
TerraCost: A Versatile and Scalable Approach to
Computing Least-Cost-Path Surfaces for

Massive Grid-Based Terrains (Extended Abstract)

Tom Hazel Laura Toma
Computer Science
Bowdoin College

Brunswick, ME 04011, USA.
{thazel,ltoma}@bowdoin.edu

Jan Vahrenhold
Computer Science

University of Münster
48149 Münster, Germany
jan@uni-muenster.de

Rajiv Wickremesinghe
Computer Science

Duke University
Durham, NC 27708, USA.

rajiv@cs.duke.edu

ABSTRACT
This paper addresses the problem of computing least-cost-
path surfaces for massive grid-based terrains. Our approach
follows a modular design, enabling the algorithm to make
efficient use of memory, disk, and grid computing environ-
ments. We have implemented the algorithm in the context
of the GRASS open source GIS system and—using our cluster
management tool—in a distributed environment. We report
experimental results demonstrating that the algorithm is not
only of theoretical and conceptual interest but also performs
well in practice. Our implementation outperforms standard
solutions as dataset size increases relative to available mem-
ory and our distributed solver obtains near-linear speedup
when preprocessing large terrains for multiple queries.

Categories and Subject Descriptors
H.2.8. [Database Applications]: Spatial databases and
GIS; F.2.2 [Nonnumerical Algorithms and Problems]:
Geometrical problems and computations

1. INTRODUCTION
Efficiently handling massive data sets is a key challenge

facing geographic information systems (GIS). As applica-
tions target larger geographic regions at finer resolution, the
computations involved become infeasible using conventional
approaches. First, the design of standard GIS algorithms
typically assumes that data is small enough to fit in main
memory, and minimizes computation time. When working
with large data, the transfer of data (Input/Output) be-
tween main memory and disk usually constitutes the bot-
tleneck, and requires algorithms specifically designed to op-
timize the number of I/Os; we show that simply adding
a paging library without redesigning the algorithm is not
sufficient. Second, once the I/O-bottleneck is resolved, the
processing time still is significant. Thus, we present an al-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

gorithm whose design allows not only for efficient utilization
of internal- and external-memory techniques but also for the
incorporation of cluster-connected computing resources.

1.1 Problem Description
A least-cost-path surface for a terrain T and a discrete

subset S ⊂ T of sources is a function mapping each point of
the terrain to a real value that represents the distance to the
source that can be reached with minimal cost. Least-cost-
path surface computation is a common component of GIS
applications that compute, for e.g., the movement of fires
spreading from a set of potential sources, the distances to
points in a terrain from streams or roads, or the cost of build-
ing pipelines and roads. GRASS (the widely-used open-source
GIS) implements this functionality in the r.cost module. In
the above scenarios, the cost of moving in the terrain is not
independent of the actual position, but is specified by a cost
surface that maps each point of the terrain to the cost of
traversing it. The shortest path using a cost surface between
two points on a terrain is the least-cost path between those
two points, where the cost of the path is the sum of the costs
of traversing each point on the path.

The most common representation of terrain data is the
raster or grid, which records values uniformly sampled from
the terrain. A benefit of the raster representation is that
cost surfaces based on the elevation or the slope of steepest
descent can be derived from the height data in constant time
and thus do not need to be stored explicitly.

This paper addresses the problem of computing (multi-
ple-source) least-cost-path surfaces for grid terrains. Given
a cost grid (surface) of a terrain and a set of source points,
the goal is to compute a least-cost-path grid (surface) such
that every point in this grid represents the (cost of the)
shortest path to a source point.

Computing least-cost-path surfaces is related to comput-
ing single source shortest paths (SSSP) and multiple source
shortest paths (MSSP): Given a graph and a source vertex
(a set of sources vertices), the SSSP (MSSP) problem com-
putes the shortest paths from the source vertex (vertices)
to all other vertices in the graph, and as we will list be-
low, there exist a variety of approaches that efficiently solve
these problems. The connection between grids and graphs is
established by interpreting each grid cell as a single vertex.
Each such vertex v has a label cost(v) that stores the cost of
traversing the corresponding cell. The topology of the grid
is modeled by connecting neighboring cells with weighted

4 1 3

1 1 3

1 1 2
1

2.5

2.5 2

3

2.5

1.51

3.5

1

1

1
1.4

2.1

2

2.8

1.4

2.8

1.4

2.8 3.5 1 2.8

1 0 2

1.4 1 2.1

(a) Cost grid. (b) Graph. (c) Result.

Figure 1: Example with a single source (center cell).

edges. The cost cost(v, w) for an edge e = (v, w) then is:

cost(v, w) := 0.5 · (cost(v) + cost(w)) · scale(v, w)

where scale(v, w), depending on the relative position of the
grid cells inducing v and w, reflects the extent of a cell
in north–south (height), east–west (width), or north-west–
south-east (diagonal) direction. It is important to note that
with a grid these edges are not stored explicitly. For the
grid in Fig. 1(a) (with unit cell extent), the corresponding
weighted graph is given in Fig. 1(b), and the result of r.cost
when run with the center cell as source is given in Fig. 1(c).

1.2 Related Work
Shortest-path computation (SP) is a well-known problem–

see, e.g., the classical algorithms by Dijkstra [9] (Dijkstra)
and Floyd [10], which are the best known algorithms for gen-
eral graphs. A variety of approaches to this problem and its
variants have been proposed; most recent approaches, e.g,
[11, 12, 13, 14, 16, 17, 19], consider preprocessing trans-
portation networks for on-line point-to-point queries. The
setting considered in this paper is different for several rea-
sons: First, our inputs are grids, not graphs: The grid im-
plicitly encodes topology and cost whereas the (classical) ex-
plicit graph representation of a grid requires eight labelled
edges per point. If we were to work on an explicit graph
representation (as in Fig. 1(b)), even if edges are undirected
and we thus need only one edge per pair of vertices, we would
need to explicitly maintain and process an (at least) fourfold
data volume as compared to the “raw” grid. Second, almost
all improved shortest-path algorithms on graphs build upon
the assumption that the geometric position of the vertices
and the distance between them is highly related to the cost
of traversing edges and use this information to narrow the
search space. The only notable assumption is Dijkstra’s al-
gorithm which we will incorporate into our approach. While
the above assumption is valid for transportation networks,
it may not be made in our situation where the cost is re-
lated to the given cost surface and not to the coordinates
of the grid cell. Furthermore, while related work is focused
on optimizing mainly point-to-point shortest path queries
and uses the RAM model, our problem requires computing
distances to every vertex for grids which are larger than the
amount of main memory and reside on disk. That is, we
aim to specifically optimize I/O-efficiency. Nevertheless, we
are interested in allowing the user to rephrase the initial
query by modifying the set of sources. The key ingredient
for this will be a separation of the algorithm into several
stages such that the results of earlier stages can be reused.
This also facilitates taking advantage of clusters.

We include the large-scale aspect of path computations on
massive terrains by not only considering the internal mem-
ory (Real RAM) model of computation [2] but also the stan-
dard two-level I/O-model of Aggarwal and Vitter [1]. In this

model, N denotes the number of input elements, M gives
the number of elements fitting in internal memory, and B
is the number of elements per disk block, where M < N
and 2 ≤ B ≤ M/2. An input/output-operation (I/O) is the
operation of reading (or writing) a block from (or to) disk.
In this model, computations can only be done on elements
present in internal memory, and these operations are ana-
lyzed in the RAM model. Thus we measure running time,
space requirement, and the number of I/Os used.

The basic bound used in the I/O-model is the sorting
bound, sort(N) = Θ((N/B) logM/B(N/B)) I/Os [1]. For
realistic values of N , B, and M , N/B < sort(N) � N ,
so the difference in running time between an algorithm per-
forming N I/Os and one performing N/B or sort(N) I/Os is
significant. Subsequently, I/O-efficient algorithms and data
structures have been developed for numerous GIS-related
problems and excellent practical results have been reported–
see recent surveys [3, 7, 18].

Unfortunately, none of the above-mentioned improved in-
ternal memory SP algorithms lead to a worst-case-optimal
I/O-efficient algorithm. In fact, computing single-source
shortest paths (SSSP) I/O-efficiently is a long-standing open
problem. A direct implementation of Dijkstra uses O(|E|)
I/Os. The best known SSSP algorithm on general undi-

rected graphs usesO(|V |+ |E|
B
·log |V |) I/Os [15], whereas the

lower bound is Ω(min{|V |, sort(|V |)}) (which is Ω(sort(|V |))
in all practical cases); thus the gap between lower and up-
per bounds is still significant. While computing SSSP is
open on general sparse graphs, algorithms with an optimal
O(sort(|V |)) I/O-complexity have been developed for special
classes of (sparse) graphs, e.g. planar graphs, grid graphs, [5,
6, 8]. All of these results are of a mainly theoretical nature,
and no experimental results have been reported so far.

1.3 Our Results
This paper presents a scalable approach to computing

least-cost-path surfaces on massive grids and an experimen-
tal analysis on real-life data using the GRASS GIS and our
new cluster management tool. Our algorithm, terracost,
uses O(sort(N)) I/Os and is derived from our I/O-efficient
SSSP algorithm on grids [5]. terracost uses a parameter
R (see Sec. 3.1) that can be adjusted by the user, allowing
it to interpolate between versions optimized for analysis in
the RAM and I/O-model. terracost has a modular design
that facilitates using cluster-connected computing resources
to speed-up the CPU-intensive parts of the algorithm; it also
allows us to update the set of source vertices and recompute
the cost surface online without having to re-run the most ex-
pensive parts of the algorithm. Our experiments show that
terracost performs well in practice and obtains a signifi-
cant speedup compared to existing software on large inputs.
This is the first experimental evaluation of an I/O-efficient
algorithm for least-cost-path surfaces.

2. SSSP ON MASSIVE GRIDS
Let G be a cost grid of

√
N by

√
N vertices. The main

idea of our base algorithm, the SSSP algorithm by Arge,
Toma, and Vitter [5], is to divide the grid into sub-grids
(tiles) which fit into main memory and reduce the SSSP
problem on the grid to SSSP on a (smaller) substitute graph
S defined only on the boundaries of the tiles: Our base al-
gorithm replaces each tile with a complete graph built on
the boundary vertices of the tile. The original grid is thus

replaced with a substitute graph S, where each edge (u, v)
in S represents a shortest path inside the tile that connects
the two boundary vertices u and v. We also add to S the
source s along with edges connecting s to the boundary ver-
tices of the tile containing s; the weight of each such edge
(s, w) is the cost of a least-cost path from s to w. If each

tile contains R vertices, we can show that S has N/
√

R ver-
tices and O(N) edges, and that δS(u, v) = δG(u, v) for any

u, v ∈ S. Thus S has a factor of
√

R fewer vertices than G
while preserving the shortest distances in G [5]. Given S,
we first compute the shortest paths from s to all the bound-
ary vertices in G. Because the shortest paths in S and G
are the same, we can find these by computing SSSP on S.
Finally, using the shortest path algorithm on the bound-
ary vertices, we compute the shortest paths from s to all
the inner vertices of the tiles. For any tile Gi note that
δGi(s, t) = minv∈∂Gi{δS(s, v) + δGi(v, t)}: the length of a
shortest path from s to t ∈ Gi is the length of a shortest
way to get from s to a boundary vertex v of Gi and from v
to t in Gi. The overall running time is as follows.

Theorem 2.1. [5] SSSP on a grid G of size N using a

parameter R, B < R < M , can be done with O(N/
√

R +

sort(N)) I/Os and O(N
√

R log R) time.

If B2 ≤ R ≤ M then N/
√

R ≤ N/B, i.e., the I/O-bound is
O(sort(N)). To utilize the main memory in the theoretically
optimal way, the original algorithm chooses the tile size R =
Ω(B2), R ≈

√
M ×

√
M .

3. TERRACOST
Our terracost algorithm for computing least-cost-path

surfaces follows the algorithm described in Section 2, which
we extend to handle multiple sources. Its main steps are:

Step 1 (Intra-Tile Dijkstra) First we partition the grid
into tiles of size R and compute (an edge-list repre-
sentation of) the substitute graph S. If there are any
sources in a tile, we construct one additional vertex
s in that tile (as in the single-source version); this
vertex, however, now represents all sources inside the
tile. We then run Dijkstra algorithm from each of
the sources, and for each boundary vertex v of the tile
we construct exactly one edge (v, s) that corresponds
to the least-cost path of that vertex to any one of the
sources and is weighted with the cost of this path. This
means that we always output at most 4

√
R source-to-

boundary edges when processing a single tile, irrespec-
tive of how many sources are in that tile. We also run
Dijkstra starting from each boundary vertex. and
reaching out to all other boundary vertices. Each least-
cost path δS(u, v) computed in this step corresponds
to an edge (u, v, δS(u, v)) in the substitute graph. All
edges are written to one of two streams, one for the
source-to-boundary edges, the other one for boundary-
to-boundary edges.

Step 2 We sort the boundary-to-boundary stream created
in Step 1 such that all edges originating from the same
vertex will be contiguous. This allows Step 3 to effi-
ciently index into this stream and to load the O(

√
R)

neighbors on any vertex using O(
√

R/B) I/Os. We
separate this step out because the substitute graph is

large (has O(N) edges), resides on disk, and sorting it
takes a significant amount of time; also this step lends
itself to future improvements.

Step 3 (Inter-Tile Dijkstra) We compute the least-cost
paths to all the boundary vertices using the substi-
tute graph S. We run Dijkstra using an I/O-efficient
priority queue that is initialized with all the least-
cost paths from sources to the boundary computed in
Step 1. As vertices are settled, we load the edges ad-
jacent to the current vertex by indexing into the edge-
list representation of S (sorted boundary-to-boundary
stream).

Step 4 (Final Dijkstra) For each tile, we compute the
least-cost paths to all internal points by running Di-
jkstra starting at the boundary points along with any
internal source points.

terracost’s running time follows Theorem 2.1: Steps 1
and 4 can be performed in O(N/B) I/Os. In Step 3, it is
necessary to record for each boundary vertex u the value
d[u] that stores the cost of the current least-cost path to
any source. If we store the d-values in a stream with a
row-column layout, checking and updating the d-value of
all O(

√
R) neighbors of the current vertex takes O(

√
R/B)

I/Os, or O(N/
√

R + N/B) in total. In addition, it can be
shown that handling the possible O(N) sources does not
increase the I/O- or CPU-requirements of Theorem 2.1, and
the overall bounds stay the same. Step 1 is the most CPU-
intensive, with O(N

√
R log R) time, while Step 3 is the most

I/O-intensive, with O(N/
√

R + sort(N)) I/Os.

3.1 Design Choices
The main factor influencing the practical efficiency of ter-

racost is balancing the CPU- and I/O-intensive parts of the
algorithm. The full paper discusses the choice of priority
queue data structure, layout of the substitute graph, and
semi-external computation. Here, we focus on the tile size.

Theorem 2.1 implies that the tile size R should be Θ(M)
to optimize the I/O-volume whereas it should be much smal-
ler if we want to optimize computation time. We ran ter-

racost with one source and different numbers of tiles, Nt =
N/R. (Table 1 lists the data sets; see Section 4 for a de-
scription of the experimental setup). Fig. 2 presents the
running times classified by the different steps of the algo-
rithm; due to space constraints, we only report timings for
a characteristic data set. When the terracost computation
fits in memory, the optimal observed value of R does not
vary much across all data sets. Except for the smallest data

0%

50%

100%

150%

1024
76.6

4096
19.2

8192
9.8

12000
6.6

20000
3.9

Step 1

Step 2

Step 3

Step 4

Cumberland Data Set (67·106 Cells)

Figure 2: Normalized running time for terracost

(one source). The labels beneath each bar indicate
the number Nt of tiles (upper label) and the number
R of elements per tile (lower label, in thousands).

Data set Size Cells Valid

Kaweah kaweah 6 MB 1.6·106 56%
Puerto Rico prtorico 24 MB 5.9·106 19%
Sierra Nevada sierra 38 MB 9.5·106 96%
Hawaii hawaii 112 MB 28·106 7%
Cumberlands cumb. 268 MB 67·106 27%
Lower N.E. lowerne 312 MB 78·106 36%
Midwest USA usadem2 1.1 GB 280·106 86%
Washington wash 1.6 GB 400·106 95%

Table 1: Size of terrain data sets. The valid-count
excludes undefined (e.g. ocean) data values.

set, all experiments exhibit best performance for a tile size
of roughly 7000 elements. We suspect that the “best” set-
ting for R can be determined analytically from the size of
the data structures used and the size of the L2-cache. Thus
terracost still depends on the parameter M , as the con-
cept of hierarchical memory computation implies, but this
parameter now gives the size of a memory two levels higher
up in the hierarchy. When the computation does not fit in
memory, the optimal R is the one that balances time and
CPU-utilization in Steps 1 and 3. We will further investigate
both settings in future work.

3.2 Repeated-Source Computations
It is desirable to be able to compute least-cost-path sur-

faces online, for the same cost grid, while the sources vary,
e.g., to monitor how the spreading of fire is affected if the
sources of fire hazard change. terracost has a modular
and disk-based design, i.e., intermediate results are stored
on disk. Therefore, if we maintain the output of Steps 1
and 2, we can restart Step 3 and 4 at any time. This
implies that we can provide efficient support for repeated
source queries by separating the computation of the sub-
stitute graph (Steps 1 and 2) into: (a) a part that is in-
dependent of the sources, namely, running Dijkstra start-
ing from each boundary vertex of each tile to create the
boundary-to-boundary stream, and sorting the stream; and
(b) a part that depends on the sources, namely, for each
tile that contains sources, running Dijkstra once from all
sources in that tile to create the source-to-boundary stream.
Part (a) takes O(N

√
R log R) time and O(sort(N)) I/Os,

and part (b) takes O(N log R) time and O(N/B) I/Os. We
see that creating the boundary-to-boundary stream is dom-
inant, and the stream can be reused for any starting points
in the terrain. Thus, we can view the creation of the sorted
boundary-to-boundary stream as preprocessing the terrain
for least-cost-path surface queries.

Lemma 3.1. We can preprocess, in O(N
√

R log R) time
and O(sort(N)) I/Os, a grid of size N to compute repeated-

source least-cost-path surfaces in O(N/
√

R + sort(N)) I/Os
and O(N log R) time.

From Lemma 3.1 as well as from Fig. 2 we see that the
time spent for processing Steps 3 and 4 becomes smaller,
both in absolute and relative terms, if we use fewer tiles;
low number of tiles results in timings where Steps 3 and 4
complete in less than 10–20% of the overall running time. If
we aim at optimizing the computation of least-cost-path sur-
faces with online sources while allowing ample preprocessing
time, then a small number of tiles is best; since B ≤ R ≤ M ,

the optimal number of tiles in this case is when a tile fits
in memory, R ∈ Θ(M). This increases the computing time
in Step 1, and in the next section, we discuss how to use
cluster-connected resources to speed up this step.

3.3 A Cluster-Version of Terracost
terracost naturally lends itself to parallelization because

it emphasizes tiled (independent) in-memory computation.
Of its four steps, we expect the most significant speedup by
using a cluster to run Step 1. This is especially relevant in
the case of the large tile sizes (fewer tiles) used in reducing
the relative complexity of Steps 3 and 4 to speed-up the
algorithm for repeated queries (Section 3.2). The relative
running times given in Fig. 2 are increasingly dominated
by Step 1 as the size of the tiles increases. Furthermore,
an examination of the CPU utilization during the different
steps of the algorithm reveals that Step 1 is CPU-bound
(90%-100% utilization in Step 1 as compared to less than
50% for Steps 2 and 3).

As Fig. 2 shows, the relative running time spent on sorting
the boundary-to-boundary stream (Step 2) and on in-tile
Final Dijkstra (Step 4) was no more than 20%. While we
could potentially perform Step 2 and Step 4 on a cluster as
well, the expected pay-offs are much smaller than for Step 1.

4. EXPERIMENTAL RESULTS
This section evaluates terracost, both in a sequential and

cluster environment, and compares it to the GRASS-module
r.cost and to an in-memory, untiled version of terracost.
All experiments were run on Apple Power Macintosh G5
computers with dual 2.5 GHz processors, 512 KB L2 cache
per processor, and 1 GB RAM. Only one processor is used,
since GRASS and terracost are single-threaded; however, the
cluster implementation uses both processors.

We implemented terracost as a module for GRASS, us-
ing its interface and conversion routines for data input and
output. The r.cost module, which is also based on Di-
jkstra’s algorithm, uses a memory- and I/O-management
tool called segment library. This GRASS library moves data
between memory and disk in segments so that the size of
memory r.cost can access is limited by disk space only. In
contrast, terracost does not rely on the segment library;
it uses the IOStreams library. This library is derived from
the TPIE library [4], thus providing basic file functionality
along with an I/O-optimal external mergesort [1] and an
I/O-efficient priority queue [5], and is extended to include
a cluster-oriented interface. Called with numtiles=1, ter-
racost runs an optimized in-memory version of multiple-
source Dijkstra; we refer to this as terracost-untiled,
or dijkstra.

Table 1 describes the data sets, representing real terrains
of various characteristics ranging from 1.5 to 400 million
elements. For each terrain, we used as cost grid a steepest-
slope grid, and a binary grid of the river network of the
terrain as sources. The number of sources is around 1% of
dataset size, ranging from 2× 104 to 400× 104 elements.

4.1 Cost Surfaces for Large Datasets
We first computed multiple-source least-cost-surfaces with

1 GB of main memory, a configuration for which all but the
largest data sets fit in main memory. We compared the
overall running time of r.cost, terracost-untiled (dijk-
stra) and terracost, where numtiles was chosen such as to

10-3

10-2

10-1

100

101

102

 1 10 100

ho
ur

s

dataset size MB

r.cost
dijkstra
terracost

Figure 3: Running time of r.cost, dijkstra, and ter-

racost, on a log-log scale. Due to space limitations,
only runs with 256 MB of main memory are shown;
with 1 GB, r.cost and dijkstra process 1-2 larger
data sets before failing. ∞ indicates that the pro-
gram did not complete in reasonable time, or failed.

optimize running time (see Sec. 3.1). As expected, our op-
timized implementation of Dijkstra (terracost-untiled)
performs very well as long as the data set fits into main mem-
ory. (Figure not shown due to space constraints). Its CPU
utilization is around 90% for all but the two largest data
sets. For the second largest data set, the utilization drops
to 30% indicating that significant swapping takes place, and
for the largest data set, the algorithm does not finish. The
r.cost implementation does not suffer from swapping but
from an excessive disk access pattern that results in similarly
long running time for the two largest data sets.

In contrast, the performance of terracost follows the the-
oretically predicted sorting-like behavior; it scales gracefully
with increasing problem size. The downside of this scalabil-
ity, however, is that for small enough data sets (fitting into
main memory), the tiled version of terracost is significantly
slower than the untiled, Dijkstra-based version as it incurs
disk-based sorting and scanning which technically is not re-
quired. Thus, an adaptive terracost would use numtiles=1
in the presence of enough main memory; this again under-
lines the importance of being able to estimate the memory
required by the algorithm.

The scalability of terracost becomes even more evident
as we reduce the working memory to 256 MB to simulate
the effect of increasing dataset size.1 Fig. 3 shows that both
r.cost and dijkstra start swapping, while terracost per-
formance remains stable. dijkstra still processes Kaweah
through Sierra quickly, while on Cumberlands we let it run
for 5 days (it did not finish). During this time the CPU
utilization was constantly around 4%, a clear indication of
paging. Similarly, r.cost can barely process Sierra in 27
hours, but not Cumberlands, on which we let it run for 90
hours (it did not finish). The performance of terracost, in

1Note that increasing the memory simulates smaller data
sets which are processed fastest by dijkstra; we investigate
massive data sets exceeding main memory.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9

S
pe

ed
up

 r
el

at
iv

e
to

 s
in

gl
e

m
ac

hi
ne

Number of machines

usadem2
sierra
lowerne
cumberlands

Figure 4: Speedup for Step 1 using a cluster.

contrast, scales well. On Sierra, Cumberlands, Lower New
England, and Midwest USA it runs in 1.3, 2.9, 4.1, and 43
hours, respectively; the CPU utilization is 45%–50%.

4.2 Distributed computation
We ran the cluster version of terracost (Section 3.3) us-

ing our cluster management tool HGrid. HGrid is concep-
tually very similar to Apple’s “out-of-the box” tool, XGrid,
and can be installed in a similarly easy manner. HGrid is im-
plemented in Perl, and is portable across Unix-like systems.
It uses a network file server for bulk data movement allow-
ing the tool to focus on process control; it does not handle
service discovery, security, or detailed system monitoring.

The cluster version of terracost decomposes Step 1 into
jobs where each job runs Intra-tile Dijkstra on one tile.
Fig. 4 shows that the cluster version obtains a close to lin-
ear (relative to the sequential version) speedup of Step 1 as
machines are added to the cluster. Each machine runs two
jobs concurrently (one per processor); this is not possible in
the sequential version. For the usadem2 dataset, we obtain
a speedup of 9.4 using 6 machines. The speedup obtained
is not directly proportional to the number of processors be-
cause jobs on the same machine share main memory and
disk, all jobs share network resources (including a single
file server connected via gigabit-ethernet), and HGrid intro-
duces a per-job overhead. Although we use our HGrid tool
as a proof-of-concept, we expect the results to carry over to
other cluster-based computing environments.

4.3 Repeated-Source Computations
The terracost running times presented above include the

computation of the substitute graph (Step 1), which ac-
counts for a significant portion of the running time due to
its CPU overhead. Since this step can be parallelized with
almost linear speed-up on a cluster (see Section 4.2), we are
interested in analyzing the actual complexity of performing
repeated-source computations as discussed in Section 3.2.

We used a small cluster of four machines to preprocess
each data set with a small number of tiles and store the
resulting data on disk.2 To answer a new set of queries, we
then ran Step 3 and Step 4 (including additional time to

2As discussed in the previous section, the preprocessing can
be sped up even further if more machines are employed.

redo the Intra-Tile Dijkstra starting from the sources
that has been separated out from Step 1—see Section 3.2).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 10 100

ho
ur

s

dataset size MB

Standalone
Repeated query
Preprocessing w/ 4 machines

Figure 5: Running time for repeated source queries.
(x-axis shows dataset size on a log scale)

Figure 5 shows the running time for computing least-
cost-path surfaces on a single machine when the sources
are changed and the substitute graph (sorted boundary-to-
boundary stream) has been computed and saved in a pre-
processing stage. For comparison we also show the running
time to compute the answer from scratch using terracost

on a single machine (standalone) with the best number of
tiles; to have a clear comparison, we made sure to compute
the surfaces for the same set of sources in both settings. In
all cases the running time of redoing surface computations
is at most 30% of the fastest “from-scratch” computation
time that can be obtained using the best tile size; terra-
cost thus provides an efficient tool for terrain analysis with
varying parameters.

5. CONCLUSION
In this paper, we have presented a scalable approach for

computing multiple-source least-cost-path surfaces for mas-
sive grid-based terrains. A defining feature of our algorithm
is its disk-based, modular design that allows for utilizing
cluster-connected computing resources and for accelerating
repeated-source computations. Furthermore, the algorithm
can be parameterized to interpolate between versions opti-
mized for CPU- and I/O-intensive computations.

We have combined theoretical considerations with algo-
rithm engineering efforts, such as tuning parameters and
carefully selecting data structures, to obtain an algorithm
whose running time in an application testbed stably scales
with increasing terrain size for real-world data, whereas ex-
isting algorithms fail to process massive data sets. We also
have shown how an almost linear speedup can be obtained
using multiple cluster-connected machines and demonstrated
that our algorithm can be used efficiently for repeated anal-
yses of the same terrain with varying parameters.

References
[1] A. Aggarwal and J. S. Vitter. The input/output com-

plexity of sorting and related problems. Comm. ACM,
31(9):1116–1127, Sept. 1988.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The De-

sign and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[3] L. Arge. External memory data structures. In Handbook
of Massive Data Sets. Kluwer, 2002. 313-357.

[4] L. Arge, R. D. Barve, D. Hutchinson, O. Procopiuc,
L. Toma, D. E. Vengroff, and R. Wickremesinghe. TPIE
user manual and reference, edition 0.9.01a. Duke Uni-
versity, NC, http://www.cs.duke.edu/TPIE/, 1999.

[5] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient al-
gorithms for problems on grid-based terrains. ACM J.
Experimental Algorithmics, 6, 2001. Article 1.

[6] L. Arge, L. Toma, and N. Zeh. I/O-efficient topologi-
cal sorting of planar DAGs. In Proc. Symp. on Parallel
Algorithms and Architectures, pages 85–93, 2003.

[7] C. Breimann and J. Vahrenhold. External mem-
ory computational geometry revisited. In U. Meyer,
P. Sanders, and J. Sibeyn, editors, Algorithms for Mem-
ory Hierarchies, volume 2625 of LNCS, chapter 6, pages
110–148. Springer, 2003.

[8] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamas-
sia, D. E. Vengroff, and J. S. Vitter. External-memory
graph algorithms. In Proc. Symp. on Discrete Algo-
rithms, pages 139–149, 1995.

[9] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271, 1959.

[10] R. W Floyd. Algorithm 97: Shortest path. Comm.
ACM, 5(6):345, June 1962.

[11] A. V. Goldberg and C. Harrelson. Computing the short-
est path: A∗ search meets graph theory. In Proc. Symp.
on Discrete Algorithms, pages 156–165, 2005.

[12] A. V. Goldberg and R. F. Werneck. An efficient external
memory shortest path algorithm. In Proc. Workshop on
Algorithm Engineering and Experiments, pages 26–40,
2005.

[13] R. Gutman. Reach-based routing: A new approach to
shortest path algorithms optimized for road networks.
In Proc. Workshop on Algorithm Engineering and Ex-
periments, 2004. 100–111.

[14] E. Köhler, R. H. Möhring, and H. Schilling. Acceler-
ation of shortest path and constrained shortest path
computation. In Proc. Workshop on Efficient and Ex-
perimental Algorithms, pages 126–138, 2005.

[15] V. Kumar and E. Schwabe. Improved algorithms and
data structures for solving graph problems in external
memory. In Proc. Symp. on Parallel and Distributed
Processing, pages 169–177, 1996.

[16] U. Lauther. An extremely fast, exact algorithm for find-
ing shortest paths in static networks with geographical
background. In Geoinformation und Mobilität – von der
Forschung zur praktischen Anwendung. Beiträge zu den
Münsteraner GI-Tagen, volume 22 of IfGI Prints, pages
219–230, 2004.

[17] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and
T. Willhalm. Partitioning graphs to speed up Dijkstra’s
algorithm. In Proc. Workshop on Efficient and Experi-
mental Algorithms, pages 189–202, 2005.

[18] J. S. Vitter. External memory algorithms and data
structures: Dealing with massive data. ACM Comp.
Surveys, 33(2):209–271, June 2001.

[19] D. Wagner and T. Willhalm. Drawing graphs to speed
up shortest-path computations. In Proc. Workshop on
Algorithm Engineering and Experiments, pages 17–25,
2005.

