduce the number of vertices inG to O(E/B) it is sufficient to performi

superphases such thatV/Ni � E/B. Thus it is sufficient to performO(log log(V B/E))

superphases usingO(sort(E)) I/Os each, for a total ofO(sort(E) · log log(V B/E)) I/Os.
This proves Lemma 2 and concludes the description of our MST algorithm.

3. Multi-way planar graph separation

Given a BFS treeT of a planar graphG = (V ,E), Hutchinson et al. [20] showed how
compute anO(

√
N )-separator forG in O(sort(N)) I/Os. Their algorithm closely follows

the algorithm by Lipton and Tarjan [25]: the BFS treeT has the property that no edge inG

crosses two or more levels, and hence every level inT is a separator inG. The “middle”
level�1 in T (the level containing the vertex with numberN/2 in the BFS numbering) ha
the property that the total number of vertices on levels above�1, as well as on levels below
�1, is less thanN/2. The problem is that�1 may contain more than

√
N vertices. However

there exists a level�0 above�1 and a level�2 below�1 with
√

N vertices each, such th
�2 − �0 �

√
N (that is,�0 and�2 are not too far away from�1). Levels�0 and�2 divide

G into three subgraphsG0,G1, andG2 consisting of the vertices on the levels above�0,
between�0 and�2, and below�2, respectively, with the property thatG0 andG2 contain
less thanN/2 vertices andG1 has a spanning tree of bounded height

√
N . Refer to Fig. 2.

It can be shown that in order to find a separator forG it is sufficient to find a separato
in G1 [25]. Such a separator can be found using properties of thedual graph ofG1. The
dual graphG�

1 = (V �,E�) of a planar graphG1 is a planar graph obtained by placing
vertex in each face ofG1 and connecting two facesfi andfj adjacent to a common edg
e = (u, v) of G1 with an edgee∗ = (fi , fj ) in E�. The edgee∗ in G�

1 is called thedual
edgeof e in G1. LetT ′ be a subset of the edges inG1. It is well known thatT ′ is a spanning
tree ofG1 if and only if (E −T ′)� is a spanning tree inG� [23]. Refer to Fig. 3(a). IfT ′ is a

Fig. 2. Planar separator algorithm [25].G0 and G2 have size less thanN/2 andG1 has a spanning tree o
height

√
N .
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Fig. 3. (a) A triangulated graphG (solid lines), with spanning treeT (solid thick lines), and dual spanning tre
T † (dotted lines). (b) The weight of each vertex ofT † with the attachment verticesof 10-bridges marked. (c
Subtree ofT † and the induced cycle inG.

spanning tree of bounded height
√

N then adding any edge in(E −T ) to T ′ creates a cycle
with at most 2

√
N vertices. Assuming (without loss of generality) thatG is triangulated,

Lipton and Tarjan [25] proved that there exists an edgee ∈ (E − T ) such that the numbe
of vertices inside and outside the cycle defined bye is � 2N/3, and showed how it ca
be computed efficiently using a bottom-up traversal of the dual spanning tree(E − T ′)∗.
Hutchinson et al. [20] showed how to perform all these operations usingO(sort(N)) I/Os
provided that a BFS tree ofG is given.

Recall that the multi-way planar graph separation problem is the problem of partiti
a planar graphG into Θ(N/R) subgraphs withO(R) vertices using a setS of separator
vertices. The (two-way)O(

√
N)-separator algorithm of Hutchinson et al. [20] can be u

to develop a recursiveO(log(N/R) · sort(N)) I/O multi-way separator algorithm in
straightforward way. In this section we show how to improve this toO(sort(N)) I/Os by
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partitioningG into (roughly)M/B subgraphs (instead of two) in each recursive step.
do so using ideas similar to the ones utilized by Goodrich [19]: We identify (roughly)M/B

levels inT dividing G into subgraphs of sizeO(N/(M/B)). We then use these levels
find a set of levels with few vertices that divideG into subgraphs such that each subgra
is either of sizeO(N/(M/B)) or has a spanning tree of bounded height. We subdi
the subgraphs with bounded height spanning trees using properties of the dual gra
recursively subdivide the subgraphs of sizeO(N/(M/B)). In Section 3.1 below we firs
discuss how to subdivide the bounded height subgraphs I/O-efficiently, and in Secti
we then provide all the details of our algorithm.

3.1. Partitioning a planar graphwith bounded height spanning tree

In this section we describe how we inO(sort(N)) I/Os can partition a planar grap
G = (V ,E) with a spanning treeT of heightH into Θ(N/R) subgraphs of sizeO(R)

each usingO((N/R) · H) separator vertices.
Assume for simplicity thatG is triangulated. (If this is not the case, we can triangu

it usingO(sort(N)) I/Os [20] and mark the added edges so that they can be removed
end of the partitioning. Note thatT remains a spanning tree after the triangulation.) LetG�

be the dual ofG and letT † = (E − T )� be the spanning tree inG�. Refer to Fig. 3(a). An
edge inT † is the dual of an edgee = (u, v) in (E −T ) and since there exists a unique pa
from u to v in T , addinge to T creates a cycle. SinceT has bounded heightH this cycle
contains at most 2H − 1 vertices. This way we can think of each edge inT † as defining
a cycle inG of sizeO(H), which partitionsG into the vertices inside the cycle and t
vertices outside the cycle. The main idea in our algorithm is to findO(N/R) edges/cycles
that partitionG into subgraphs of sizeO(R). Below we discuss how to findO(N/R) edges
in T † such that their removal dividesT † into subtrees of sizeO(R), and then we discus
how the duals of these edges defineO(N/R) cycles inG with the desired properties.

Parallel algorithms for partitioning a tree into subtrees of approximately equa
waere studied by Gazit et al. [32]. We briefly review their notations and results
T † be a tree and define the weightw(v) of a vertexv in T † to be the number o
vertices in the subtree rooted atv. A vertexv is calledR-critical if v is not a leaf and
�w(v)/R� > �w(v′)/R� for all childrenv′ of v. Let C be a subset of the vertices inT †.
Two edgese ande′ of T † are calledC-equivalentif there exists a path frome to e′ that
avoids the verticesC. The graphs induced by the equivalence classes of theC-equivalent
edges are called thebridgesof C. Theattachments verticesof a bridgeI are the vertices
in I that are also inC. TheR-bridgesof T † are the bridges of the set ofR-critical vertices
of T †. Refer to Fig. 3(b). Gazit et al. [32] prove the following important propertie
R-bridges of anN vertex treeT †:

1. The number ofR-critical vertices inT † is at most 2N/R − 1.
2. If T † has bounded degreed the number ofR-bridges is at mostd(2N/R − 1).
3. The number of vertices of anR-bridge is at mostR + 1.
4. An R-bridge has at most two attachment vertices.
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Using the above properties we can easily findO(N/R) edges such that their remov
dividesT † intoO(N/R) subtrees of sizeO(R): T † is a binary tree sinceG is a triangulated
graph, and thus it has at most 4N/R R-bridges of sizeR + 1 each. Thus if the fewer tha
2 · 4N/R attachments vertices (or the at most 3· 2 · 4N/R = O(N/R) edges inciden
to these vertices) are removed, the graph breaks intoO(N/R) subgraphs (theR-bridges)
of sizeO(R). That these subgraphscan be used to partitionG can be seen as follow
Consider the (at most) two attachment vertices defining anR-bridgeI . The two edges inI
incident to these vertices define two cycles inG, and the faces inside one of these cycles
outside the other are exactly the faces corresponding to the vertices inI . SinceI contains
at mostR + 1 vertices (faces inG), the two edges (cycles inG) define a subgraph ofG
of size at most 3(R + 1). Overall, since each cycle containsO(H) vertices, theO(N/R)

R-bridges and the corresponding adjacent edges defineO((N/R) · H) separator vertice
partitioningG into O(N/R) subgraphs ofO(R) vertices.

To compute the partition ofG usingT we first computeG∗, and thusT †, in O(sort(N))

I/Os [20]. Then we compute the attachment vertices of theR-bridges ofT †. To do so the
only problem we need to solve is the computation of the weight of each vertex inT †.
This problem, like most other problems on trees, can be solved inO(sort(N)) I/Os [11,
13]. TheR-bridges and therefore the partition ofT † can also be computed inO(sort(N))

I/Os using a simple tree traversal. To compute theO((N/R) · H) separator vertices an
O(N/R) subgraphs in the partition we scan though theR-bridges and for each vertexv
we output the three vertices inG defining the face dual tov to a listL, with each vertex
marked with a unique identifier for theR-bridge it corresponds to. This way each ver
in G can appear many times inL and the vertices that appear with at least two dist
identifiers are the separator vertices. All copies of a vertex in a given subgraph are m
with the sameR-bridge identifier. Thus we can compute the partition by first identify
and remove all vertices that appear inL with more than one identifier, and then remo
duplicate vertices from the resulting list. This can easily be done inO(sort(N)) I/Os using
a few sorting and scanning steps.

Lemma 4. A planar graphG with a spanning treeT of heightH can be partitioned into
Θ(N/R) subgraphs of sizeO(R) usingO((N/R) · H) separator vertices inO(sort(N))

I/Os.

3.2. Separating planar graphs

We are now ready to describe our multi-way separation algorithm in detail. LetG =
(V ,E) be a planar graph with BFS treeT , and letL(i) be the total number of vertices o
levels 0 throughi of T . Given a parameterX < N , we define thestarter levelsto be the
levelsi such that the interval(L(i),L(i+1)] contains a multiple of�N/X�. It is easy to see
that there are at mostX starter levels and the number of vertices between consecutive s
levels is smaller than�N/X�. Just like the�1 level in Lipton and Tarjan’s algorithm [25
the starter levels divideG in subgraphs of “small” size. However, as previously, the sta
levels can contain many vertices. Therefore we consider the first level above each
level, as well as the first level below each starter level, containing at mostY vertices for a
given parameterY < N . We call these levels thecutter levels. Now consider the partition o
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Fig. 4. Starter and cutter levels inT . Graphs between two consecutive cutter levels either have size less thanN/X

or a spanning tree of height smaller thanN/Y .

G into O(X) subgraphsGi obtained by grouping vertices between two consecutive c
levels together. If the two cutter levels definingGi are within two (consecutive) starte
levels thenGi has sizeO(N/X). OtherwiseGi has a spanning tree of heightO(N/Y )

since each of the levels ofT in Gi have more thanY vertices (note that this is not the ca
for a graphGi defined by two cutter levels between the same starter levels). Refer to F

In order to compute a multi-way-separation ofG we partition the subgraphs of bounde
height using the algorithm in Section 3.1 (Lemma 4), and recursively partition
subgraphs of sizeO(N/X). To do so we need a BFS tree for each subgraphGi ; the part
of T in that falls withinGi is not a BFS tree forGi , since it is not connected. Howeve
we can easily produce a BFS tree forGi by introducing a “fake” rootvi and connecting
it with “fake” edges to all vertices just below the top cutter level definingGi . Note that
if T is given level-by-level the BFS trees for all subgraphsGi can easily be computed i
O(N/B) I/Os. Sincevi replaces at least one vertex on the cutter level, the total size o
subgraphs on any level of the recursion remainsO(N). The fake vertices and edges a
marked and removed from the final partitioned graph. This can easily be done inO(N/B)

I/Os.
To obtain a partition withO(sort(N)) separator vertices we chooseY = N/

√
R. Each

bounded height subgraphGi of size Ni has height
√

R, and can thus be partitione
using Lemma 4 intoΘ(Ni/R) subgraphs of sizeO(R) using O((Ni/R) · √

R ) =
O(Ni/

√
R ) separator vertices. Apart from theO(N/

√
R ) separator vertices used

partition each of the at mostX bounded height subgraphs, the at mostX cutter levels
contribute O(X · Y ) = O(X · N/

√
R ) separator vertices. Thus the total number

separator vertices is given byS(N) � O(XN/
√

R ) + O(N/
√

R ) + X · S(N/X) (and
S(R) = 0). If we chooseX = (M/B2)1/4 and assumeR > B

√
M , we get thatXN/

√
R =

O(N/B) and thereforeS(N) = O(N/B) + (M/B2)1/4 · S(N/(M/B2)1/4). This solves to
O(N/B) log(M/B2)1/4(N/R), which isO(sort(N)) under the assumption thatM > B2+ε .
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That our algorithm usesO(sort(N)) I/Os can be seen as follows. The preprocess
step of representingT level by level, and thus also computing the BFS level for e
vertex, can easily be performed inO(sort(N)) I/Os using standard tree algorithms [11,1
Not counting the I/Os used to partition the subgraphs with bounded height, one recurs
step can be performed inO(N/B) I/Os, and the recurrence for the number of I/Os is t
T (N) � N/B +X ·T (N/X) = O(sort(N)). Since we do not recurse on subgraphsGi with
bounded height but immediately subdivide them usingO(sort(Gi)) I/Os, the total cost o
partitioning all such subgraphs over all levels of the recursion adds up toO(sort(N)).

So far we assumedR > B
√

M. If we want to partition a graphG into subgraphs o
sizeR � B

√
M < M we can first use the algorithm above to partitionG into subgraphs

of sizeO(M) and then load each subgraph into internal memory in turn and apply th
algorithm of Lipton and Tarjan [25] recursively until all subgraphs have sizeO(R). This
only requires an extraO(N/B) I/Os and introducesO(M/

√
R ) separator vertices in eac

of theO(N/M) subgraphs, for a total ofO(N/
√

R ) vertices. Thus we have the followin

Theorem 2. Let G = (V ,E) be a planar graph andT a breadth-first search tree forG.
For any value ofR, the graph can be partitioned intoO(N/R) subgraphsGi of sizeO(R)

using a setS of O(sort(N) + N/
√

R ) separator vertices inO(sort(N)) I/Os.

For every subgraphGi in a multi-way separation, we call the separator vertices adja
to Gi the boundary verticesof Gi or, in short, theboundary∂Gi of Gi (the union
of a graphGi and its boundary∂Gi is sometimes called aregion). Frederickson [18
developed an algorithm for modifying a partitioning of abounded degree7 planar graph
into S = O(N/

√
R ) separator vertices andO(N/R) subgraphs of sizeO(R), such that

each subgraph only hasO(S/(N/R)) = O(
√

R ) boundary vertices. The algorithm wor
by computing a weighted version of multi-way separation in each subgraph∂Gi ∪ Gi .
Using Theorem 2 and choosingR such that sort(N) = O(N/

√
R ) we obtain a partitioning

with S = O(N/
√

R ) separator vertices. Since we in this case have

R = O

(
B2

log2
M/B

N
B

)
= O

(
B2) = O(M)

(and since∂Gi also hasO(M) vertices because of the bounded degree) we can dir
apply Fredrickson’s algorithm (that is, load each subgraph and its boundary in
memory in turn and apply a weighted separator algorithm) to obtain a separation
each subgraph havingO(

√
R ) boundary vertices. Since this takesO((N/R) · (R/B)) =

O(N/B) I/Os we have the following:

Lemma 5. LetG = (V ,E) be a bounded degree planar graph andT a breadth-first search
tree forG. For R = O(B2/ log2

M/B(N/B)), G can be partitioned inO(sort(N)) I/Os into
O(N/R) subgraphsGi of sizeO(R) using a setS of O(N/

√
R ) separator vertices, suc

that each subgraphGi hasO(
√

R ) boundary vertices.

7 Any graph can easily be transformed into a graph with each vertex having degree at most 3 [18].
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Fig. 5. (a) Separation of a graph into subgraphs (boxed) and separators (black). (b) A subgraph in the partit
with the boundary sets of its boundary vertices.

A boundary setin a multi-way separation is a maximal subset of separator ver
such that all vertices in the subset are adjacent to exactly the same subgraphs. Refe
Fig. 5. Frederickson [18] developed an algorithm for modifying a partition of a bounded
degree planar graph intoS = O(N/

√
R ) separator vertices andO(N/R) subgraphsGi of

sizeO(R),8 such that the number of boundary sets isO(N/R). The algorithm consider
the connected components in the graphG− obtained by removing the vertices inS from
G and groups them together appropriately. It only utilizes connected component adjacen
information, that is, it works on the graphGc obtained fromG by contracting the vertices i
each connected component ofG− (and removing duplicate edges). SinceGc is connected
and of bounded degree it hasO(S) vertices and edges; usingGc Frederickson’s algorithm
can be used to compute the modified partitioning inO(S) I/Os. Using Theorem 2 an
choosingR such thatN/

√
R = O(sort(N)), that isR = Ω(B2/ log2

M/B(N/B)), we obtain
a partitioning withS = O(sort(N)) separator vertices. Using anO(sort(N)) connected
component algorithm [13] and a few scanning and sorting steps we can then easily co
Gc in O(sort(N)) I/Os. SinceGc hasS = O(sort(N)) vertices and edges we can th
directly apply Fredrickson’s algorithm [18] and inO(sort(N)) I/Os obtain a separatio
with O(N/R) boundary sets.

Lemma 6. LetG = (V ,E) be a bounded degree planar graph andT a breadth-first search
tree forG. For R = Ω(B2/ log2

M/B(N/B)), G can be partitioned inO(sort(N)) I/Os into
O(N/R) subgraphsGi of sizeO(R) using a setS of O(N/

√
R ) separator vertices, suc

that the number of boundary sets isO(N/R).

Combining Lemma 5 and Lemma 6 (choosingR = Θ(B2/ log2
M/B(N/B))) we obtain

following:

Theorem 3. Let G = (V ,E) be a bounded degree planar graph andT a breadth-first
search tree forG. Then G can be partitioned inO(sort(N)) I/Os into O((N/B2) ·

8 Note that a subgraphGi is not necessarily connected.
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M/B(N/B)) subgraphsGi of sizeO(B2/ log2

M/B(N/B)) usingS = O(sort(N)) sepa-
rator vertices such that:

1. The number of boundary vertices of each subgraphGi is O(B/ logM/B(N/B)).

2. The number of boundary sets isO((N/B2) · log2
M/B(N/B)).

4. Single source shortest paths on planar graphs

Dijkstra’s algorithm [16] is probably the most well-know single source shortest
algorithm. The algorithm iteratively grows a shortest path tree using a priority que
the vertices not yet included in the tree. This is very similar to the way Prim’s M
algorithm [16] grows a minimal spanning tree (and as in the case of Prim’s algor
a direct implementation of Dijkstra’s algorithms is not I/O-efficient). In this section
show how to use Theorem 3 to obtain a modified and I/O-efficient version of Dijks
algorithm for planar graphs of bounded degree. The main idea in our algorithm is
multi-way separation to reduce a single source shortest path problem on a (non-plan
graphG with O(N) vertices and edges to the same problem on a graph withO(sort(N))

vertices andO(N) edges, and to utilize that each subgraph is adjacent to a small nu
of separator vertices to process theO(N) edges I/O-efficiently. These ideas are similar
the ones utilized by Frederickson [18].

Let {Gi = (Vi,Ei)} be theO(N/R) subgraphs of sizeO(R) obtained by partitioning
G using the algorithm in Theorem 3. Consider a shortest pathP between the sourc
vertexs and a vertext in G, and let{s0, s1, . . .} be the set of separator vertices inP in
the order they appear along the path. The part ofP betweensi and si+1 is completely
within some subgraphGi and it must be the shortest path betweensi andsi+1 within Gi .
Thus we can find the shortest path froms to all separator vertices by solving the SS
problem on the graphGR obtained by replacing each subgraphGi with a complete graph
on its boundary vertices, where the weight of an edge(u, v) is equal to the weight of th
shortest path betweenu andv in Gi . If the sources is not a separator vertex, it is als
included inGR along with edges to the boundary vertices of the subgraph conta
it. The graphGR has O(sort(N)) vertices, and since the partition ofG consists of
O((N/B2) · log2

M/B(N/B)) subgraphs withO(B/ logM/B(N/B)) boundary vertices eac

it hasO((N/B2) · log2
M/B(N/B) · (B/ logM/B(N/B))2) = O(N) edges.

After computing the partition ofG using O(sort(N)) I/Os, GR can be compute
by loading each subgraphGi and its boundary vertices into main memory in turn,
an internal memory all-pair-shortest-paths algorithm to compute the weights of th
edges corresponding toGi , and write these edges back to disk. Since each of thS

separator vertices is a boundary vertex for at mostO(1) subgraphs (because of the bound
degree), we useO(N/B + S) = O(sort(N)) I/Os to load all the subgraphs and th
boundary vertices. We also useO(N/B) I/Os to write the new edges, and thusGR can
be computed inO(sort(N)) I/Os in total. Similarly to the wayGR is computed fromG

in O(sort(N) I/Os, the lengths of the shortest paths froms to all vertices inG can be
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computed inO(sort(N)) I/Os once the lengths of the shortest paths inGR have been
computed; we simply load each subgraphGi and its boundary vertices (now marked w
shortest path lengths) into main memory in turn, and use an internal memory algo
to compute the shortest pathδ(s, t) from s to each vertext ∈ Vi using the formula
δ(s, t) = minv{δ(s, v) + δGi (v, t)}, wherev ranges over all boundary vertices ofGi .

To solve the the SSSP problem onGR in O(sort(N)) I/Os we use a modified versio
of Dijkstra’s algorithm. The idea of Dijkstra’s algorithm is to grow a SSSP treeTG

incrementally while maintaining a priority queue on the vertices not yet included in
tree; the priority of a vertexv is the weight of the shortest path from the sources to v such
that all but the last edge is inTG. The algorithm repeatedly extracts the minimum priority
vertexv, adds it (and the relevant edge incident to it) toTG, and updates the priority of eac
vertexu adjacent tov. Specifically, ifwe is the weight of the edgee = (v,u), the weight
δ(s, v) + we of the path froms to u thoroughv is compared to the currently priority ofu
(weight of the current shortest path tou), and an update is performed if the new weig
is smaller. Even thoughGR only hasO(sort(N)) vertices, a direct implementation
Dijkstra’s algorithm does not lead to an I/O-efficient algorithm, mainly because the curre
priority of a given vertex cannot be obtained without doing an I/O. Thus processin
O(N) edges leads to anΩ(N) algorithm.9

To be able to obtain the priority of a vertex I/O-efficiently, and thus be able to per
O(N) update/decrease-priority inO(sort(N)) I/Os using a delete and insert operat
on the external priority queues of [6,10], we exploit the grouping of boundary ver
into boundary sets. The boundary sets allow us to implement Dijkstra’s algorithm
efficiently as follows: Apart from the priority queuePQ on the vertices, we maintai
a list L of the current priorities of the vertices, that is, we maintain the same pri
information inPQ andL. We store vertices in the same boundary set consecutivelyL.
The algorithm now repeatedly extracts the minimal priority vertexv from PQand loads the
O(B/ logM/B(N/B)) = O(B) edges incident tov into main memory. Next the prioritie
of theO(B/ logM/B(N/B)) boundary vertices adjacent tov are retrieved fromL, and it
is determined (without further I/Os) which of these vertices need to have their priorit
updated inPQ andL. Finally the relevant updates are performed onPQ (using a delete
and an insert per update) and the boundary vertices (with updated priorities) are
back toL.

For each of theO(sort(N)) vertices v in GR our algorithm useO(1) I/Os to
load the edges incident tov. The number of I/Os needed to load (and write)
O(B/ logM/B(N/B)) boundary vertices adjacent tov from L can be analyzed as follow
Since each vertex is adjacent toO(B/ logM/B(N/B)) = O(B) vertices, each boundar
set also containsO(B) vertices. Since they are stored consecutively inL, a boundary se

9 This can be improved toO((N/B) log2(N/B)) I/Os, orO((log2(N/B))/B) I/Os per edge, using a priorit
queue by Kumar and Schwabe [24] that supports a decrease-priority operation where the current priorityp of an
element does not need to be know when the operation is performed—the update is only actually made if the n
priority is smaller thanp.
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can be loaded inO(1) I/Os. During the whole algorithm, each boundary set is acce
O(B/ logM/B(N/B)) times (once by each of its adjacent vertices), and thus we use

O

(
B

logM/B
N
B

· N

B2
· log2

M/B

N

B

)
= O

(
sort(N)

)

I/Os in total to access theO((N/B2) · log2
M/B(N/B)) boundary sets inL. (Note that if

the boundary sets were not stored consecutively inL we would useO(B/ logM/B(N/B))

I/Os to load the vertices adjacent tov, for a total ofO(B/ logM/B N/B · sort(N)) = O(N)

I/Os for theO(sort(N)) vertices). Finally, our algorithm performsO(N) operations onPQ
usingO(sort(N)) I/Os in total [6,10]. We have obtained the following.

Theorem 4. LetG be a bounded degree planar graph andT a BFS tree forG. The weights
of the shortest paths from a given source vertexs to all vertices inG can be computed in
O(sort(N)) I/Os.

In the above algorithm we focused on computing the weights of the shortest pa
G. If we are interested in the actual paths, that is, in the shortest path treeTG, standard
techniques can easily be used to augment the algorithm so it outputs the edgesTG.
Given TG, Hutchinson et al. [20] showed how to store it such that for any vertext , the
shortest path between the sources and t can be returned inP/B I/Os, whereP is the
number of vertices on the path.

Corollary 1. Let G be a bounded degree planar graph andT a BFS tree forG. A data
structure can be constructed inO(sort(N)) I/Os such that the shortest path from a giv
source vertexs and any vertext can be found inO(P/B) I/Os, whereP is the number o
vertices on the path.

5. Conclusions and open problems

In this paper we developed an improvedO(sort(N) · log log(V B/E)) algorithm for
MST on general undirected graphs. It remains a challenging open problem to deve
O(sort(N)) I/O algorithm. We also showed that planar BFS, multi-way graph separa
and SSSP are essentially equivalent by providingO(sort(N)) reductions between them
Recently, it was also shown how to reduce planar undirected DFS to BFS [7]. Very rec
these reductions lead toO(sort(N)) I/O algorithms for all fundamental problems on plan
undirected graphs [28]. It remains an open problem to developO(sort(N)) algorithms for
planar directed graphs.
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[9] O. Borůvka, O jistém problému minimálním, Práca Moravské Přírodov̌edecké Spolěcnosti 3 (1926) 37–58
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