Simplified External Memory Algorithms for
Planar DAGs

Lars Arge!l"* and Laura Toma?

! Duke University, Durham, NC 27708, USA, E-mail: large@cs.duke.edu
2 Bowdoin College, Brunswick, ME 04011, USA, E-mail: 1toma@bowdoin.edu

Abstract. In recent years a large number I/O-efficient algorithms have
been developed for fundamental planar graph problems. Most of these
algorithms rely on the existence of small planar separators as well as an
O(sort(N)) I/O algorithm for computing a partition of a planar graph
based on such separators, where O(sort(V)) is the number of I/Os needed
to sort N elements.

In this paper we simplify and unify several of the known planar graph
results by developing linear I/O algorithms for the fundamental single-
source shortest path, breadth-first search and topological sorting prob-
lems on planar directed acyclic graphs, provided that a partition is given;
thus our results give O(sort(IN)) I/Os algorithms for the three problems.
While algorithms for all these problems were already known, the previ-
ous algorithms are all considerably more complicated than our algorithms
and use O(sort(V)) I/Os even if a partition is known. Unlike the previ-
ous algorithm, our topological sorting algorithm is simple enough to be
of practical interest.

1 Introduction

Recently, external memory graph algorithms have received considerable atten-
tion because massive graphs arise naturally in a number of applications such as
transportation networks and geographic information systems (GIS). When work-
ing with massive graphs, the I/O-communication, and not the internal memory
computation, is often the bottleneck. Efficient external-memory (or I/O-efficient)
algorithms can thus lead to considerable runtime improvements.

The need for solving fundamental graph problems (such as topological sort-
ing) on planar graphs often appear in e.g. GIS. For example, in an application
such as flow modeling on grid terrain models, each cell in the terrain model is
assigned a flow direction to one of its neighbors such that the resulting graph is
planar and acyclic. To trace the amount of flow through each cell of the terrain
one then needs to topologically sort this graph [5]; external memory algorithms
are needed to do so efficiently, as modern terrain models—and thus the manip-
ulated planar graphs—are often massive since projects such as NASAs EOS [1]

* Supported in part by the National Science Foundation through RI grant EIA-
9972879, CAREER grant CCR-9984099, ITR grant EIA-0112849, and U.S.-
Germany Cooperative Research Program grant INT-0129182.

and Space Radar Topography Mission [16] have acquired terrabytes of terrain
data in recent years.

Even though a large number of I/O-efficient graph algorithms have been
developed, a number of fundamental problems on general graphs still remain
open. For planar graphs, on the other hand, significant progress has been made.
A large number of fundamental problems on undirected planar graphs have been
solved I/ O-efficiently [3,4, 9, 14] and recently several fundamental problems have
also been solved for directed planar graphs [6,7]. Most of these algorithms are
based on the existence of small planar separators.

In this paper we simplify and unify several of the directed planar graph results
by developing linear I/O algorithms for the fundamental single-source shortest
path, breadth-first search and topological sorting problems on planar directed
acyclic graphs, provided that a partition is given. Our algorithms rely on a set of
reductions using the partition, which exploit the acyclicity in important ways.
Previous algorithms all use more than linear I/Os even if a separation is known;
they are also considerably more complicated than our new algorithms.

1.1 Problem statement

Let G = (V, E) be a directed acyclic graph (DAG). We say that G is planar if
it can be embedded in the plane such that no edges intersect. The topological
sorting problem is the problem of computing an order on the vertices of G so
that for any edge (u,v) € E, vertex u comes before vertex v in this order; a
graph can be topologically sorted if and only if it is acyclic. If G is weighted,
the single-source shortest path (SSSP) problem is the problem of finding the
shortest paths from a given source vertex s in G to all other vertices in G, where
the length of a path is defined as the sum of the weights of the edges on the
path. The breadth-first search (BFS) problem is equivalent to SSSP where all
edges have weight one.

1.2 I/0-model and previous results

We will be working in the standard two-level I/O model [2], where M is the
number of vertices that can fit into internal memory, and B is the number of
vertices that can fit into a disk block, with M < Nand1 < B <+vM.3 An I /0 is
the operation of transferring a block of data between main memory and disk, and
the complexity of an algorithm is measured in terms of the number of disk blocks
and I/Os it uses to solve a problem. The minimal number of I/Os needed to read
N input elements (the “linear bound”) is obviously scan(N) = ©(N/B). The
number of I/Os needed to sort N elements is sort(N) = O(% logr s N/B) [2]-
For all realistic values of N, B, and M, scan(lN) < sort(N) <« N, and the

3 Some algorithms, like the planar separator algorithm of [14], make the stronger but
realistic assumption that M > B?lg® B. The algorithms described in this paper
make this assumption indirectly as they rely on planar separators.

difference in running time between an algorithm performing N I/Os and one
performing scan(N) or sort(N) I/Os can be very significant.

Despite considerable efforts, many fundamental problems on general graphs
remain open; refer to the surveys in [15, 17] and the references therein. On general
digraphs the best known algorithm for SSSP, as well the best algorithms for
the simpler BFS and DFS traversal problems, use O(min{(|V| + %) log|V| +

sort(|E|), |V|+%|%|)I/0s[8,9,12] . Thus all these algorithms use (V') I/Os,
while the lower bound for the number of I/Os required to solve most graph
problems is 2(min{V,sort(V)}) (which, in practice is 2(sort(V'))). As a result,
improved algorithms have recently been developed for special classes of graphs.
On planar digraphs SSSP, BF'S, ear decomposition, as well as topological sorting
of an acyclic graph have been solved in O(sort(N)) I/Os [6], while DFS can be
solved in O(sort(N)log 4%) I/Os [7]. All these algorithms are based on I/0O-
efficient reductions [3,4,6,7] and on an O(sort(N)) I/O planar graph separator
algorithm [14].

(b)

Fig. 1. (a) Partition of G into clusters G; (boxed) and separators vertices Vs (black).
(b) One cluster G; in the partition and its adjacent boundary sets. For simplicity the
direction of the edges is not shown.

Almost all of the above mentioned I/O-efficient algorithms for planar graphs
utilize the existence of small separators. An f(NN)-separator of an N-vertex graph
G = (V,E) is a subset Vg of the vertices V of size f(IN), such that the removal
of Vs partitions G into two subgraphs G; and G of size at most % Lipton and
Tarjan [13] showed that any planar graph has an O(v/N)-separator. Using this
result recursively, Frederickson [11] showed that for any parameter R € [1, N],
there exists a subset Vg of @(N/v/R) vertices, such that the removal of Vg
partitions G into ©(N/R) subgraphs G; of size O(R), where (the vertices in)
each G; is (are) adjacent to O(v/R) vertices of Vg. We call such a partitioning
an R-partition. The vertices in Vg are called the separator vertices and each of
the graphs G; a cluster. The set of separator vertices adjacent to G; are called
the boundary vertices OG; (or simply the boundary) of G;. We use G; to denote
the graph consisting of G;, 0G; and the subset of edges of E connecting G; and

O0G;. Refer to Fig. 1(a). The set of separator vertices can be partitioned into
maximal subsets so that the vertices in each subset are adjacent to the same set
of clusters. These sets are called the boundary sets of the partition. If the graph
has bounded degree (which can be ensured for planar graphs using a simple
transformation [11]), Frederickson showed that there exists an R-partition with
only O(N/R) boundary sets. Refer to Fig. 1(b). Maheshwari and Zeh showed
how to compute such an R-partition in O(sort(N)) I/Os, provided that M >
B?log? B [14].

1.3 Our results

In this paper we simplify and unify several of the known planar graph results by
developing O(scan(N)) I/O algorithms for the fundamental single-source short-
est path, breadth-first search and topological sorting problems on planar DAGs,
provided that a B2-partition is given. Since such a partition can be computed in
O(sort(IN)) I/Os, our results give new O(sort(IN)) I/Os algorithms for the three
problems. While such algorithms were already known, the previous algorithms
are all considerably more complicated than our algorithms and use ©(sort(IN))
I/Os even if a partition of the graph is known; however the previous BFS and
SSSP algorithms work on general planar digraphs. Especially the previous topo-
logical sorting algorithm due to Arge, Toma, and Zeh [6], which utilizes SSSP
and computation of a directed ear decomposition of a strongly connected di-
rected planar graph, is much more complex than our algorithm; we show that
given a B2-partition topological sorting of an N vertex planar DAG can very
easily be reduced in O(scan(N)) I/Os to topological sorting of a (non planar)
DAG with O(N/B) vertices and O(N) edges, which in turn can easily be solved
in O(scan(NV)) I/Os using a slightly modified version of a simple internal memory
algorithm—unlike the previous algorithm, our algorithm is simple enough to be
of practical interest. Our results unify many of the previous results by showing
that computing a good partition is the hard part of most planar DAG problems.

2 Topologically sorting a planar DAG

In this section we show how, given a B2-partition of a planar DAG G with N
vertices, we can topologically sort G in O(scan(N)) I/Os. Recall that a B2-
partition consist of O(&5) clusters G; of size O(B*) = O(M), each adjacent
to O(B) boundary vertices 0G;. We assume without loss of generality that G
has bounded degree, and that the B2-partition has O(£%) boundary sets (sets
of separator vertices adjacent to the same constant-sized set of clusters). Fur-
thermore, we assume that G is given in edge-list representation, that is, as a
list of edges with edges incident to each vertex (both incoming and outgoing)
appearing consecutively in the list;* we assume that the edges incident to ver-
tices in each cluster G; are stored consecutively, and so are the edges incident to

* Any (reasonable) representation can be transformed into this representation in

O(sort(N)) I/Os.

each boundary set. Note that this means that the graph G; induced by G; and
O0G; can be loaded into main memory in O(B) I/0Os, and that the O(B) edges
incident to each boundary set can be loaded in O(1) I/Os.

Our algorithm consists of a series of reductions, each of which can be per-
formed in O(scan(N)) I/Os: First we reduce the problem of topologically sorting
the DAG G to the problem of computing longest paths in a DAG G* with N +1
vertices and O(N) edges. We then show how to reduce this problem, using the
B2-partition of G, to computing longest paths in a weighted DAG G with
O(N/B) vertices and O(N) edges. This problem can in turn be reduced to com-
puting a topological sorting of the vertices in G®, which we finally are able to
solve efficiently directly because of the reduced number of vertices (as well as
properties of the B2-partition of G). Note that since computing longest paths is
NP-complete on general graphs [10], it is somewhat surprising that we are able to
topologically sort G by reducing the problem to computing longest paths. Note
also that the first two and last two reductions can easily be combined, resulting
in a relatively simple overall algorithm. Below we describe each of these steps
(Lemmas 2, 6, 7, and 8) and thus prove the following;:

Theorem 1. Given a B?-partition of a planar DAG G in edge-list representa-
tion, G can be topologically sorted G in O(scan(N)) I/Os.

2.1 Reducing topological sorting of G to longest paths in G*

Our first reduction simply consists of introducing a new source (indegree-zero)
vertex s and adding edges to all indegree-zero vertices in G. We call the resulting
graph G*. Note that G* is still a DAG but not necessarily planar. Now for each
vertex v let A[v] be the length (number of edges) of the longest path from s
to v. We can easily show that computing longest paths in G*® corresponds to
topologically sorting G:

Lemma 1. An ordering of the vertices in G* by longest-path lengths A[v] is a
topological ordering of the vertices in G.

Proof. We must prove that Au] < Av] for any (u,v) € E. Assume by contra-
diction that Alu] > Av]. Let p be the longest path from s to u of length Afu].
Then the path p' obtained by adding the edge (u,v) to p is a path from s to v.
Since this path has length A[u] + 1 we have A[v] > A[u] + 1, which implies that
Alu] < Afv]. O

Since we can add s to G and compute the O(IV) extra edges in a scan of G
we have obtained the following:

Lemma 2. Topologically sorting G can be reduced in O(scan(N)) I/Os to com-
puting longest-path lengths from s to all vertices in G*.

2.2 Reducing longest paths in G* to longest paths in GF

In our second reduction we utilize the given B2-partition of G, which we assume
is stored implicitly in G®. In fact, we assume that G? is represented as the list
of edges in G (ordered as discussed in the beginning of this section), and that
the edges incident to s are represented implicitly by indegree-zero vertices, that
is, we do not store s or its incident edges explicitly. Therefore, even though G*
is not planar, we will in the following refer to the B2-partition of G*.

The reduced graph G is defined as follows: The vertices of GF consist of s
and the separator vertices in the B2-partition of G*. To define the edges of G
we first consider each cluster G; in turn and, for every pair of vertices u and v
on the boundary 8G; of G;, we add an edge (u,v) if there is a path from u to
v in G; (that is, in the graph induced by G; U 8G;); the edge (u,v) has weight
equal to the length of the longest path from u to v in Gj. In addition, for each
vertex u € G; with an edge (s,u) in G® (i.e. indegree-zero vertices in G) we also
add edges (s,v) for all v € OG; with a path from u to v in Gj; the edge (s,v)
has weight equal to one plus the length of the longest path from u to v in Gj.
Finally, we add all edges between two separator vertices in G*; these edges have
weight one.

G has O(N/B) vertices since the number of separator vertices in the B2-
partition of G* is O(N/B). Since each of the O(25) clusters G; has O(B) bound-
ary vertices 0G;, G has O(B?) edges between vertices in G}, as well as O(B)
edges between s and vertices in 0G;. Thus GE has O(N) edges in total.

In order to prove that the lengths (weights) of the longest paths to separator
vertices are the same in G® and G, we need the following general lemma:

Lemma 3. Subpaths of longest paths in a DAG are longest paths.

Proof. Let p be the longest path between two vertices u and v in a DAG G. Let
uyp and uz be two vertices on p and let py,., be the subpath of p between u;
and us. By contradiction, assume that py, ., is not the longest path from u; to
uy in G, that is, there exists a path p’ from u; to us that is longer than py, .-
Since G is a DAG, p' cannot contain a vertex that appears on p before u; or
after us (if it contained such a vertex w, say, after uy, there would be a cycle in
G containing us and w). Thus we can replace py, 4, in p by p’ and obtain a path
from u to v that is longer than p. This contradicts that p is the longest path
from u to v. O

Lemma 4. For each separator vertex v in G, the longest-path length \g[v]
between s and v in G is equal to the longest-path length A\[v] in G°.

Proof. Consider the longest path p from s to a separator vertex v in G®; let uy
and us be two consecutive separator vertices on p on the boundary of the same
cluster G;; that is, uy,us € 0G; and all vertices between u; and us on p are in
G; refer to Fig. 2(a). Since there is a path from w1 to us in G;, there must be an
edge (u1,us) in GF; this in particular means that there is a path from s to v in
GE. By definition, the weight of edge (u1,us) in G is equal to the length of the

longest path from u; to us in G;. By Lemma 3 the length of this path must be
the same as the length of the subpath of p from u; to us. Thus Ag[v] = A[v]. O

(a) (b)

Fig. 2. (a) Lemma 4. (b) Lemma 5.

If we can compute the longest-paths lengths Ag[v] to all vertices v in G, and
thus the longest-path lengths A[v] to all separator vertices v in G° (Lemma 4),
we can compute the longest-path lengths to the remaining vertices in G* using
the following lemma:

Lemma 5. Let u be a vertex in the cluster G; of G® and let g (v,u) denote

the length of the longest path from a boundary vertexr v € 0G; to u in G;. The
length of the longest path from s to u in G* is

A = max{l, sags Al + 3, (0)})

Proof. Let p be the longest path from s to u in G*. Either p has length one (edge
(s,u)) or it must contain a vertex on the boundary dG; of G;. Consider the last
such vertex v € dG; and let p,, and p,,, denote the subpath of p from s to v and
from v to u, respectively. Refer to Fig. 2(b). By Lemma 3, since p is the longest
path to u and G? is a DAG, ps, must be the longest path from s to v in G° and
Puu the longest path from v to u in Gj. If follows that we can find the length of
p (that is, A[u]) by evaluating A[v] + Mg (v,u) for each vertex v on 9G;. |

We can easily compute G from G* I/O-efficiently as follows: We load each
of the O(gg) graphs G; induced by G; and 0G; into main memory in turn, use
an internal memory algorithm to compute the relevant O(B?) edges between the
O(B) boundary vertices 0G;, and write these edges back to disk. During this
process we also compute the O(N/B) edges incident to s and retain the O(N/B)
edges in G* between the separator vertices. In total we use O(£5-B+scan(N)) =
O(scan(N)) I/Os. In the subsequent subsections we will assume that G is
represented similarly to the way G° (and @) is represented, that is, as a list of
edges such that all edges incident to each vertex are stored consecutively and,
furthermore, such that edges incident to the vertices in each boundary set of G*

are stored consecutively (even though vertices in G; are removed from G we will
still refer to the boundary sets of the vertices of G®). We can easily produce this
representation in a simple scan of the produced edges using another O(scan(N))
I/Os.

After having computed the longest-paths lengths Ag[v] to all vertices v in GE,
we can easily compute the longest-path lengths to the remaining vertices in G*
in O(scan(N)) I/Os using Lemma 5. We load each cluster G; and its boundary
vertices OG; (now marked with longest path lengths) in turn, compute Ag-(v, u)
for each pair of vertices v € 0G; and u € G; using an internal memory algorithm
and thus computing A[u], and finally write all the longest-path lengths back to

disk. Overall we have proved the following:

Lemma 6. Computing longest-path lengths for all vertices in the DAG G* with
N +1 vertices and O(N) edges can be reduced in O(scan(N)) I/Os to computing
longest-path lengths in the DAG GT with O(N/B) vertices and O(N) edges.

2.3 Reducing longest paths in G® to topologically sorting of GF

Computing longest-path lengths in G® can easily be reduced to topologically
sorting G® (utilizing the ideas of a standard linear time algorithm for com-
puting shortest paths in a DAG [10]). The basic observation is that if the
last edge on the longest path p from s to a vertex u is (v,u), then the part
of p from s to v is the longest path to v (Lemma 3). This means that if
(v1,u), ..., (vk,u) are the k in-edges of u and w(v;,u) the weight of edge (v;, u),
then Ag[u] = max{Agr[vi] + w(vi,u), Ag[ve] + w(va,w), ..., Agvg] + w(vk,uw)}.
Thus if we process and compute the longest paths of the vertices of G in topo-
logical order, we know that when processing vertex u we have already computed
the longest paths to all in-neighbors v;. We can therefore easily compute the
longest path to w in a simple scan of its in-edges.

To implement the above algorithm I/O-efficiently, given G¥ in topological
order, we maintain a list L of the longest path lengths A[u] to all vertices u in
G such that vertices in the same boundary set are stored consecutively. Recall
that a boundary set is defined as a maximal subset of boundary vertices in G*
(and thus in G) that are adjacent to the same set of clusters G; in G*, and
that edges incident to vertices in the same boundary set are stored consecutively
in our representation of GF. As we process a vertex u in the topological order,
we scan its O(B) in-edges from the representation of GF and load the longest-
paths lengths of all its O(B) in-neighbors v; from L in order to compute Ag[u] =
max{Ag[vi] + w(vy,u), Ag[vs] + w(vs, u), ..., Ag[vs] + w(vk,u)}; then we write
Ag[u] back to L. Since G® has O(N/B) vertices and O(N) edges, we use O(% +
scan(N)) = O(scan(N)) I/Os to retrieve all vertices and scan their in-edges. To
see that the O(N) accesses to L can also be performed in O(scan(N)) I/Os,
recall that each boundary set is of size O(B) and is accessed once by each of its
adjacent vertices in each of its adjacent clusters, that is, O(B) times. Since the
vertices in each boundary set are stored consecutively in L they can be loaded
in O(1) I/Os. Since there are O(Z%) boundary sets, the total number of I/Os

spent on accessing boundary sets from L is overall O(B - 45) = O(scan(N)). We
have obtained the following;:

Lemma 7. Computing longest-path lengths in DAG GE with O(N/B) vertices
and O(N) edges can be reduced in O(scan(N)) I/Os to topologically sorting GF.

2.4 Topologically sorting G

Since G® only has O(N/B) vertices (and is obtained from a B2-partition) we
can topologically sort it I/O-efficiently using a slightly modified version of a
standard topological sort algorithm [10]. We first compute the in-degree of each
vertex in G®. Next we number the vertices one at time while maintaining a list
Q@ of indegree-zero vertices; initially the list contains only the source vertex s.
We repeatedly remove and number an indegree-zero vertex v from @Q; for each
such vertex v we remove all edges of the form (v,u) from GF (v’s out-edges) by
decrementing the indegree of v in L. When the indegree of a vertex u becomes
zero we insert it in Q. It is easy to see that this algorithm correctly topologically
sorts G

The above algorithm can be performed I/O-efficiently as follows: The initial
indegree of all vertices can be computed in O(scan(N)) I/Os in a simple scan of
the representation of G*. To number the vertices of G® one-by-one efficiently,
we again exploit the topology of the boundary sets of G®: we maintain the
indegrees in a list L such that the degrees of vertices in the same boundary set
are stored consecutively in L. When processing an (indegree-zero) vertex v we
load v and all its O(B) neighbors from L, scan through the (out) edge-list of v
while decrementing the relevant indegrees and writing them back to L. In total
there are O(N) accesses, one for each edge, but as in Section 2.3 we can argue
(using that there are only O(N/B?) boundary sets) that they are performed in
O(N/B) 1/0s. Thus we have obtained the following:

Lemma 8. The DAG G® with O(N/B) vertices and O(N) edges can be topo-
logically sorted in O(scan(N)) I/Os.

3 BFS and SSSP on planar DAGs

Given a topological order of the vertices of a general acyclic graph, SSSP (and
thus BFS) can easily be solved in O(sort(N)) I/Os using an I/O-efficient priority
queue. In this section we describe how this bound can be improved to O(scan(N))
for planar DAGs if a B2-partition of the graph is given.

Our improved algorithm is essentially the same as our algorithm for comput-
ing longest paths described in Section 2, but modified to compute shortest paths
rather than longest paths. Let s in G be the source vertex for the SSSP (BFS)
problem. We reduce computing SSSP on G to computing SSSP on a reduced
graph GE, which we in turn reduce to computing a topological order on GE. As
previously, the key of the algorithm is that all these reductions can be performed

in O(scan(NV)) I/Os and that the reduced graph GF can be topologically sorted
in O(scan(N)) I/Os (Lemma 8).

The reduced graph G is defined as follows. The vertices of G¥ consist of
the source vertex s and the separator vertices in G. The edges are defined as in
Section 2.1, except that edge weights between vertices u, v on the boundary 9G;
of G; correspond to shortest path lengths in G;. The graph G is a DAG with
O(N/B) vertices and O(N) edges and can be computed in O(scan(N)) I/O0s
given a B2-partition of G. Using the same arguments as previously, it is easy
to show that G preserves shortest paths in G, that is, that for any separator
vertex v the length dg(v) of the shortest path between s and v in G is the same
as the length 6gr(v) of the shortest path in GE. Given that we can compute
shortest paths dg(v) to all vertices in G®, we can then compute the shortest
paths to the remaining vertices u in G; as dg(u) = minyeag, {6(v) + d5 (v, u)}.
This can be done using O(scan(N)) 1/Os as in Section 2.2. Since G is a DAG,
shortest paths in G can be computed in the same way as longest paths in G
(Section 2.3) by processing vertices in topological order. Finally, a topological
order of GE can be computed in O(scan(N)) I/Os using Lemma 8. We have the
following.

Theorem 2. Given a B2-partition of a planar DAG G in edge-list representa-
tion, BE'S and SSSP can be solved in O(scan(N)) I/Os on G.

4 Conclusion and open problems

In this paper we developed simple linear I/O algorithms for the single-source
shortest path, breadth-first search and topological sorting problems on planar
DAGs, provided that a B2-partition is given. Qur algorithms rely on a set of
reductions using the partition and essentially exploits the acyclicity of the graph.
This leads to O(sort(N)) I/O algorithms for the three problems that are much
simpler than the previously known algorithms.

It remains an intriguing open problem to develop an O(sort(N)) directed
DFS algorithm, on planar graphs as well as on general graphs. The results of
this paper naturally open the question if acyclicity can be exploited to derive an
efficient DFS algorithm for planar DAGs.

References

1. NASA Earth Observing System (EOS) project. http://eos.nasa.gov/.

2. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

3. L. Arge, G. S. Brodal, and L. Toma. On external memory MST, SSSP and multi-
way planar graph separation. In Proc. Scandinavian Workshop on Algorithms
Theory, LNCS 1851, pages 433-447, 2000.

4. L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first
search. Journal of Graph Algorithms, 7(2):105-129, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

. L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on grid-

based terrains. ACM Journal on Ezperimental Algorithmics, 6(1), 2001.

L. Arge, L. Toma, and N. Zeh. I/O-efficient topological sorting of planar DAGs.
In Proc. ACM Symposium on Parallel Algorithms and Architectures, pages 85-93,
2003.

L. Arge and N. Zeh. I/O-efficient strong connectivity and depth-first search for
directed planar graphs. In Proc. IEEE Symposium on Foundations of Computer
Science, pages 261-270, 2003.

A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook.
On external memory graph traversal. In Proc. ACM-SIAM Symposium on Discrete
Algorithms, pages 859-860, 2000.

Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. In Proc. ACM-SIAM Symposium on
Discrete Algorithms, pages 139-149, 1995.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, Cambridge, Mass., second edition.

G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM Journal on Computing, 16:1004-1022, 1987.

V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-
ing graph problems in external memory. In Proc. IEEE Symp. on Parallel and
Distributed Processing, pages 169-177, 1996.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal of Applied Math., 36:177-189, 1979.

A. Maheshwari and N. Zeh. I/O-optimal algorithms for planar graphs using sep-
arators. In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 372-381,
2002.

U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory Hierar-
chies, volume 2625 of LNCS. Springer, 2003.

NASA Jet Propulsion Laboratory. NASA Shuttle Radar Topography Mission
(SRTM). http://www.jpl.nasa.gov/srtm/.

L. Toma. Ezternal Memory Graph Algorithms and Applications to Geographic
Information Systems. PhD thesis, Duke University, 2003.

