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Abstract. Obtaining I/O-efficient algorithms for basic graph problems
on sparse directed graphs is a long-standing open problem. While the
best known upper bounds for most basic problems on such graphs with
V vertices still require Ω(V ) I/Os, optimal O(sort(V )) I/O algorithms
are known for special classes of sparse graphs, like planar graphs and
grid graphs. It is hard to accept that a problem becomes difficult as soon
as the graph contains a few deviations from planarity. In this paper we
extend the class of graphs on which basic graph problems can be solved
I/O-efficiently. We give a characterization of near-planarity which covers
a wide range of near-planar graphs, and obtain the first I/O-efficient
algorithms for directed graphs that are near-planar.

1 Introduction

When working with massive graphs, only a fraction of the data can be held in the
main memory of a computer. Thus, the transfer of blocks of data between main
memory and disk, rather than the internal memory computation, is often the
bottleneck. Therefore, developing external-memory or I/O-efficient algorithms—
algorithms that specifically optimize the number of block transfers between main
memory and disk, can lead to considerable runtime improvements.

I/O-efficient algorithms for graph problems has been an active area of re-
search. Even though significant progress has been made, there is still a significant
gap between the lower and the upper bound for all basic problems. Consider a di-
rected graph (digraph) with non-negative real edge weights. A shortest path from
vertex u to vertex v in G is a minimum-length path from u to v in G, where the
length of a path is the sum of the weights of the edges on the path. The single-
source-shortest-paths (SSSP) problem is to find shortest paths from a source
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vertex s to all vertices in G. For planar digraphs (graphs that can be embed-
ded in the plane such that no two edges intersect), there exist SSSP-algorithms
with upper bounds on the number of block transfers that match proven lower
bounds up to a constant factor. However, for general graphs, the SSSP problem
is still open, as are other basic problems such as connected components (CC)
and depth- and breadth-first search (DFS, BFS).

Both from a theoretical and from a practical point of view, it is hard to accept
that SSSP should become extremely difficult as soon as a graph contains a few
deviations from planarity. In practice, networks (e.g. transportation networks)
may not be planar. However, when edges are expensive and junctions are cheap,
such networks still have a strong tendency to planarity: there will be only rel-
atively few links (e.g. motorways) that cross other edges without connecting to
them. Other examples are networks in which each vertex is connected to a few
nearby vertices. In such networks, there may be quite a number of crossings but
they are all very ‘local’. In this paper we give a characterization of near-planarity
covering a wide range of near-planar graphs, and develop the first I/O-efficient
algorithms for such graphs.

I/O-Model and related work. We develop I/O-efficient algorithms using the
standard two-level I/O-model [2]. The model defines two parameters: M is the
number of vertices/edges that fit into internal memory, and B the number of
vertices/edges that fit into a disk block, where B ≤ M/2. An Input/Output (or:
I/O) is the operation of transferring a block of data between main memory and
disk. The I/O-complexity of an algorithm is the number of I/Os it performs. The
basic bounds in the I/O-model are those for scanning and sorting. The scanning
bound, scan(N) = N

B , is the number of I/Os necessary to read N contiguous
items from disk. The sorting bound, sort(N) = Θ(N

B logM/B
N
B ), represents the

number of I/Os required to sort N contiguous items on disk [2] when N > M .
For all realistic values of B and M < N , we have scan(N) < sort(N) � N .

I/O-efficient graph algorithms have been considered by a number of authors;
for a recent review see [23]. On general digraphs G = (V, E) the best known
algorithm for SSSP, as well as for the BFS and DFS traversal problems, use
Ω(V ) I/Os in the worst case1; their complexity is O(min{(V + E

B ) · log V +
sort(E), V + V

M
E
B }) [12, 13, 19]. On sparse graphs, which have E = O(V ), the

best known bounds are thus O(V ) I/Os or worse, which is no better than just
running the internal-memory algorithms in external memory. This is far from
the currently best lower bound of Ω(min{V, sort(V )} + E/B) I/Os, which on
sparse graphs is practically Ω(sort(V )).

The search for BFS, DFS and SSSP algorithms using O(sort(E)) I/Os on
general (sparse) graphs has led to a number of improved results for special graph
classes [5, 6, 7, 8, 10]. All these algorithms are based on the existence of small
separators. For planar graphs, they exploit graph partitions, as introduced by
Frederickson [16]. For any planar graph K = (V, E), given a parameter R ≤ V ,
we can find a subset VS ⊂ V of O(V/

√
R) vertices, such that the removal of VS

1 We denote the size of a set by its name; the meaning will be clear from the context.
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partitions K into subgraphs Ki such that: (1) there are O(V/R) subgraphs; (2)
each subgraph has size O(R), and (3) (the vertices in) each Ki is (are) adjacent
to O(

√
R) vertices of VS . We call such a partition an R-partition. Assuming

that R ≤ M/(c log2 B), for a sufficiently big constant c, an R-partition can be
computed I/O-efficiently with O(sort(V )) I/Os [22]. On planar digraphs, using
R-partitions, SSSP and BFS can be solved in O(sort(V )) I/Os [8], and DFS in
O(sort(V ) log V

M ) I/Os [10];

Our results. In this paper we extend the class of graphs that admit I/O-efficient
algorithms. We introduce a class of near-planar graphs and show how to find
small separators for planar subgraphs of such graphs that gracefully depend on
the non-planarities. Using these separators, we develop the first I/O-efficient
SSSP, BFS, DFS and topological sort algorithms for such near-planar graphs.

Our main result is the following. Let G = (V, E ∪ EC) be a digraph that
consists of a planar graph K = (V, E) and a given set of additional edges EC ;
let GC = G − K = (VC , EC) denote the non-planar part of G, where VC is the
set of vertices incident to edges in EC . We show how to refine an R-partition
of K to restrict the number of vertices of VC per subgraph, while adding no
more than O(

√
V VC/R1/4) vertices to the separator and increasing the number

of subgraphs by no more than O(VC/
√

R). Using refined R-partitions we show
how to compute SSSP on G in O(EC + sort(V + EC)).

We generalize our result to graphs G = (V, E ∪ EC) such that K = (V, E)
can be drawn in the plane with T crossings. If we know for each edge (u, v)
of K which edges it crosses, and in which order these crossings occur when
traversing the edge from u to v, we can compute SSSP on such a graph G in
O(EC + sort(V + T + EC)) I/Os.

When a graph is near-planar in the sense that T = O(V ) and EC = O(V/B),
these bounds reduce to O(sort(V )), whereas the best known SSSP-algorithm for
general graphs requires O((V + E

B )·log V
B +sort(E)) ⊃ O(V ) I/Os. If information

about a suitable drawing of a graph is given, our results allow the computation of
SSSP in O(sort(E)) I/Os on graphs with crossing number O(E), on graphs that
are k-embeddable in the plane for constant k, on graphs with skewness O(E/B)
and on graphs with splitting number O(E/B). We obtain similar results for BFS,
DFS, topological order and CC.

Outline. The paper is organized as follows. Sec. 2 presents refined R-partitions
and Sec. 3 describes how to use these partitions to compute SSSP efficiently.
Sec. 4 extends our approach to other basic graph problems. In Sec. 5 we explain
how our technique could be used for problems on several types of graphs that
are near-planar according to measures of planarity proposed in literature. We
conclude in Sec. 6 and give directions for further research.

2 Partitioning a Near-Planar Graph

In this section we discuss how to compute small separators and extend Frederick-
son’s R-partitions to graphs that are not planar. Consider a graph
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(a) (b)

Fig. 1. (a) Partition of a planar graph into clusters (boxed) and separator vertices
(black). (b) One cluster in the partition and its adjacent boundary sets.

G = (V, E ∪ EC) that consists of planar subgraph K = (V, E) and a set of edges
EC . For this section we assume K to be known. Let GC = (VC , EC) = G − K
denote the non-planar part of G. We call the edges of GC cross-link edges, and
the vertices of GC cross-link vertices. We assume that the vertices and edges in
the cross-link graph GC are labeled as such.

We start by computing an R-partition for K = (V, E), that is, a set VS ⊂ V
of O(V/

√
R) vertices, such that the removal of VS partitions K into subgraphs

Ki such that there are O(V/R) subgraphs, each subgraph has size O(R), and is
adjacent to O(

√
R) vertices of VS . We use the following notation: the vertices

in VS are separator vertices and each of the subgraphs a cluster ; the set of
vertices in K − Ki adjacent to Ki are the boundary vertices ∂Ki (or simply the
boundary) of Ki. We use Ki to denote the graph consisting of Ki, ∂Ki and the
subset of edges of E connecting vertices in Ki∪∂Ki. The set of separator vertices
can be partitioned into maximal subsets so that the vertices in each subset are
adjacent to precisely the same set of clusters. These sets are the boundary sets
of the partition. If the graph has bounded degree, which can be ensured for
planar graphs using a simple transformation, there exists an R-partition with
only O(V/R) boundary sets [16] (Refer to Fig. 1).

The separator VS is a separator for K but not necessarily for G, because
any cluster in K may contain up to R cross-link vertices that are connected by
cross-link edges to cross-link vertices in other clusters, by-passing the separator.
Let Gi denote the clusters induced by Ki in G. A straightforward way to get
a separator for G would be to add all cross-link vertices VC to VS ; however,
the SSSP algorithm of Sec. 3, run on the basis of such a separator, would use
O(EC + V ) I/Os.

We show how to refine the partition of K to incorporate the cross-link edges
while ensuring that the total number of separator vertices and clusters is not
too large and each cluster contains O(

√
R) cross-link vertices. Our approach is

based on the following generalization of Lemma 2 from [16].

Lemma 1. Given a subgraph G=(V, E) of a planar graph with |∂G|=O(
√

V ),
and a weight function w : V →R such that

∑
v∈V w(v)=W , we can find a subset

S ⊂ V of size O(
√

V W ) which separates G − S into a set of O(W ) subgraphs
(clusters) G′ with the following properties:

– each cluster G′ = (V ′, E′) has a total weight
∑

v∈V ′ w(v) of at most 1.
– for each cluster G′ = (V ′, E′), we have that ∂G′ has O(

√
V ) vertices.
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Proof. The proof follows the proof of Lemma 1 and 2 from Frederickson [16],
which is based on recursive application of the separator theorem by Lipton and
Tarjan [21] in two phases: first with uniform weights on the vertices, and then
with weights on the separator vertices only. However, we use a non-uniform
weight function in the first phase. Note that we are not interested in low-weight
separators: it is the weights of the clusters that count. The first phase of the
recursive procedure is as follows. When G has weight w(G) at most 1, we are
done. Otherwise, applying Lipton and Tarjan’s separator theorem, we find a
subset S of at most 2

√
2
√

V vertices of V such that S separates G − S into
two clusters A and B that each have weight at most 2

3w(G). We partition the
clusters A and B recursively.2 This procedure results in a number of clusters. By
construction each cluster G′ = (V ′, E′) has weight at most 1, and the number
of clusters is obviously O(W ). However, the boundary ∂G′ of a cluster G′ may
still have more than O(

√
V ) vertices—this is solved by the second phase. But

first we show that so far, the total number of vertices in the subsets S that were
selected is O(

√
V W ). Let s(v, w) be the maximum number of separator vertices

that may be selected while recursively partitioning a planar graph induced by
a set of v vertices with weight w. Note that any of its subgraphs A and B may
have total weight at most 2

3w, and at least one of them has at most v/2 vertices.
Therefore s(v, w) is bounded by the following recursive expression: s(v, w) ≤
max0<α≤1/2,1/3≤β≤2/3 c

√
v+s(αv, βw)+s((1−α)v, (1−β)w) where s(v, w) = 0

if w ≤ 1, and c = 2
√

2. This recursion solves to s(V, W ) = O(
√

V W ) (details in
the full version of this paper). In the second phase of the procedure we recursively
subdivide each cluster further until the size of its boundary is reduced to O(

√
V ).

It can be shown that this increases the number of separator vertices and the
number of clusters by at most a constant factor; thus the lemma follows. �	

Our algorithm first computes an R-partition of K in O(sort(V )) I/Os with the
algorithm by Maheshwari and Zeh [22]; then we refine the partition by applying
Lemma 1 to each cluster Gi that has more than c

√
R cross-link vertices, for

some fixed constant c. For each such cluster we assign weight 1/(c
√

R) to every
cross-link vertex in Gi and weight 0 to every other vertex. Thus each cluster that
results from refining Gi has O(

√
R) cross-link vertices, O(R) vertices in total,

and O(
√

R) vertices on its boundary.
We use Lemma 1 to bound the number of separator vertices and number of

clusters G′ resulting from the refinement. Cluster Gi has total weight Wi =∑
v∈Gi

w(v) = |Gi ∩ VC |/(c ·
√

R). For each cluster Gi, the number of separator
vertices obtained by refining it is O((|Gi| · Wi)1/2) = O(R1/4(|Gi ∩ VC |)1/2).
Summed over all clusters Gi this adds O(R1/4 ∑

Gi
(|Gi ∩ VC |)1/2) separator

vertices in total. Since 2
√

(a + b)/2 ≥
√

a +
√

b, the worst case occurs if the
cross-link vertices VC are evenly distributed over the O(V/R) subgraphs Gi,
and we get: R1/4 ∑

Gi
(|Gi ∩VC |)1/2 ≤ R1/4O(V/R)O(

√
VCR/V ) = O(V/R3/4 +√

V VC/R1/4). Adding this to the O(V/
√

R) vertices that were already in VS be-
fore we started refining the partition, we get a total of O(V/

√
R+

√
V VC/R1/4).

2 Alternatively, one could apply the results of Aleksandrov et al. [3] for the first phase.
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Similarly, the number of clusters obtained by refining each Gi is O(W ) =
O(|Gi ∩ VC |/(c ·

√
R)) (by Lemma 1), and we can show that the total number

of clusters is O(V/R + VC/
√

R). Overall we have the following (due to space
constraints the complete proof is omitted):

Theorem 1. Let R be a parameter such that R ≤ M/(c log2 B), for a suffi-
ciently big constant c. We can, with sort(E) I/Os, find a subset VS ⊂ V whose
removal separates K into a set of subgraphs Gi with the following properties:

– the total number of vertices in VS is O(V/
√

R +
√

V VC/R1/4)
– there are O(V/R + VC/

√
R) subgraphs Gi in K − VS

– each subgraph contains O(R) vertices, is adjacent to O(
√

R) separator ver-
tices and contains O(

√
R) cross-link vertices.

3 Computing SSSP Using the Refined R-Partition

We now show how to use the refined partition of a non-planar graph G obtained
in Sec. 2 above to compute SSSP I/O-efficiently.

The standard approach used by I/O-efficient planar graph algorithms is as
follows. Given an R-partition of a planar graph K, we compute a substitute
graph KR defined on the separator vertices. The graph KR is a reduced version
of K (it has fewer vertices), and we construct it such that the lengths of the
shortest paths in KR are the same as in K. The SSSP algorithm consists of three
steps: (1) Compute KR; (2) Compute SSSP in KR (by construction, we know
these are the lengths of the shortest paths in K); (3) Compute the shortest paths
to vertices inside the clusters Ki of the R-partition.

To extend this approach to a non-planar graph G, we have to incorporate the
cross-link (non-planar) edges EC of G. We do this on the basis of a refined R-
partition of G that divides G into subgraphs Gi, as explained in Sec. 2. Note that
a shortest path between two arbitrary vertices in G enters and exits a subgraph
Gi either through a boundary vertex or through a cross-link vertex. Therefore
the substitute graph GR will be defined on both the separator and the cross-link
vertices and it contains an edge between each cross-link vertex and the boundary
vertices of its cluster. Since this introduces O(VC

√
R) edges in GR, care must be

taken so that the number of I/Os spent on them does not become Ω(VC

√
R).

Below we show how to exploit Theorem 1 to implement the substitute graph
of a refined R-partition of a non-planar graph such that shortest paths can be
computed efficiently. We will give details and prove this section’s main result:

Theorem 2. SSSP on a digraph G = K∪GC uses O(EC +sort(V +EC)) I/Os.

3.1 The Substitute Graph

We obtain GR as follows: First, it includes the edges between the separator
vertices in the partition (that is, in G), and the edges between the cross-link
vertices, i.e. the cross-link graph GC . Second, it includes the union of all complete
graphs GR

i obtained by replacing each subgraph Gi as follows: the vertices of
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GR
i are the boundary vertices ∂Gi of Gi and the cross-link vertice VC ∩ Gi of

Gi, and there is an edge from u to v in GR
i if there is a path from u to v in

Gi. The edge (u, v) has weight equal to the length of the shortest path from u
to v in Gi. Note that GR

i contains edges between boundary vertices, between
cross-link vertices and boundary vertices, and between cross-link vertices. Third,
if the SSSP source vertex s is not a separator or a cross-link vertex, we add it to
GR and add edges from s to all the boundary vertices and all cross-link vertices
of the subgraph Gi containing s; as above, the weight of an edge (s, v) is the
length of the shortest path from s to v in Gi.

Let δG(u, v) denote the shortest path from u to v in G. For any pair of vertices
u, v ∈ VS ∪VC ∪{s} we can show that δGR(u, v) = δG(u, v), that is, GR maintains
shortest paths between its vertices. The number of vertices in the substitute
graph is VS + VC + 1, which, by Theorem 1, is O(V/

√
R +

√
V VC/R1/4 + VC).

By Theorem 1, there are O(V/R + VC/
√

R) subgraphs in total, each of which
has O(

√
R) boundary vertices, O(

√
R) cross-link vertices, and possibly a source

vertex; thus each complete graph GR
i has O(R) edges in total. In total ∪GR

i

has O(V/R + VC/
√

R) · O(R) = O(V + VC

√
R) edges. Add the O(V/

√
R +√

V VC/R1/4 + EC) cross-link edges and edges between separator vertices in the
partition, and we get:

Lemma 2. The substitute graph GR has O(V/
√

R+
√

V VC/R1/4 +VC) vertices
and O(V + VC

√
R + EC) edges.

We can also show that GR can be computed in O(scan(E) + sort(|GR|)). We
defer the details to the full version of this paper.

3.2 Computing SSSP on GR

To compute SSSP on GR we use Dijkstra’s algorithm, which we make I/O-
efficient by modifying it to take advantage of the structure of GR. In addition
to a priority queue, we maintain a list L that stores the tentative distances from
s to all the vertices in GR, that is, in VS ∪ VC ∪ {s}. When extracting a vertex
from the priority queue, we retrieve the tentative distances of its out-neighbors
from L. For each out-neighbor w of v we check whether its tentative distance as
stored in L is greater than d(v) plus the weight of the edge (v, w); if it is, we
update the distance of w in L, delete the old entry of w from the priority queue
and insert a new entry for w with the updated distance in the queue.

In total, we perform O(V (GR)) = O(VS +VC) ExtractMins, and O(E(GR)) =
O(V +VC

√
R+EC) Deletes and Inserts on the priority queue. These operations

can be performed efficiently in O(sort(V + VC

√
R + EC)) I/Os using an I/O-

efficient priority queue, e.g. [4]. We also perform O(E(GR)) = O(V +VC

√
R+EC)

accesses to the list L; this is because every vertex in L is accessed once by each
incoming edge in GR. Of course, we cannot afford one I/O per edge. In order to
perform the accesses to L efficiently, we store L in the following order: all vertices
in VS are at the front of L, grouped by boundary set, followed by the vertices
in VC − VS , grouped by the index of the subgraph Gi that contains them. Note
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that with this order the vertices in the same boundary set, as well as cross-link
vertices in the same cluster, are consecutive in L.

Lemma 3. The accesses to the list L can be performed in O(VS +EC +(V/
√

R+
VC) · 


√
R/B�) I/Os.

Proof. The accesses to the list L are of three types: (1) O(EC) accesses through
the cross-link edges of GR; (2) O(VS) accesses through edges between separator
vertices; and (3) O(V + VC

√
R) accesses through the edges in the substitute

graphs GR
i . The first two types of accesses clearly take O(VS +EC) I/Os. We now

analyze the third type of accesses to L by counting the number of accesses per
boundary set (while ignoring the cross-link edges, which are counted separately
in (1)). Recall that a boundary set is a maximal set of separator vertices which
are adjacent to precisely the same subgraphs Gi. Every vertex v ∈ VS∪VC∪{s} in
GR that is processed needs to access the tentative distances of its out-neighbors
in L: that is, every separator vertex v ∈ VS needs to access all the boundary
vertices and cross-link vertices of all subgraphs Gi adjacent to v; every vertex
v ∈ {s} ∪ VC \ VS needs to access all the boundary vertices and all cross-link
vertices in the subgraph Gi containing v. Every time a vertex in a boundary set
needs to be accessed, the other vertices in the boundary set need to be accessed
as well, since the vertices of a boundary set are adjacent to the same subgraphs.
For simplicity, we can think of all the cross-link vertices in a subgraph Gi as
an additional “boundary” set of that subgraph. Overall, each boundary set of
GR is accessed once by each of the vertices on the boundaries of the subgraphs
adjacent to the boundary set, and by each of the cross-link vertices in these
subgraphs. By Theorem 1, each subgraph Gi has O(

√
R) boundary and O(

√
R)

cross-link vertices. Thus each boundary set is accessed O(
√

R) times for each
adjacent subgraph.

By the planar graph argument [16] the number of boundary sets as well as
the number of adjacencies between boundary sets and subgraphs Gi is asymp-
totically the same as the number of subgraphs Gi. Using Theorem 1 we get that
the total number of accesses to boundary sets is O(

√
R) · O(V/R + VC/

√
R) =

O(V/
√

R + VC). Since boundary sets are stored consecutively in L (including
the “boundary” set consisting of the O(

√
R) cross-link vertices of a subgraph),

each boundary set can be accessed in 

√

R/B� I/Os.
Thus the accesses to boundary sets use in total O(V/

√
R+VC)·


√
R/B� I/Os.

Adding the O(VS) accesses between separator vertices and the O(EC) I/Os to
L caused by the cross-link edges (type (1) and (2)), we get a total of O(VS +
EC + (V/

√
R + VC) · 


√
R/B�) I/Os. �	

Putting together the operations on the priority queue and the accesses to the
list L (Lemma 3) we get that computing SSSP on GR uses O(VS +EC +(V/

√
R+

VC) · 

√

R/B� + sort(V + VC

√
R + EC)) I/Os.

The third step in the SSSP algorithm on G computes shortest paths to all
vertices in V − (VS ∪ VC). In the full paper we show that this step is dominated
by the previous two steps. From the above we get that the total number of
I/Os to compute SSSP on G is O(sort(V + VC

√
R + EC) + VS + EC + (V/

√
R
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+VC)

√

R/B�), which is O(V/
√

R+
√

V VC/R1/4+EC +sort(V +VC

√
R+EC)).

Assume for simplicity that M > B2. If VC < V/B, we choose R = B2 and
the bound becomes O(EC + sort(V + EC)). If VC > V/B, we choose R =
(V/VC)2 = O(M) and again get O(EC + sort(V + EC)). This concludes the
proof of Theorem 2.

4 Other Graph Problems Using Refined Partitions

The ideas from the SSSP algorithm above can be extended to other algorithms on
near-planar graphs. We mention results for connected components (CC), topo-
logical order and depth-first search (DFS) and leave details for the full version.

Theorem 3. Let G = K∪GC . A topological order (assuming G is a DAG) and
the connected components of G (assuming G is undirected) can be computed with
O(EC + sort(V +EC)) I/Os. A DFS ordering can be computed with O(V/

√
B +

EC) I/Os.

5 Planarizing Graphs

The question how close a given graph is to being planar, is much-studied and has
obvious applications in, for example, graph drawing and in the manufacturing
of VLSI circuits. Several generalizations of planarity and measures of planarity
have been defined, including crossing number, k-embeddability in the plane,
skewness, splitting number and thickness—for a survey, see Liebers [20]. The
class of near-planar graphs studied in this paper includes graphs which have low
crossing number, are k-embeddable for small k, have low skewness, or have low
splitting number—provided information about a suitable drawing of the graph
is given. We will now briefly review these measures of planarity and discuss how
a near-planar graph can be preprocessed so that it can be operated on by the
algorithms described in the previous sections of this paper.

Graphs with low crossing number. The crossing number of a graph G = (V, E) is
the minimum number of edge crossings needed in any drawing of a given graph
in a plane. When a drawing with T crossings is given, it can be preprocessed so
that our SSSP algorithm described in the previous sections uses O(sort(E +T ))
I/O’s. The idea is to represent each crossing i by a vertex v(i), which is marked as
a crossing. Each crossed edge (u, u′), with crossings i1, ..., in in order going from
u towards u′, is replaced by edges (u, v(i1)), (v(i1), v(i2)), ..., (v(in−1), v(in)),
(v(in), u′). The transformation can easily be carried out in O(sort(E+T )) I/O’s.

The resulting graph is a planar graph with O(V ) original vertices and O(T )
crossing vertices, where the crossing vertices have the special property that short-
est paths are not allowed to turn on such vertices. The partitioning scheme and
SSSP algorithm described in the previous sections can easily be adapted to
work on graphs in which some of the vertices represent such crossings. We start
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by applying the partitioning scheme as usual, ignoring the fact that some ver-
tices represent crossings. After computing the refined separator VS , we remove
the crossing vertices and restore the original connectivity of the graph. When
done carefully, this may make clusters and boundary sets non-planar, but it
will not affect which boundary sets are adjacent to which clusters. Thus the
SSSP algorithm will still work correctly within the claimed I/O-bounds, requir-
ing O(sort(V ′)) I/O’s on such a graph, where V ′ = O(V + T ).

A graph is k-embeddable in the plane if it can be drawn in the plane so
that each edge crosses at most k other edges [24]. Since a k-embeddable graph
necessarily has small crossing number, the above approach can be taken.

Graphs with low skewness. The skewness of a graph G = (V, E) is the minimum
size of any set of edges EC such that G \ EC is planar. When the skewness of a
graph is O(E/B) and EC is given, our SSSP algorithm needs only O(sort(E))
I/Os, even if the edges and vertices in EC form a clique with crossing number
Θ(E2/B2).

When EC is not given, it may be difficult to find it. Finding a minimum-size
set EC corresponds to finding a maximum-size planar subgraph of G. These are
NP-complete problems [17]. When a drawing of the graph is given, we can define
a crossing graph G′ = (V ′, E′) in which V ′ has a vertex v(e) for every edge e in
G, and E′ has an edge (v(e), v(f)) for every pair of crossing edges e and f in
G. Finding a factor-two approximation of a minimum-size set EC such that the
drawing of G \ EC is intersection-free can be expressed as a maximal-matching
problem in G′, which can be solved with the randomized algorithm by Abello
et al. [1]. This takes O(sort(E′)) = O(sort(T )) I/Os (expected), where T is the
number of crossings in the input graph.

Although theoretically, this transformation is not any cheaper than the one
described in the previous section, it may still be advantageous because the re-
sulting planar graph with added cross-links may be a lot smaller than a graph
in which crossings are replaced by auxiliary vertices.

Graphs with small splitting number. Splitting a vertex is the process of replacing
a vertex u by two vertices u1, u2, whereby some of the edges incident to u will
be reconnected to u1, while the remaining edges incident to u are reconnected to
u2. The splitting number of a graph is the minimum number of splittings that
is needed to make the graph planar.

When the splitting number of a graph is O(E/B) and the necessary splittings
are given, we can solve the SSSP problem on such a graph in O(sort(E)) I/Os,
using an approach similar to that for graphs with small skewness. Instead of run-
ning the shortest-paths algorithm on the original graph, we run it on the planar
graph resulting from the splittings, augmented with a zero-weight bidirectional
cross-link (u1, u2) for every vertex u split into u1 and u2.

Combining crossings and cross-links. Above we mentioned that graphs that have
low crossing number can be handled efficiently by replacing crossings by special
vertices, while graphs with small skewness or small splitting number can be
handled efficiently by identifying a small number of cross-link edges. The two
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approaches can be combined: we can find shortest paths in O(sort(E)) I/Os on
a graph that consists of O(E/B) cross-links and a graph with crossing number
O(E), provided the cross-links and the intersections in the remaining graph
are given. How to find a constant-factor approximation of a minimum-size set
of cross-links such that the rest of the graph has crossing number O(E), still
remains as an open problem.

6 Discussion

In this paper we extended the class of graphs for which efficient SSSP compu-
tations are possible from planar graphs to several classes of near-planar graphs.
Our approach yields efficient algorithms for graphs with low crossing number,
low splitting number or low skewness, provided suitable drawings are given. In
theory, creating suitable drawings is difficult, since identifying a maximum planar
subgraph or computing the crossing number, splitting number or the skewness
of a graph are NP-complete problems [15, 18, 25]. However, in many practical
applications of graph algorithms, graphs are given with a drawing or suitable
drawings can be produced by heuristic methods.

Even if a good drawing is given, the method to identify cross-links in a graph
of low skewness as described in Sec. 5 needs to know all crossings in the drawing.
The crossings would need to be given or would need to be computed: in the case
of a rectilinear drawing3 we could do so with the external-memory line segment
intersection algorithm by Arge et al. [9] or the randomized algorithm by Crauser
et al. [14]. One could hope to find an algorithm that can find an effective set
of cross-links without computing all crossings in the drawing first. It would also
be interesting to find a constant-factor approximation of a minimum-size set of
cross-links such that the rest of the graph has crossing number O(E), so that
we may have only very few cross-links and handle the remaining crossings with
auxiliary vertices as described in Sec. 5.

Furthermore, it would be interesting to look into more measures of planarity
that may be exploited, for example thickness: the minimum number of planar
subgraphs whose union is the original graph.
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