
External Data Structures for Shortest Path
Queries on Planar Digraphs

Lars Arge1,� and Laura Toma2

1 Duke University, Durham, NC 27708 USA
large@cs.duke.edu

2 Bowdoin College, Brunswick, ME 04011 USA
ltoma@bowdoin.edu

Abstract. In this paper we present space-query trade-offs for external
memory data structures that answer shortest path queries on planar
directed graphs. For any S = Ω(N1+ε) and S = O(N2/B), our main
result is a family of structures that use S space and answer queries in
O(N2

SB
) I/Os, thus obtaining optimal space-query product O(N2/B). An

S space structure can be constructed in O(
√

S · sort(N)) I/Os, where
sort(N) is the number of I/Os needed to sort N elements, B is the disk
block size, and N is the size of the graph.

1 Introduction

Let G = (V, E) be a directed graph (digraph) with real edge weights. If G has
no negative-weight cycles, the shortest path δ(s, t) from vertex s to vertex t is
the minimum length path from s to t in G, where the length of a path is defined
as the sum of the weights of its edges. The length of the shortest path δ(s, t)
is called the distance from s to t in G. Shortest path computation is a funda-
mental and well-studied problem that appears in a diverse set of applications. In
recent years, an increasing number of these applications involve massive graphs.
Massive planar graph problems and in particular shortest paths computation
arise frequently in Geographic Information System (GIS), where datasets such
as the ones acquired by missions like NASA Earth Observing System (EOS) or
Space Radar Topography Mission (SRTM) are on the order of terabytes. Envi-
ronmental researchers often need to compute shortest paths for instance when
planning and assessing the impact of new development, or modeling the commu-
nication between areas of conservation for endangered species. When working
with such massive graphs that do not fit in the main memory of even state-of-
the-art machines, transfer of data between main memory and external memory
(such as disk), rather than internal computation time, is often the performance
bottleneck. In such cases it is important to consider algorithms that minimize
Input-Output (or simply I/O) communication.
� Supported in part by the National Science Foundation through RI grant EIA–

9972879, CAREER grant CCR–9984099, ITR grant EIA–0112849, and U.S.–
Germany Cooperative Research Program grant INT–0129182.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 328–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

External Data Structures for Shortest Path Queries on Planar Digraphs 329

The most commonly studied shortest path problems are the single-source-
shortest-path (SSSP) problem and the all-pair-shortest-path (APSP) problem,
where the goal is to find the shortest paths from a source vertex s to all other
vertices in G, and between all pairs of vertices in G, respectively. Several au-
thors have considered I/O-efficient algorithms for these problems. In this paper
we study another variant of the problem, namely the design of I/O-efficient
data structures for answering shortest path queries on planar directed graphs
(digraphs that can be embedded in the plane such that no edges intersect). In
particular, we study the space-query trade-off for such structures; using O(N2)
space we can obviously design a structure that can answer a shortest path dis-
tance query in O(1) I/Os, simply by storing the shortest paths between every
pair of vertices in G. At the other extreme, we can design an O(N) space struc-
ture by simply running an SSSP algorithm to answer a query. Since we are
interested in massive graphs, we are of course interested in data structures that
use close to linear space but answer queries more efficiently that by computing
SSSP on-the-fly. In this paper we develop a family of structures with a trade-off
between space use and the number of I/Os needed to answer a query. Although
this problem has been extensively studied in internal memory [7, 13, 12, 10, 9],
this is the first result of its type in external memory.

1.1 I/O-Model and Related Work

We will be working in the standard two-level I/O model [1], where M is the
number of vertices that can fit into internal memory, and B is the number of
vertices that can fit into a disk block, with1 M < N and 1 ≤ B ≤ M/2. An I/O
is the operation of transferring a block of data between main memory and disk,
and the complexity of an algorithm is measured in terms of the number of disk
blocks and I/Os it uses to solve a problem.

In the I/O-model, the minimal number of I/Os needed to read N input ele-
ments (the “linear bound”) is obviously scan(N) = N/B. The number of I/Os
needed to sort N elements is sort(N) = Θ(N

B logM/B N/B) [1]. For realistic val-
ues of N , B, and M , scan(N) < sort(N) � N , and the difference in running
time between an algorithm performing N I/Os and one performing scan(N) or
sort(N) I/Os can be very significant.

On general digraphs the best known algorithm for SSSP, as well the best
algorithms for the simpler BFS and DFS problems, use Ω(|V |) I/Os. More pre-
cisely, their I/O-complexity is O(min{(|V | + |E|/B) · log |V | + sort(|E|), |V | +
|V |
M

|E|
B }) [8, 11, 17] . However, improved algorithms have been developed for pla-

nar digraphs [5, 6, 3]. On such graphs, SSSP and BFS can be solved in O(sort(N))
I/Os [5], and DFS in O(sort(N) log N/M) I/Os [6]; all these algorithms are based
on I/O-efficient reductions [2, 4, 5, 6] and on an O(sort(N)) I/O planar graph
separator algorithm [19].

1 The planar separator algorithm [19] makes the stronger but realistic assumption that
M > B2 lg2 B; we make this assumption indirectly as we rely on planar separators.

330 L. Arge and L. Toma

The only known I/O-efficient external data structure for answering short-
est path queries is a structure for planar digraphs in [16]. The structure uses
O(N

√
N) space and answers shortest path distance queries in O(

√
N/B) I/Os

(and can report the shortest path with additional O(K/B) I/Os, where K is the
number of edges on the path). Note that the space-query product is O(N2/B).
The structure in [16] is based on an internal memory data structure obtained
independently by Arikati et al [7] and Djidjev [12] using planar separators
and ideas due to Frederickson [14, 15]. In internal memory, this structure has
been generalized to obtain a family of structures, such that a structure us-
ing S ∈ [N, N2] space can answer shortest path distance queries in O(N2/S)
time [12, 10]. Note that the space-query product is O(N2). Improved results
have been obtained for values of S larger then N4/3 [12, 10], as well as for spe-
cial classes of graphs [13, 9]. Similar space-query results and improvements have
not been obtained in external memory; the O(N

√
N) space use of the structure

by Hutchinson et al [16] probably means that it is mostly of theoretical interest
if N is large. Ideas from previous work do not extend in external memory to
small space. Finding space-query trade-offs for close to linear S is harder and it
is precisely the small values of S that are interesting in external memory.

1.2 Our Results

In this paper we obtain the first space-query trade-offs for external data struc-
tures for answering shortest path queries on planar digraphs. Our main re-
sult is a family of structures that can answer shortest path distance queries
in O(N2

SB) I/Os using S = Ω(N1+ε) (and S = O(N2/B)) space, for any ε > 0.
Note that, similarly to the internal memory results, the space-query product is
O(N2/B). An S space structure can be constructed in O(

√
S · sort(N)) I/Os.

For values of S = o(N1+ε), we show that we can still achieve a trade-off but at
the cost of an increased space-query product. More precisely, we show that for
any S ∈ [N log2 N

log log N , N2

B], there exists a data structure of size S that can answer

distance queries in O(N2

SB · log N
log(S/(N log N))) I/Os. Our structures can be extended

to answer shortest path queries with an extra O(K/B) I/Os, where K is the
number of edges on the path; for brevity we only consider distance queries.

Our results use ideas similar to the ones in the previously developed internal
structures, i.e. planar separators, but with non-trivial external memory modifi-
cations to make the structure efficient for small S. In Sec. 2 we review planar
separators, and in Sec. 4 we present our new structure. It relies on a structure
for computing distances to the boundary of a planar graph presented in Sec. 3.

2 Preliminaries

A f(N)-separator of an N -vertex graph G = (V, E) is a subset VS of the vertices
V of size f(N), such that the removal of VS partitions G into two subgraphs G1
and G2 of size at most 2N/3. Lipton and Tarjan [18] showed that any planar

External Data Structures for Shortest Path Queries on Planar Digraphs 331

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�
��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

i

t

Gj

s

G

(a) (b) (c)

Fig. 1. (a) Partition of G into clusters Gi (boxed) and separators vertices VS (black).
(b) One cluster Gi in the partition and its adjacent boundary sets. (c) The shortest
path from s to t is is δ(s, t) = minv∈∂Gi,w∈∂Gj {δGi

(s, v) + δ(v, w) + δGj
(w, t)}.

graph has an O(
√

V)-separator. Using this result recursively, Frederickson [15]
showed that for any parameter R ≤ N there exists a subset VS of Θ(N/

√
R)

vertices, such that the removal of VS partitions G into Θ(N/R) subgraphs Gi of
size O(R), where (the vertices in) each Gi is (are) adjacent to O(

√
R) vertices

of VS . We call such a partitioning an R-partition. The vertices in VS are called
the separator vertices and each of the graphs Gi a cluster. The set of separator
vertices adjacent to Gi are called the boundary vertices ∂Gi (or simply the
boundary) of Gi. We use Gi to denote the graph consisting of Gi, ∂Gi and the
subset of edges of E connecting Gi and ∂Gi (Fig. 1(a)). The set of separator
vertices can be partitioned into maximal subsets so that the vertices in each
subset are adjacent to the same set of clusters Gi. These sets are called the
boundary sets of the partition (Fig. 1(b)). If the graph has bounded degree, which
can be ensured for planar graphs using a simple transformation, there exists an
R-partition with only O(N/R) boundary sets [15]. It is shown in [19] how to
compute such an R-partition in O(sort(N)) I/Os, provided that M > B2 log2 B.

All the known internal memory shortest path data structures for planar graphs
exploit R-partitions [12, 7, 10]. Consider an R-partition of a planar digraph, and
let δGi

(s, t) denote the length of the shortest path from vertex s to vertex t in
Gi. The shortest path from s ∈ Gi to t ∈ Gj must go through the boundaries
∂Gi and ∂Gj of Gi and Gj , and thus we can compute the distance from s to
t as δ(s, t) = minv∈∂Gi,w∈∂Gj{δGi

(s, v) + δ(v, w) + δGj
(w, t)} (Fig. 1(c)). The

basic idea is to store the distance from a set of vertices of G to the separator
vertices VS in order to be able to efficiently evaluate this formula for given s
and t. The size of this set of vertices is a function of the available space S: For
small values of S (S ∈ [N, N3/2]) we store only the distances between separator
vertices; to answer a query we basically need to solve a SSSP problem in the two
clusters Gi and Gj . For large values of S (S ∈ [N3/2, N2]) we store the distances
from all vertices in G to all separator vertices, as well as a shortest path data
structure [7, 12] for each cluster; answering a query reduces to using the stored
distances if s, t are in different clusters, or querying the cluster, otherwise.

For large values of S (S ∈ [N2/3, N2]) we can adapt the above strategy to
external memory using the known external shortest path data structure [16];
we obtain a structure that answers distance queries in O(N2

SB) I/Os, i.e. has
the desired O(N2/B) space-query product (details in the full version of this

332 L. Arge and L. Toma

paper). However, for small values of S (S ∈ [N, N3/2]), which are the ones we
are normally interested in when handling massive graphs, a similar adaption
leads to an O(sort(N2

S)) query bound, mainly because of the need to solve SSSP
problems in two clusters. For small values of S, this is no better than running
SSSP from scratch. Note the difference between answering distance queries in
internal and external memory: In internal memory small values of S are easy to
handle because the clusters in the R-division are small enough for it to be efficient
to compute SSSP in linear time in the cluster on-the-fly. In external memory the
problem is easy if S is large because we can store enough additional information
using S, and becomes harder as S gets smaller. However it is precisely the small
values of S that are interesting external memory.

In this paper we show how to use the R-partition in a novel way in order to
obtain a small space data structure. One of the main ingredients in our solution is
a structure for answering all-boundary-shortest-path queries, that is, for finding
shortest paths lengths from a vertex s in a cluster Gi to the vertices on the
boundary ∂Gi. We describe such a structure below.

3 All-Boundary-Shortest-Path Structure

Assume we are given a cluster H of size N and its boundary ∂H such that
|∂H | ≤ c ·

√
N , for some constant c ≥ 1. As usual, we denote H ∪ ∂H as H

and let δH(s, t) denote the length of the shortest path from s to t in H . Let
δH(s, ∂H) denote the list of distances from s to the vertices in ∂H , sorted by
the id of the vertices in ∂H . Similarly, let δH(∂H, s) denote the list of distances
from the vertices in ∂H to s, sorted by the id of the vertices in ∂H .

This section describes an I/O-efficient data structure for all-boundary-short-
est-path queries, that is, for finding the shortest paths δH(s, ∂H) and δH(∂H, s)
between a vertex s in the cluster and the vertices on its boundary. Our structure
improves the straightforward O(sort(N)) I/Os bound obtained by running SSSP
in H. More precisely, we prove the following.

Lemma 1. Given an N -vertex cluster H and its O(
√

N)-vertex boundary ∂H
we can construct a data structure using O(N log N) space such that δH(s, ∂H)
or δH(∂H, s) can be computed in O(N/B) I/Os for any s in H. The structure
can be constructed in O(

√
N · sort(N)) I/Os.

Our all-boundary-shortest-path data structure is constructed as follows2: we
first compute an N/2-partition for H , that is, a partition of H using a set VS

of O(
√

N) separator vertices into O(1) clusters, each of which contains at most
N/2 vertices and is adjacent to at most

√
N/2 separators. As usual define the

boundary ∂Hi of a cluster Hi to be the set of vertices in ∂H∪VS that are adjacent
to vertices in Hi. We then recursively construct an all-boundary-shortest-path
data structure for each cluster Hi and its boundary (to do so we first process

2 We only discuss how to compute δH(s, ∂H). Computing δH(∂H, s) can be done
similarly.

External Data Structures for Shortest Path Queries on Planar Digraphs 333

each Hi in turn such that its boundary has at most c ·
√

|Hi| vertices; details in
the full paper). For each separator or boundary vertex u ∈ VS ∪∂H we compute
the shortest paths in H from u to all vertices v in ∂H . We store these distances
ordered by the vertex id of v ∈ ∂H and secondarily by vertex id of u; thus the
list of distances from ∂Hi to a vertex v ∈ ∂H can be retrieved by scanning this
list in |VS ∪ ∂H |/B =

√
N/B I/Os.

Query: Consider an all-boundary-shortest-path query δH(s, ∂H). The interest-
ing case is when s ∈ Hi (if s is a separator vertex we simply return the list of
O(

√
N) pre-computed distances from s to ∂H). Let w be an arbitrary vertex in

∂H ; we compute δ(s, w) as the shortest way to get from s to a boundary vertex v
of Hi in Hi and from v to w in H : that is, δ(s, w) = minv∈∂Hi{δHi

(s, v)+δ(v, w)}.
It can be shown that δ(s, w) is indeed the shortest path from s to w in H . To
compute δH(s, ∂H) we first find the all-boundary-shortest-paths δHi

(s, ∂Hi) us-
ing the recursive data structure for the cluster Hi containing s; let L be the
list of shortest paths returned, L = {δHi

(s, v)|v ∈ ∂Hi}, sorted by the id of
the vertex v ∈ ∂Hi. For every vertex w ∈ ∂H , we compute δ(s, w) by scanning
in parallel the list L and the list of distances from v ∈ VS ∪ ∂H to w (stored
in the structure) and compute the minimum sum δ(s, v) + δ(v, w). This takes
O(

√
N/B) I/Os for every w ∈ ∂H , or O(

√
N ·

√
N/B) = O(N/B) I/Os in to-

tal. Thus, the number of I/Os to answer an all-boundary-shortest-path query
δH(s, ∂H) is given by the recurrence Q(N) = O(N/B) + Q(N/2) with solution
Q(N) = O(N/B) I/Os.

Space: Storing the shortest paths in H from u ∈ VS ∪ ∂H to all vertices v in
∂H uses O(

√
N ·

√
N) = O(N) space. Thus the total space is given by S(N) ≤

O(N) + 2S(N/2) with solution S(N) = O(N log N).

Construction: Processing each cluster Hi such that its boundary has at most
c ·

√
|Hi| vertices can be done as in the R-partition algorithm [19]; this uses

O(sort(N)) I/Os in total for all clusters. Computing the shortest paths in H
from any vertex u ∈ VS ∪ ∂H to all vertices v in ∂H can be done in O(

√
N ·

sort(N)) I/Os. Thus the total pre-processing time is given by the recurrence
P (N) ≤ O(

√
N · sort(N)) + 2P (N/2) with solution P (N) = O(

√
N · sort(N))

I/Os. This concludes the proof of Lemma 1.

4 Shortest Path Data Structure

This section describes the main result of this paper, a data structure for shortest
path queries. As all related work, our structure is based on R-divisions and pre-
computing shortest paths between separator vertices, but it combines these ideas
in a novel way that avoids computation of SSSP inside the cluster and obtains
an optimal space-time trade-off.

334 L. Arge and L. Toma

Let R be a parameter B ≤ R ≤ N/2 and G a bounded-degree3 planar digraph.
Our shortest path data structure for G is constructed as follows:

1. Step 1: Compute an R-partition of G.
2. Step 2: Compute and store the distances between the separator vertices

VS , such that the list of distances between a vertex in ∂Gi and the O(
√

R)
vertices on the boundary of any cluster ∂Gj can be retrieved sorted by vertex
id using O(

√
R/B) I/Os.

3. Step 3: Recursively construct a shortest path structure for each cluster Gi.
4. Step 4: We do the following for each cluster Gi

(a) If M < R ≤ N2/3, we compute and store the distances between all ver-
tices in Gi and vertices in ∂Gi, such that for any s ∈ Gi, δGi

(s, ∂Gi) and
δGi

(∂Gi, s) can be retrieved sorted by vertex id using O(
√

R/B) I/Os.
(b) If R > N2/3, we construct an all-boundary-shortest-path data structure

(Lemma 1) for each Gi.

Below we show how to answer distance queries using the data structure and
analyze its space usage and construction time.

Answering distance queries: To find the distance δ(s, t) between two query ver-
tices s and t we consider the following 4 cases:

(1) If both s and t are separator vertices then we know that δ(s, t) is stored
explicitly (Step 2) and we can thus answer a query in O(1) I/Os.

(2) If s is a separator vertex and t is in cluster Gi (or the symmetrical case)
then it can be shown that δ(s, t) = minv∈∂Gi{δ(s, v) + δGi

(v, t)}. To answer the
query we first obtain the list of distances from s to ∂Gi (sorted by vertex id)
using O(

√
R/B) I/Os (they are stored explicitly in Step 2). Then we obtain the

list δGi
(∂Gi, t) of distances from vertices on ∂Gi to t (sorted by vertex id) in

O(R/B) I/Os as follows: If R ≤ M we load Gi in memory using O(R/B) I/Os
and compute the distances on the fly. If M < R ≤ N2/3 the distances δGi

(∂Gi, t)
are stored explicitly in the data structure (Step 4 (a)) and we can retrieve them
in O(

√
R/B) I/Os; If R > N2/3 we obtain δGi

(∂Gi, t) from the all-boundary-
shortest-path data structure for Gi (Step 4(b)) using O(R/B) I/Os (Lemma 1).
Since the two obtained lists of distances (from s to ∂Gi and from ∂Gi to t) are
both sorted by the vertex id of v we can scan them together to compute the min
sum δ(s, v) + δ(v, t); thus we answer the query using O(R/B) I/Os in total.

(3) If s is in cluster Gi and t is in a different cluster Gj then it can be shown
that δ(s, t) = minv∈∂Gi,w∈∂Gj{δGi

(s, v) + δ(v, w) + δGj
(w, t)}. We obtain the

lists of distances δGi
(s, ∂Gi) sorted by vertex id of v ∈ ∂Gi and δGj

(∂Gj , t)
sorted by vertex id of w ∈ ∂Gj using O(R/B) I/Os as in the previous case. We
compute δ(s, t) as follows: scan the list δGi

(s, ∂Gi) and read the distance from
s to the next vertex v on ∂Gi. For each such distance we scan the distances
δ(v, ∂Gj) and δGj

(∂Gj , t). Since these lists are sorted by id of vertex in ∂Gj , we

3 Any graph can easily be transformed into a graph with each vertex having degree
at most 3 [15].

External Data Structures for Shortest Path Queries on Planar Digraphs 335

can compute δGi
(s, v)+ δ(v, w)+ δGj

(w, t) for each vertex w ∈ ∂Gj by scanning

the lists in parallel. Thus, for every vertex in ∂Gi we scan two lists of size
√

R
each. Throughout this step we keep a running minimum of the smallest distance
encountered so far. This takes in total

√
R ·

√
R/B = O(R/B) I/Os.

(4) If s and t are in the same cluster Gi then it can be shown that δ(s, t) =
min{δGi(s, t), minv,w∈∂Gi{δGi

(s, v) + δ(v, w) + δGi
(w, t)}}. To answer a query

in this case we compute δGi(s, t) using the recursive structure for Gi (Step 3)
and the other term in the minimum in O(R/B) I/Os as above. Computing the
overall minimum thus takes O(R/B) I/Os. Overall the number of I/Os used to
answer a query is given by the recurrence Q(N) = O(R/B)+Q(R) with solution
Q(N) = O(R/B).

Construction. An R-partition of G (Step 1) can be computed in O(sort(N)) [19].
The shortest paths in G between the O(N/

√
R) separator vertices (Step 2) can

be computed in O(N/
√

R · sort(N)) I/Os using the O(sort(N)) I/O SSSP algo-
rithm [5] for each separator vertex. Let L be the list containing the shortest paths
between the separator vertices: L = {δ(u, v)|u, v ∈ VS}. We need to store L such
that for any separator vertex u, the distances between u and the boundary of
any cluster Gj can be retrieved from the list in scan(|∂Gj |) = O(

√
R/B) I/Os.

To do so we first tag each separator vertex with the indices of the clusters it is
adjacent to. Then by sorting and scanning, we merge this list with L; this gives
an augmented list that contains, for every pair of separator vertices (u, v), the
distance δ(u, v) and the indices of the clusters that contain u and v respectively
on their boundary; we then scan the augmented list and, for each pair (u, v),
for every i such that u ∈ ∂Gi and for every j such that v ∈ ∂Gj , we output
(u, v, δ(u, v), i, j). Because we assume G to have bounded degree, each separator
vertex is adjacent to O(1) clusters; therefore every pair (u, v) appears in the
list O(1) times and the size of the list remains O(|L|) = O(N2/R). Finally, we
sort this list by (i, j) and, within the same cluster, by vertex id. Overall we use
O(sort(N2/R)) I/Os. It can be seen that the distances between a vertex u ∈ ∂Gi

and all vertices in ∂Gj are adjacent in the constructed list and can thus be re-
trieved in O(

√
R/B) I/Os. Also, the list Lij of O(R) shortest path distances from

∂Gi to ∂Gj can be retrieved in O(R/B) I/Os. Overall the preprocessing required
by Step 2 of our data structure uses O(N/

√
R · sort(N) + sort(N2/R)) I/Os.

Finally, the shortest paths between the boundary vertices of a cluster and all
vertices in the cluster (Step 4 (a)) can be computed in O(

√
R · sort(R)) I/Os

for each cluster using the O(sort(N)) I/O SSSP algorithm [5] for each boundary
vertex. Processing a cluster into an all-boundary-shortest-path data structure
(Step 4 (b)) takes O(

√
R · sort(R)) I/Os by Lemma 1. Thus the preprocessing

required by Step 4 of our data structure uses O(N
R ·

√
R · sort(R)) = O(N/

√
R ·

sort(R)) I/Os.
Overall the total pre-processing time P (N) is given by the following recur-

rence: P (N) = O(sort(N) + N/
√

R · sort(N) + sort(N2/R)+ N/
√

R · sort(R)) +
N/R ·P (R) = O(N/

√
R ·sort(N))+N/R ·P (R) with solution P (N) = O(N/

√
R ·

sort(N)) I/Os.

336 L. Arge and L. Toma

Space. Storing the shortest paths between all O(N/
√

R) separator vertices in
the partition (Step 2) uses O(N2/R) space. If M < R ≤ N2/3 (Step 4(a))
we use N/R · R

√
R = O(N

√
R) space in total to store the distances between

each vertex and all vertices on the boundary of its cluster, which is O(N2/R).
If R > N2/3 (Step 4(b)) we use O(R log R) space on the all-boundary-shortest-
path structures (Lemma 1) in each of the N/R clusters, for a total of O(N log R)
space. The total space used by the data structure is thus given by the recur-
rence S(N) = O(N2/R) + O(N log R) + N/R · S(R) with solution S(N) =
O(max{N2/R, N log R} · logN/R N).

Overall we have proved the following result:

Theorem 1. Given a planar digraph G and R ∈ [B, N/2], a data structure of
size O(max{N log R, N2/R} · logN/R N) can be constructed in O(N√

R
· sort(N))

I/Os such that distance queries can be answered in O(R/B) I/Os.

Consider the effect of R on the space and query time of the data structure.
Note that max{N log R, N2/R} is N2/R for any R < N/ log N and N log R
otherwise. Choosing R = B, we obtain a data structure that uses Θ(N2/B) space
and answers distance queries in O(1) I/Os. This corresponds to building a B-
partition and storing APSP between the N/

√
B separators. As R increases, the

space used by the structure decreases and the query time increases. At the other
extreme, choosing R = N

log N we obtain a data structure of size Θ(N log2 N
log log N) that

answers queries in O(N
B log N) I/Os. A simple calculation shows that if R > N

log N

then the space used by the data structure is N log R · logN/R N = Ω(N log2 N
log log N).

This means that when increasing R beyond N/ log N both the space of the data
structure and the query time go up and we can no longer trade query time for
space. Thus, the space used by our structure is lower bounded by Ω(N log2 N

log log N).

One interesting question is whether one can use less then o(N log2 N
log log N) space and

answer distance queries faster than O(sort(N)) I/Os.
To express the query time directly in terms of the space S used by the data

structure we let R such that S = O(N2

R · logN/R N), or 1
R = 1

N
S

N log N log S
N log N .

Substituting in Theorem 1 above, we obtain:

Lemma 2. Given a planar digraph G and S ∈ [N log2 N
log log N , N2

B], a data structure

of size S can be constructed in O(
√

S
log N · log S

N log N · sort(N)) I/Os such that

distance queries can be answered in O(N2

SB · log N
log(S/(N log N))) I/Os

The bounds in Lemma 2 simplify if S is such that S/N = Ω(N ε) for some
ε > 0. In this case note that log N

log(Nε/ log N) = 1
ε = O(1). Thus we obtain our main

result stated in Section 1.2:

Theorem 2. Given a planar digraph G and S = Ω(N1+ε) for some 0 < ε ≤ 1,
a data structure of size O(S) can be constructed in O(

√
S · sort(N)) I/Os such

that distance queries can be answered in O(N2

SB) I/Os.

External Data Structures for Shortest Path Queries on Planar Digraphs 337

The space-query product of our data structure is N2

B · log N
log(S/(N log N)) . For

S = Ω(N1+ε) this is N2

B . As S drops below N1+ε the space-query product
increases, up to a maximum of N2

B · log N
log log N , when S = N log2 N

log log N .

References

1. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. L. Arge, G. S. Brodal, and L. Toma. On external memory MST, SSSP and multi-
way planar graph separation. Journal of Algorithms, 53(2):186–2006, 2004.

3. L. Arge, U. Meyer, and L. Toma. External memory algorithms for diameter and
all-pairs shortest-paths on sparse graphs. In Proc. International Colloquium on
Automata, Languages, and Programming, pages 146–157, 2004.

4. L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first
search. Journal of Graph Algorithms, 7(2):105–129, 2003.

5. L. Arge, L. Toma, and N. Zeh. I/O-efficient topological sorting of planar DAGs.
In Proc. ACM Symp. on Parallel Algorithms and Architectures, 2003.

6. L. Arge and N. Zeh. I/O-efficient strong connectivity and depth-first search for
directed planar graphs. In Proc. IEEE Symp. on Foundations of Computer Science,
pages 261–270, 2003.

7. S. Arikati, D. Chen, L. Chew, G. Das, M. Smid, and C. Zaroliagis. Planar spanners
and approximate shortest path queries among obstacles in the plane. In Proc.
European Symp. on Algorithms, LNCS 1136, pages 514–528. Springer, 1996.

8. A. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook. On
external memory graph traversal. In Proc. ACM-SIAM Symp. on Discrete Algo-
rithms, pages 859–860, 2000.

9. S. Chaudhuri and C. Zaroliagis. Shortest path queries in digraphs of small
treewidth. In Proc. International Colloquium on Automata, Languages, and Pro-
gramming, LNCS 944, pages 244–255. Springer, 1995.

10. D. Chen and J. Xu. Shortest path queries in planar graphs. In Proc. ACM Symp.
on Theory of Computation, pages 469–478. ACM Press, 2000.

11. Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vengroff, and J. S. Vitter.
External-memory graph algorithms. In Proc. ACM-SIAM Symp. on Discrete Al-
gorithms, pages 139–149, 1995.

12. H. Djidjev. Efficient algorithms for shortest path queries in planar digraphs. In
Proc. Graph-Theoretic Concepts in Comp. Science, pages 151–165. Springer, 1996.

13. H. Djidjev, G. Pantziou, and C. Zaroliagis. Computing shortest paths and distances
in planar graphs. In Proc. International Colloquium on Automata, Languages, and
Programming, LNCS 510, pages 327–338. Springer, 1991.

14. G. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM J. Comput., 14(4):781–798, 1985.

15. G. Frederickson. Fast algorithms for shortest paths in planar graphs, with appli-
cations. SIAM Journal on Computing, 16:1004–1022, 1987.

16. D. Hutchinson, A. Maheshwari, and N. Zeh. An external-memory data structure for
shortest path queries. In Proc. Annual Combinatorics and Computing Conference,
LNCS 1627, pages 51–60, 1999.

338 L. Arge and L. Toma

17. V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-
ing graph problems in external memory. In Proc. IEEE Symp. on Parallel and
Distributed Processing, pages 169–177, 1996.

18. R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM Journal
of Applied Math., 36:177–189, 1979.

19. A. Maheshwari and N. Zeh. I/O-optimal algorithms for planar graphs using sepa-
rators. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 372–381, 2002.

	Introduction
	I/O-Model and Related Work
	Our Results

	Preliminaries
	All-Boundary-Shortest-Path Structure
	Shortest Path Data Structure

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

