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ABSTRACT
We present algorithms that solve a number of fundamen-
tal problems on planar directed graphs (planar digraphs)
in O(sort(N)) I/Os, where sort(N) is the number of I/Os
needed to sort N elements. The problems we consider are
breadth-first search, the single-source shortest path prob-
lem, computing a directed ear decomposition of a strongly
connected planar digraph, computing an open directed ear
decomposition of a strongly connected biconnected planar
digraph, and topologically sorting a planar directed acyclic
graph.

Categories and Subject Descriptors
G2.2 [GraphTheory]: Graph Algorithms

General Terms
Algorithms

Keywords
graph algorithms, I/O-efficient algorithms, planar directed
graphs, topological sorting, ear decomposition

1. INTRODUCTION
Recently external memory graph algorithms have received

much attention because massive graphs arise naturally in
a number of applications such as web modeling and ge-
ographic information systems (GIS). When working with
massive graphs, the I/O-communication, and not the inter-
nal memory computation, is often the bottleneck. Efficient
external memory (or I/O-efficient) algorithms can thus lead
to considerable runtime improvements.
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Even though a large number of I/O-efficient graph algo-
rithms have been developed in recent years, a number of
basic and important problems on general graphs still re-
main open. Since even basic problems seem hard for gen-
eral graphs, several authors have considered special classes of
graphs, and tremendous progress has been made especially
for planar undirected graphs. Apart from being among the
most fundamental combinatorial structures used in algorith-
mic graph theory, planar graphs arise naturally in many real
life applications. For example, graphs encountered in GIS
are often planar or “almost planar”.

For planar directed graphs (planar digraphs), no I/O-
efficient algorithms have been developed so far. In this pa-
per we present the first I/O-efficient algorithms for several
fundamental problems on planar digraphs. Our main result
is an algorithm for topologically sorting a planar directed
acyclic graph (planar DAG). In order to obtain this algo-
rithm we develop algorithms for the single source shortest
path problem and for computing a directed ear decompo-
sition of a strongly connected (strong) planar digraph. We
also consider the problem of computing an open directed ear
decomposition of a biconnected strong planar digraph. Our
results are a step towards understanding the I/O-complexity
of problems on directed graphs and the first major progress
on the longstanding open problem of I/O-efficient topologi-
cal sorting.

1.1 Problem Statement
Given a weighted digraph G, the single source shortest

path (SSSP) problem is the well-known problem of finding
the shortest paths from a given source vertex to all other
vertices in G (the length of a path is the sum of the weights
of the edges on the path). In this paper we assume that
the weights are non-negative. The problem of computing
a breadth-first spanning tree (BFS-tree) of an unweighted
digraph is equivalent to solving the SSSP problem on the
graph obtained by assigning weight one to every edge.

A directed ear decomposition E = (P0, . . . , Pk) of a di-
graph G = (V, E) is a partition of E into simple directed
paths P0, . . . , Pk, called ears, with the following properties:
(1) The endpoints s0 and t0 of P0 are the same vertex (P0 is
a simple directed cycle). (2) The endpoints si and ti of each
ear Pi, i > 0, are in two ears Pj and Pj′ with j, j′ < i; but
the internal vertices of Pi are not in any ear Pj with j < i.
Ear Pi (and every edge e ∈ Pi) is said to have index i. A
graph G has a directed ear decomposition if and only if it
is strongly connected (strong) [11], that is, if for any pair of
vertices u, v ∈ V , there is a directed cycle containing both u



and v. An ear Pi is called open if its endpoints are distinct
(i.e., Pi is not a cycle); an ear decomposition E is open if P0

is the only cycle in the decomposition.
Topological sorting is the problem of ordering the vertices

of a graph G = (V, E) so that for any edge (u, v) ∈ E, vertex
u comes before vertex v. A graph can be topologically sorted
if and only if it is acyclic, i.e., does not contain directed
cycles.

1.2 I/O-Model and Previous Work
We work in the standard two-level I/O-model with one

(logical) disk [1]. The model defines the following parame-
ters:1

N = number of vertices and edges (N = V + E),

M = number of vertices/edges that fit into internal
memory,

B = number of vertices/edges that fit into a disk
block,

where B2 log2 B ≤ M < N .2 An Input/Output operation (or
simply I/O) transfers one block of consecutive elements from
(to) disk to (from) internal memory. The measure of per-
formance of an algorithm is the number of I/Os it performs.
The number of I/Os needed to read N contiguous items
from disk is scan(N) = Θ(N/B) (the linear or scanning
bound). The number of I/Os required to sort N items is
sort(N) = Θ

`

N
B

logM/B
N
B

´

(the sorting bound) [1]. For all
realistic values of N , B, and M , scan(N) < sort(N) � N ,
so that the difference in running time between an algorithm
performing N I/Os and one performing scan(N) or sort(N)
I/Os can be very significant.

Most previous work on I/O-efficient graph algorithms has
focused on undirected graphs. (See the surveys in [17, 18].)
Despite considerable efforts, many fundamental problems on
general undirected graphs remain open. For example, while
Ω(min{V, sort(V )}) (which is Ω(sort(V )) in practice) is a
lower bound for the number of I/Os required to solve most
graph problems, the best known algorithms for depth-first
search (DFS) and SSSP perform Ω(V ) I/Os [13, 6]. For
BFS, an algorithm performing o(V ) I/Os has been developed
only recently [16]. For directed graphs, even fewer results
are known. The best know algorithms for directed SSSP,
BFS, and topological sorting all perform Ω(V ) I/Os. More
precisely, their I/O-complexity is O(min{(V + E

B
) · log V +

sort(E), V + V
M

E
B
}) [5, 6, 13].

A number of improved algorithms have been developed
for several special classes of graphs. For trees for example,
O(sort(N)) I/O algorithms are known for BFS and DFS-
numbering, Euler tour computation, expression tree evalua-
tion, topological sorting, as well as several other problems [5,
6]. Most problems on planar undirected graphs, including
SSSP, BFS, and DFS, can also be solved in O(sort(N))
I/Os [3, 4, 6, 14]. Almost all of these algorithms exploit
the existence of small separators for planar graphs. More
precisely, they use that for every planar graph G and any
integer h > 0, there exists a set of O

`

N/
√

h
´

separator ver-
tices whose removal partitions G into O(N/h) subgraphs of

1For convenience we use use the name of a set to denote the
actual set as well as its cardinality.
2Often it is only assumed that 2B ≤ M ; but sometimes, as
in this paper, the very realistic assumption is made that the
main memory is big enough to hold B2+ε elements.
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Figure 1: (a) The direction of a dual edge. (b) The
relationship between a cycle in the dual and a topo-
logical ordering of the primal—all vertices inside P0

precede all vertices outside P0.

size at most h. Such a partition of G can be computed
in O(sort(N)) I/Os [14]. While many O(sort(N)) I/O al-
gorithms are known for planar undirected graphs, similar
results have not been obtained for planar directed graphs.
Topological sorting has only been solved in O(sort(N)) I/Os
for the very special case of planar st-graphs [6]. For general
planar digraphs all known algorithms (the ones developed
for general digraphs) perform Ω(N) I/Os, which can also be
achieved by using the much simpler internal memory algo-
rithms for these problems.

Many external memory graph algorithms use ideas from
the corresponding PRAM-algorithms. In some cases it is
even possible to obtain an I/O-efficient algorithm by “simu-
lating” a PRAM-algorithm in a standard way (the so-called
PRAM simulation [6]). Efficient PRAM algorithms have
been developed for many problems on directed planar graphs
(e.g. [10, 11, 12]); but the simulation of these algorithms
does not lead to I/O-efficient algorithms.

Based on an efficient algorithm for computing a directed
spanning tree, Kao and Klein [11] show how a directed ear
decomposition of a strong planar digraph can be computed
efficiently. Using this algorithm they develop an efficient
algorithm for topologically sorting planar DAGs [10, 11].
The topological sorting algorithm is based on an important
structural relationship between a planar embedded DAG
G = (V, E) and its directed dual G∗ = (V ∗, E∗), which is de-
fined similar to the dual of an undirected embedded planar
graph: The faces of G are the connected regions of R

2 \ G.
A face f is said to be to the left (resp. right) of edge (u, v)
if it is to the left (resp. right) when walking from u to v
along edge (u, v). The directed dual of G contains a vertex
f∗ ∈ V ∗ for every face f of G. For every edge (v, w) ∈ E,
let fl and fr be the two faces to the left and right of edge
(v, w) ∈ E. Then there is an edge (f∗

r , f∗
l ) ∈ E∗ (see Fig-

ure 1a). As usual, we use v∗, e∗, and f∗ to refer to the face,
edge, and vertex that is dual to vertex v, edge e, and face f ,
respectively. The following lemma provides the connection
between a DAG and its directed dual.

Lemma 1 (Kao/Klein [10, 11]). The directed dual of
an embedded planar DAG is strong, that is, it has a directed
ear decomposition.

Given a planar DAG G and a directed ear decomposition
E = (P0, . . . , Pk) of its dual G∗, the topological sorting al-
gorithm by Kao and Klein [11] uses that because P0 is a
directed cycle, all edges of G crossing ear P0 cross it in the
same direction (see Figure 1b.) Hence, a topological order-
ing of G can be obtained by topologically sorting the sub-
graphs of G to the left and right of P0 separately and placing



all vertices to the left of P0 before all vertices to the right of
P0. Since all subsequent ears partition the regions defined
by previous ears in a similar manner, topological orderings
of the subgraphs of G to the left and right of P0 can be ob-
tained recursively. To obtain an efficient PRAM algorithm
(which halves the number of ears in each recursive step), Kao
and Klein [11] modify this basic idea to consider the first k/2
ears simultaneously. Since the non-recursive part of this al-
gorithm can be performed in O(sort(N)) I/Os using PRAM
simulation, this immediately leads to an O(sort(N) · log N)
I/O algorithm.

1.3 Our Results
In Section 2 we develop an O(sort(N)) I/O algorithm for

the SSSP problem on planar digraphs. This algorithm is
based on the recent I/O-efficient planar separator algorithm
of [14] and utilizes ideas from the I/O-efficient shortest path
algorithm for undirected planar graphs of [3]. Of course,
the algorithm can also be used to construct a BFS-tree of a
planar digraph.

In Section 3 we develop an O(sort(N)) I/O algorithm for
computing a directed ear decomposition of a strong planar
digraph. This algorithm is based on Kao and Klein’s algo-
rithm [11], but is not obtained using PRAM simulation. It
uses the SSSP algorithms developed in Section 2. We also
consider the problem of computing an open directed ear de-
composition. An efficient PRAM algorithm is known for the
undirected version of this problem [15]; but to our knowl-
edge the directed version of the problem has not previously
been considered. We present an O(sort(N)) I/O algorithm
that computes an open directed ear decomposition for a bi-
connected strong planar digraph. In the full paper, we also
show that a digraph has an open directed ear decomposition
if and only if it is strong and biconnected.

In Section 4 we present the main result of our paper,
namely an O(sort(N)) I/O algorithm for topologically sort-
ing planar DAGs. As the PRAM algorithm by Kao and
Klein [11], our algorithm utilizes the directed ear decompo-
sition of the directed dual of the graph. However, in order
to reduce the I/O-complexity to O(sort(N)), we introduce
the ordered ear decomposition tree and show how a topolog-
ical ordering can be obtained in O(sort(N)) I/Os using a
traversal of this tree. The main contribution is to prove a
number of structural properties of the tree that allow us to
construct it I/O-efficiently.

2. SINGLE SOURCE SHORTEST PATHS
In this section we sketch our algorithm for solving the

SSSP problem on a planar digraph. This algorithm utilizes
ideas from the I/O-efficient algorithm for the undirected ver-
sion of the problem [3].

Given a planar digraph G = (V, E) with O(N) vertices
and edges, the first step of our algorithm is to compute a
smaller graph GR such that solving the SSSP problem on
G reduces to solving it on GR. In particular, we compute
a small separator S of G that contains the source vertex s
and build a graph GR with vertex set S so that the dis-
tances from s to any vertex in S are the same in G and
GR. The separator S has size O(N/B) and partitions G
into O(N/B2) subgraphs G1, . . . , Gq of size at most B2 and
boundary size at most B; the boundary ∂Gi of Gi is the
set of separator vertices adjacent to vertices in Gi. We can
obtain this partition in O(sort(N)) I/Os by ignoring the di-

rections of the edges in E and using the planar separator
algorithm of [14]. For each graph Gi, we solve the all pairs
shortest path problem on the subgraph Ri of G induced by
the vertices in V (Gi) ∪ ∂Gi. To obtain GR we replace each
such graph Ri with a complete digraph R′

i over the vertex
set ∂Gi. The weight of an edge (v, w) in R′

i is the length
of the shortest path from v to w in Ri. If there is no path
from v to w in Ri, edge (v, w) has weight ∞. The resulting
graph GR has O(N/B) vertices and O(N) edges. GR can
be computed in O(N/B) I/Os after computing the partition
of G, since each graph Ri has at most B2 + B vertices and
thus fits into main memory. It is easily verified that for any
two vertices v, w ∈ GR, the distance from v to w in GR is
the same as in G. In particular, since s ∈ S, the distances
from s to all separator vertices can be computed by solv-
ing the SSSP problem on GR. Since the shortest path from
s to any vertex in a graph Gi has to contain a boundary
vertex of Gi, the distances to all non-separator vertices of
G can then be computed in O(N/B) I/Os by once more
processing each graph Ri in turn and applying the formula
distG(s, v) = min{distG(s, u) + distRi

(u, v) : u ∈ ∂Gi} for
every vertex v ∈ Gi.

All that remains to be done is describe how to solve the
SSSP problem on GR. To do this we use a directed ver-
sion of the algorithm used for the undirected case [3], i.e., a
modified version of Dijkstra’s algorithm [7]. Recall that Di-
jkstra’s algorithm explores the graph using a priority queue
that stores the vertices of G whose distances from s have
not been determined yet. The priority of vertex v is equal
to its tentative distance from s, i.e., the length of the short-
est path from s to v found so far. The vertices are retrieved
one by one from the priority queue, using DeleteMin op-
erations. For each retrieved vertex, its priority is recorded
as its distance from s, its adjacency list is retrieved, and
the priorities of its out-neighbors are updated using De-
creaseKey operations. In general, an I/O-efficient imple-
mentation of Dijkstra’s algorithm has to address two prob-
lems: (1) The vertices of the graph are retrieved from the
priority queue in an order that is hard to predict with-
out solving the SSSP problem. Hence, it seems difficult
to avoid spending at least one I/O to access each adjacency
list, so that accessing all adjacency lists takes O(V + E/B)
I/Os. In the case of graph GR = (S, ER), however, we have
|S| = O(N/B) and |ER| = O(N), so that accessing all ad-
jacency lists takes O(N/B) I/Os. Essentially, graph GR is
dense enough to amortize the I/Os spent on accessing adja-
cency lists at random over the I/Os required to read all edges
in sequential order. (2) There is no known priority queue
that supports Insert, DeleteMin, and DecreaseKey op-
erations in O((1/B) logM/B(N/B)) I/Os amortized, while
for instance the buffer tree [2] supports Insert, Delete,
and DeleteMin operations in this number of I/Os. The
Delete operation requires the element to be deleted as well
as its current priority as arguments, which is the only ob-
stacle to simulating DecreaseKey operations by pairs of
Delete and Insert operations. When running Dijkstra’s
algorithm on GR, we can exploit the structure of GR to pro-
vide every DecreaseKey operation with the current prior-
ity of the affected vertex, thereby facilitating the simulation
of these operations using Delete and Insert operations;
and we can do so in an I/O-efficient manner. In addition
to the priority queue, we maintain a list L that stores the
tentative distances of all vertices from s. When extracting



a vertex v from the priority queue, we retrieve the tentative
distances of its out-neighbors from L. For each out-neighbor
w of v, we test whether its tentative distance is greater than
the distance of v from s plus the weight of edge (v, w). If
this is the case, we update the distance of v in L, delete
the old entry for w from the priority queue and insert a
new entry for w with the updated distance into the priority
queue. In total, we perform O(N) operations on the prior-
ity queue, which take O(sort(N)) I/Os [2]. Even though we
access list L O(N) times, O(1) times per edge in GR, these
accesses can be performed in only O(N/B) I/Os. The key to
proving this is the notion of boundary sets: Two separator
vertices are said to be in the same boundary set if they are
adjacent to the same set of subgraphs Gi. The boundary of
each subgraph Gi has size at most B, so that each boundary
set has size at most B. Hence, if we store the vertices of each
boundary set consecutively in L, we can access these vertices
in O(1) I/Os instead of spending one I/O per vertex. (Note
that all vertices in a boundary set have the same neighbors
in GR, so that if one of them needs to be retrieved from L,
the other vertices in the boundary set need to be retrieved as
well.) Using a standard transformation, we can ensure that
graph G has bounded degree. Under this assumption, we
can ensure that the computed partition has only O(N/B2)
boundary sets [14]. Since every vertex in S has constant
degree in G, it is adjacent to O(1) subgraphs Gi in G and
hence has degree O(B) in GR. Thus, every boundary set is
accessed O(B) times in L, and the total cost of all accesses
to list L is O(B · N/B2) = O(N/B). We have shown the
following result.

Theorem 1. The single source shortest path problem on
a planar digraph with non-negative edge weights can be solved
in O(sort(N)) I/Os.

3. DIRECTED EAR DECOMPOSITION
In this section we sketch how to compute a directed ear de-

composition of a strong planar digraph in O(sort(N)) I/Os.
In Section 3.1 we sketch the basic algorithm, which follows
the PRAM-algorithm of [11]. In Section 3.2 we show how
to modify the computed decomposition to obtain an open
directed ear decomposition, provided that the graph is also
biconnected.

3.1 Ear Decomposition
An ear decomposition of an undirected graph G can be

obtained as a collection of appropriate subpaths of funda-
mental cycles of a spanning tree of G [15]. The idea in the
PRAM algorithm of Kao and Klein [11] for obtaining a di-
rected ear decomposition of a strong digraph G is similar;
but the construction makes use of two spanning trees Tc

and Td rooted at the same vertex r. The edges in Tc are
directed towards r (Tc is called convergent); the edges in Td

are directed away from r (Td is called divergent). We call
pair (Tc, Td) a CD-pair. For a strong planar digraph, trees
Tc and Td can be computed in O(sort(N)) I/Os using our
shortest path algorithm (Theorem 1).

Given the CD-pair, the algorithm of Kao and Klein con-
sists of four main steps: Step 1 uses trees Tc and Td to
construct a sequence of directed (but not necessarily sim-
ple) paths P 1

0 , . . . , P 1
l1

so that P 1
0 is a directed cycle and

every subsequent path has its endpoints in paths of lower
indices. In Step 2 each of the paths P 1

0 , . . . , P 1
l1

is broken

into simple paths. Each such simple path may still share in-
ternal vertices and even edges with paths of lower indices. In
Step 3 every duplicate edge is removed from all but the ear
of lowest index containing it. Every path sharing internal
vertices with paths of lower indices is broken into shorter
paths at these internal vertices. This produces a directed
ear decomposition of a strong subgraph of G that contains
all vertices of G, but possibly not all the edges. Step 4 adds
each of these edges to the ear decomposition as a separate
path, thereby producing an ear decomposition of G.

Steps 3 and 4 of Kao and Klein’s algorithm can easily
be performed in O(sort(N)) I/Os using a few sorting and
scanning steps. Details will appear in the full paper. Next
we consider Steps 1 and 2 in detail and show that they can
be carried out in the same number of I/Os.

To produce the initial collection P 1
0 , . . . , P 1

l1
of paths in

Step 1, we consider the set x0, . . . , xl1 of leaves of Tc. For
every leaf, we compute two paths Ai and Bi. Path Ai is the
path from ai to xi in Td, where ai is the lowest ancestor of xi

that is on the path from r to a leaf xj with j < i. Similarly,
Bi is the path in Tc from xi to the lowest ancestor bi that is
on a path from a vertex xj , j < i, to the root r of Tc. Path
P 1

i is the concatenation of paths Ai and Bi. Each path P 1
i

starts at vertex ai and ends at vertex bi, so that P 1
0 is a di-

rected cycle (a0 = b0 = r), and every path P 1
i , i > 0, has its

endpoints in two paths of lower indices. Paths A0, . . . , Al1

and B0, . . . , Bl1 can be computed in O(sort(N)) I/Os using
standard I/O-efficient tree algorithms [5, 6] (processing trees
Tc and Td from the leaves towards the root). In particular,
it suffices to tag every vertex v of Tc or Td with the lowest
index xj so that v is on the path from xj to r in Tc or Td,
respectively.

To carry out Step 2, i.e., to break paths P 1
0 , . . . , P 1

l1
into

simple paths P 2
0 , . . . , P 2

l2
, we partition each path P 1

i into
simple paths Qi,1, . . . , Qi,ki

such that Qi,1 has the same
endpoints as P 1

i , and the endpoints of each path Qi,j are in
paths Qi,j′ with lower indices. Sequence (P 2

0 , . . . , P 2
l2

) is the
concatenation of sequences (Qi,1, . . . , Qi,ki

), for 0 ≤ i ≤ l1:
To construct paths Qi,1, . . . , Qi,ki

we compute the vertices
y1, . . . , yki

= xi shared by Ai and Bi, in their order of ap-
pearance along Ai. Then Qi,1 is the concatenation of the
subpath of Ai from ai to y1 and the subpath of Bi from y1

to bi. For j > 1, Qi,j is the concatenation of the subpath
of Ai from yj−1 to yj and the subpath of Bi from yj to
the first vertex already contained in a path Qi,j′ of lower
index. Computing vertices y1, . . . , yki

requires sorting and
scanning the vertex sets of Ai and Bi. After that, paths
Qi,1, . . . , Qi,ki

can be computed by considering paths Ai

and Bi to be trees rooted at ai and bi, respectively, and re-
peating the computation of Step 1 using vertices y1, . . . , yki

in place of the leaves of Tc. This takes O(sort(N)) I/Os, for
all P 1

0 , . . . , P 1
l1

.
Since all four steps of the construction can be carried out

in O(sort(N)) I/Os, we obtain the following result.

Theorem 2. A directed ear decomposition of a strong
planar digraph can be computed in O(sort(N)) I/Os.

It is interesting to observe that the only place where the
planarity of G is used is in the computation of trees Tc

and Td.

3.2 Open Ear Decomposition



Even though our algorithm for topologically sorting a pla-
nar DAG presented in Section 4 only requires us to compute
a directed ear decomposition, we sketch in this section how
to compute an open directed ear decomposition for a strong
and biconnected planar digraph. Details will appear in the
full version of this paper, where we also prove that (similar
to undirected graphs) a strong planar digraph has an open
directed ear decomposition if and only if it is biconnected.

Our algorithm mimics the PRAM-algorithm for comput-
ing an open ear decomposition algorithm of an undirected
graph [15]. First we compute a particularly well-structured

CD-pair (T̃c, T̃d) of G from a directed ear decomposition E
obtained using Theorem 2: Tree T̃c is obtained by removing
the first edge fi from every ear Pi in E , and similarly T̃d

is obtained by removing the last edge li from every ear Pi.
Both trees are rooted at vertex s0 = t0. The trees can easily
be constructed in O(sort(N)) I/Os. Then we use E , T̃c, and

T̃d to derive an open ear decomposition E ′ = (P ′
0, . . . , P

′
k)

of G in O(sort(N)) I/Os. This will show the following re-
sult.

Theorem 3. Given a strong biconnected planar digraph
G, an open directed ear decomposition of G can be computed
in O(sort(N)) I/Os.

Below we discuss how to obtain the open ear decomposi-
tion E ′ from E , T̃c, and T̃d. First we present an algorithm
that only guarantees that E ′ is an ear decomposition of G.
Then we show how to modify the construction in order to
guarantee that E ′ is open.

3.2.1 Computing Ear Decomposition E ′

Ear decomposition E ′ is derived from a collection of simple
paths and cycles P0 = P̃0, . . . , P̃k that may share edges.
Path P̃i, i > 0, is obtained by extending ear Pi at end
vertices si and ti: We walk up T̃c and T̃d from si and ti,
respectively, until we find the first two vertices s̃i and t̃i

that are in the same ear Pρi
, ρi < i. We denote the (possibly

empty) paths from s̃i to si and from ti to t̃i by Ãi and B̃i,
respectively. To eliminate edges that appear in more than
one path P̃i, we define the priority of ear Pi as the pair
pr(Pi) = (ρi, i) and remove all duplicates of an edge except

the one in the path P̃i defined by the ear Pi of lowest priority,
where we compare the priorities of the ears in E by the
natural lexicographical order of these pairs (ρi, i). This may

split a path P̃i into more than one subpath; some subpaths
may share internal vertices with subpaths of a path P̃j of
lower priority. We split the paths at these internal vertices
and make each resulting subpath of P̃i a separate ear in E ′.
The order of the ears in E ′ is defined by the lexicographical
order of the priorities of their defining ears Pi. It is not hard
to see that every edge of G is in some ear of E ′, every ear
is a simple path or cycle, and every ear, except P̃0, has its
endpoints in ears of lower indices. Hence, E ′ is a directed
ear decomposition of G.

Given indices ρ1, . . . , ρk, we can construct ear decomposi-
tion E ′ without constructing paths P̃0, . . . , P̃k explicitly. In
particular, we process trees T̃c and T̃d from the leaves to-
wards the root to compute priorities pr c(e) = min{pr(Pi) :
edge e is on the path from ti to the root in Tc} and prd(e) =
min{pr(Pi) : edge e is on the path from the root to si in Td},
for every edge e ∈ G. The priority pr(e) of an edge e ∈ Pi is
then chosen to be pr(e) = min{pr(Pi), prc(e), prd(e)}. The

edges with priority pr(Pi) define a collection of subpaths

of P̃i. The priorities of all edges, and thus these subpaths,
can be computed in O(sort(N)) I/Os by applying standard

I/O-efficient tree algorithms to T̃c and T̃d. Finally, the ears
of E ′ are obtained as described above by splitting these sub-
paths at internal vertices. This can be done in O(sort(N))
I/Os using a few sorting and scanning steps. Hence, ear
decomposition E ′ can be computed in O(sort(N)) I/Os if
indices ρ1, . . . , ρk can be found in O(sort(N)) I/Os.

To find indices ρ1, . . . , ρk we utilize two compressed ver-
sions T ∗

c and T ∗
d of T̃c and T̃d. Both trees have vertex set

{α0, . . . , αk}. Vertex α0 is the root of both trees. The parent
of a vertex αi, i > 0, in T ∗

c (resp. T ∗
d ) is the vertex αj so that

ti (resp. si) is an internal vertex of ear Pj . These two trees
can easily be constructed from E in O(sort(N)) I/Os. Now
ρi is the maximal index of all vertices αj that are proper
ancestors of αi in T ∗

c and T ∗
d . To find these ancestors, for

all vertices αi, we represent every vertex αi as a rectangle
Ri = [νc(α(i), νc(αi)+|T ∗

c (αi)|]×[νd(α(i), νd(αi)+|T ∗
d (αi)|],

where νc and νd are preorder numberings of T ∗
c and T ∗

d , re-
spectively, and |T (v)| denotes the number of descendants of
vertex v in tree T . In the full paper we argue that these
rectangles are non-intersecting and that Rρi

is the smallest
rectangle containing Ri. Hence, finding indices ρ1, . . . , ρk

reduces to answering k = O(N) point location queries in a
planar subdivision of size O(N). These queries can be an-
swered in O(sort(N)) I/Os [8]. Hence, we can compute ear
decomposition E ′ in O(sort(N)) I/Os.

3.2.2 Making E ′ Open
In order to guarantee that ear decomposition E ′ is open,

we modify the second components of the priorities of the ears
in E in the above computation. The purpose of this change
of priorities is to guarantee that every currently closed ear
in E ′ loses at least one edge; but no open ear gains enough
edges to become closed. In particular, observe that a closed
ear in E ′ is equal to some path P̃i so that s̃i = t̃i. Let f̃i

and l̃i be the first and last edges of this path. We choose
the new priorities so that edges f̃i and l̃i are guaranteed to
be in different ears in E ′ unless s̃i 6= t̃i.

To compute the new priorities, we partition E into subsets
Ei, 0 ≤ i ≤ k, so that for all ears Pj ∈ Ei, ρj = i. We define
an undirected auxiliary graph Hi that contains one vertex
v(Pj) per ear Pj ∈ Ei as well as one vertex v(e) per edge e

in the set
S

Pj∈Ei
{f̃j , l̃j}. Every vertex v(Pj) has the two

vertices v(f̃j) and v(l̃j) as neighbors in Hi. We call an ear Pj

in Ei as well as vertex v(Pj) good if either s̃j 6= t̃j , or one of

edges f̃j or l̃j is contained in a path Ãh or B̃h, for some ear
Ph with ρh < ρj = i. Intuitively, an ear Pj is good if either

P̃j is not a cycle or one of the edges f̃i and l̃i is guaranteed
to end up in an ear that is a subpath of P̃h, where ρh < ρj .
In the full paper, we prove the following lemma.

Lemma 2. Every connected component of Hi contains at
least one good vertex.

The proof idea for the lemma is to argue that if the lemma
did not hold, then there would be a vertex s̃j = t̃j , for
some j, so that s̃j is a cutpoint of G, thereby contradict-
ing the fact that G is biconnected. Using this lemma, we
can now define the priorities of the ears corresponding to the
vertices in a connected component of Hi so that the ear with
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Figure 2: (a) A DAG and its dual. (b) A directed ear decomposition E = (P0, . . . , P10) of the dual. All edges
of G crossing P0 are directed from the left (inside) of P0 to the right (outside) of P0. Therefore vertices
b, c, d, e, f, g to the left of P0 precede vertices a, h, i, j, k, l to the right of P0 in the topological ordering we
construct. Similarly, for ear P1, vertices b, c, d to the left of P1 precede vertices e, f, g to the right of P1 in
the ordering.

lowest priority is good and every subsequent path P̃i is guar-
anteed to lose at least one edge to a previous path P̃j . This
guarantees that all ears in E ′ except P̃0 are open. To com-
pute these priorities, we identify the connected components
of each graph Hi, find a good vertex in each component, and
perform BFS from the chosen good vertex in each compo-
nent. Then the priority of ear Pj is (ρj , cj , dj), where cj is a
label identifying the component of Hρj

that contains v(Pj),
and dj is the BFS-depth of v(Pj) in this component.

Given the first and last edges f̃i and l̃i of every path P̃i,
the construction of graphs Hi, finding their connected com-
ponents, and performing BFS take O(sort(N)) I/Os because
these graphs are easily seen to be planar. Hence, the only
difficult part of the algorithm is finding these edges and de-
ciding which ear Pi ∈ E is good.

To compute edges f̃i and l̃i, we observe that f̃i = fx and
l̃i = ly, where αx is the child of αρi

on the path from αρi
to

αi in T ∗
d , and αy is the child of αρi

on the path from αρi
to αi

in T ∗
c . These children can be identified in O(sort(N)) I/Os

by applying standard tree computations to T ∗
c and T ∗

d . Then
we have to sort and scan the set of edges of the ears in E to
extract edges f̃i and l̃i, for all Pi ∈ E .

Given edges f̃i and l̃i, for all ears Pi, we can immediately
identify all good ears Pi with s̃i 6= t̃i. To identify the second
kind of good ears, it suffices to compute for every edge e, the
lowest index ρi so that edge e is on the path from s0 to si

in Td or from t0 to ti in Tc. If for an edge e ∈ {f̃i, l̃i}, this
index is less than ρi, then ear Pi is good. The computation
of these indices for all edges of G can again be carried out
using standard tree algorithms. Hence, the whole algorithm
takes O(sort(N)) I/Os.

4. TOPOLOGICAL SORTING
As discussed in the introduction, the topological sorting

algorithm of Kao and Klein [11] uses the following basic
idea. By Lemma 1, the dual G∗ of a DAG G is strongly
connected and hence has a directed ear decomposition E =
(P0, . . . , Pk). This decomposition can be used to define a
total order σ of the vertices of G: If we consider the planar
subdivision defined by ears P0, . . . , Pi−1, ear Pi splits a re-
gion of this subdivision into two. In σ the vertices in the
left region precede all vertices in the right region. This way

σ is consistent with the partial order defined by the edges
of G because Pi is a directed path and hence all edges of
G crossing Pi cross it in the same direction (see Figure 2).
Thus σ is a topological ordering of G.

Our topological sorting algorithm uses the same general
idea as the algorithm of Kao and Klein; but in order to
obtain an O(sort(N)) I/O algorithm, we utilize a tree struc-
ture, called the ordered ear decomposition tree, that de-
scribes the recursive partitioning of the plane using the ears
in E and the resulting total order of the vertices of G. In
Section 4.1 we define this tree and show that it can be used
to compute σ in O(sort(N)) I/Os. In Section 4.2 we de-
scribe how to compute this tree in O(sort(N)) I/Os from
a directed ear decomposition. Since the directed dual of
a DAG can be computed in O(sort(N)) I/Os [9], and the
directed ear decomposition of this graph can also be com-
puted in O(sort(N)) I/Os (Theorem 2), this will prove the
following result.

Theorem 4. A topological numbering of the vertices of a
planar DAG can be computed in O(sort(N)) I/Os.

4.1 Computing a Topological Numbering from
an Ordered Ear Decomposition Tree

The (unordered) ear decomposition tree (EDT) TE of a
directed ear decomposition E = (P0, . . . , Pk) of G∗ (the dual
of DAG G) is a binary tree that represents the recursive
partition of the plane obtained by incrementally adding ears
P0, . . . , Pk to the current subdivision. Tree TE is defined
recursively as follows: We start with the root ρ of TE and
define the region R(ρ) represented by ρ as R(ρ) = R

2. Given
a node α representing a region R(α), α is a leaf if R(α) is
a face of G∗. Otherwise let E(α) be the ear Pj of lowest
index that is embedded inside R(α). Ear E(α) partitions
R(α) into two regions R1 and R2. Then α has two children
β and γ with R(β) = R1 and R(γ) = R2. As a result of this
definition, every leaf α represents a face R(α) of G∗, and
every internal node α represents a region R(α) and an ear
E(α) splitting this region.

To obtain an ordered ear decomposition tree (OEDT), we
impose the following ordering on the children of every node α
in TE (see Figure 3a): Let β and γ be the two children of α.
Then β is the left child and γ is the right child of α if R(β)



is to the left of E(α) and R(γ) is to the right of E(α). More
precisely, let (u, v) be an edge dual to an edge in E(α).
Node β is the left child of α if u ∈ R(β) and the right child
otherwise. In what follows we will use TE to refer to both the
unordered and ordered versions of the EDT—the meaning
will be clear from the context.

Recall that each leaf in the OEDT TE of E corresponds to
a vertex in G. It is easy to see that the topological ordering
σ of the vertices in G defined above is identical to the order
in which the leaves of TE are visited in a recursive traversal
(Euler tour) that starts at the root and visits the left child
of every vertex before its right child. Such an Euler tour can
be constructed in O(sort(N)) I/Os [6]. Ordering σ can then
be computed by applying the list-ranking algorithm of [6] in
order to number the leaves of T in their order of appearance
in the Euler tour. This shows the following lemma.

Lemma 3. Let G∗ be the strongly connected dual of a pla-
nar DAG G, and let E be a directed ear decomposition of
G∗. Given an OEDT TE of E , a topological numbering of
the vertices of G can be computed in O(sort(N)) I/Os.

4.2 Computing an Ordered Ear Decomposi-
tion Tree

Given an unordered EDT TE , it can be ordered as follows:
First we arbitrarily choose an ordering of the two children of
every internal node. Based on this ordering, we number the
leaves of TE from left to right using the procedure described
in Section 4.1. For every node α, we select an edge (v, w)
of G whose index is i, where E(α) = Pi. If v precedes w
in σ, the order of the children of α was chosen correctly;
otherwise we reverse the order of these children. Since this
test can be performed for all nodes simultaneously, we can
order an unordered EDT in O(sort(N)) I/Os.

In the remainder of this section we show how to compute
an unordered EDT TE of G∗, given an ear decomposition E .
Since TE is unordered, we can ignore the directions of all
edges in G and G∗ as well as of the ears in E . The vertex set
of TE is easily generated, as it contains one leaf per vertex
of G and one internal vertex per ear Pi ∈ E . To compute
the edge set of TE , we identify the parent of every node
in TE , except the root (which of course does not have a
parent). The root of TE is easily identified, as it is the node
corresponding to ear P0. Since the parent of every non-
root node α is an internal node, which represents some ear
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Figure 3: (a) The ordered ear decomposition tree
TE of the ear decomposition in Figure 2b. Subtree
T ′

E is shown in bold. (b) The compressed version T c

E

of T ′

E .

Pjα , our goal is hence to compute the index jα of the ear
associated with the parent of α.

To compute jα we first observe that jα is the maximal
index of the edges on the boundary of region R(α). To com-
pute these indices efficiently, we use a well-chosen spanning
tree T of G, which we call the spanning tree of ear decom-
position E (see Figure 4a): We define the index of an edge
e in G to be equal to the index of edge e∗ in G∗. For every
ear Pi ∈ E , tree T contains exactly one edge ei of G with
index i. Apart from that, the choice of the edge set of T
is arbitrary. Intuitively spanning tree T is chosen so that
it contains exactly one edge crossing every ear in the ear
decomposition of the dual G∗ of G. For any node α ∈ TE

we can prove that the leaves below α induce a subtree in T ,
which we denote by T (α). We use j′α to denote the maximal
index of all edges in T with exactly one endpoint in T (α).

Now we make the following two observations: (1) The
edges in T with exactly one endpoint in T (α) are a subset
of the edges in G with exactly one endpoint in R(α). (2) All
edges in G with index jα (including ejα) have exactly one
endpoint in R(α). The following lemma is an immediate
consequence of these two observations.

Lemma 4. For every node α ∈ TE , except the root, jα =
j′α.

The main problem with the characterization provided by
Lemma 4 is that region R(α) and hence tree T (α) is only
known if α is a leaf of TE . Nevertheless, we can use it to
design an algorithm for computing TE : Below we show that a
leafless version T ′

E of TE (i.e., TE with all its leaves removed;
see Figure 3a) can be computed by recursive application of
our algorithm. Since every leaf α corresponds to a vertex
v ∈ G, Lemma 4 enables us to find the parent of every leaf
in TE by inspecting the edges in T incident to v. This takes
O(sort(N)) I/Os for all leaves of TE .

To compute T ′
E we define a compressed version T c

E of T ′
E

as the tree obtained by replacing every maximal path in
T ′
E whose internal nodes have degree two (one child and

one parent) with a single edge (see Figure 3b). We also
define a compressed version T c of T . To do this we partition
the edges of T into two categories (see Figure 4a); We say
that an edge is large if it is the edge with highest index
incident to one of its endpoints. Otherwise it is small. Tree
T c is obtained from T by contracting all large edges (see
Figure 4b). In particular, tree T c contains all small edges
of T . Every vertex of T c represents a connected component
of the subgraph T+ of T induced by all large edges. T c can
be computed in O(sort(N)) I/Os using a few sorting and
scanning steps.

In Section 4.2.1 we show that T c
E can be computed recur-

sively from T c, by showing that there exists an ear decompo-
sition F that has T c as spanning tree and T c

E as ear decompo-
sition tree. We also show that |T c| ≤ N/2. In Section 4.2.2
we show how to obtain T ′

E from T c
E in O(sort(N)) I/Os. In

total, the I/O-complexity of our algorithm is given by the
recurrence I(N) = I(N/2) + O(sort(N)), which solves to
I(N) = O(sort(N)). Thus we obtain the following lemma.

Lemma 5. An unordered EDT TE of ear decomposition
E can be computed in O(sort(N)) I/Os.

4.2.1 Recursive Computation of T
c

E
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The first step towards showing that an ear decomposition
F with spanning tree T c and ear decomposition T c

E exists
is proving that there exists a natural bijection between the
internal vertices of T c

E and the edges of T c.

Lemma 6. For every internal node α ∈ T c
E with E(α) =

Pi, edge ei is an edge of T c, and vice versa.

Proof. The internal nodes of T c
E are exactly the nodes

with two children in T ′
E . For such a node α, neither of

its two children β and γ in TE is a leaf. Hence, neither
R(β) nor R(γ) is a face of G∗. This implies that both faces
corresponding to the endpoints of edge ei, where E(α) = Pi,
have edges of indices larger than i on their boundaries. By
Lemma 4, this implies that edge ei is not large for either of
its two endpoints, so that ei ∈ T c.

A vertex α with less than two children in T ′
E has at least

one child β in TE that is a leaf, so that R(β) is a face
v∗ of G∗. Face v∗ is a face of the subdivision defined by
ears P0, . . . , Pi, but not of the subdivision defined by ears
P0, . . . , Pi−1. Hence, the edge with largest index on the
boundary of v∗ has index i. By Lemma 4, this implies that
edge ei is the largest edge incident to vertex v in T , so that
ei is large, and ei 6∈ T c.

Using Lemma 6, we can prove the existence of an ear
decomposition with spanning tree T c and ear decomposition
tree T c

E , which allows the recursive construction of T c
E from

T c.

Lemma 7. There exists an ear decomposition F of the
dual H∗ of an embedded planar graph H that has T c as its
spanning tree and tree T c

E as its ear decomposition tree.

Proof. Let α be a node in T ′
E with children β and γ, and

let E(α) = Pi. Then the removal of edge ei divides T (α) into
T (β) and T (γ). The nodes in T ′

E(β) and T ′
E(γ) correspond to

the edges in T (β) and T (γ), respectively. In particular, by
Lemma 6, the nodes with two children in T ′

E(β) and T ′
E(γ)

correspond to the small edges in T (β) and T (γ). Hence, if
α ∈ T c

E , then edge ei divides T c(α) into subtrees T c(β′) and
T c(γ′), where β′ and γ′ are the children of α in T c

E . This
allows the following recursive definition of F :

Consider a drawing of T c in the plane. For the root ρ′

of T c
E with E(ρ′) = Pi, we draw a cycle that intersects only

edge ei, thereby defining two regions R(α) and R(β) for the
two children α and β of ρ′ in T c

E so that T c(α) is embedded
inside R(α) and T c(β) is embedded inside R(β).

For every non-root node α with children β and γ in T c
E , let

E(α) = Pj . Since ej partitions T c(α) into subtrees T c(β)
and T c(γ), we can split region R(α) into two regions R(β)
and R(γ) by adding an ear E(α) with both endpoints on
the boundary of R(α) and intersecting only ej . Then T c(β)
is contained in R(β), and T c(γ) is contained in R(γ). Con-
tinuing this construction to the leaves of T c

E produces the
desired ear decomposition F .

By Lemma 7, we can construct T c
E recursively from T c.

Now observe that every vertex in T has one incident edge
that is large. On the other hand, every edge is large for at
most two vertices: its two endpoints. Hence, there are at
least N/2 large edges in T , and |T c| ≤ N/2.

4.2.2 Constructing T
′
E

from T
c

E

To construct T ′
E from T c

E , we start by mapping missing
vertices of T ′

E to the leaves of T c
E . In particular, there exists

a natural bijection between the leaves of T c
E and the con-

nected components of T+. Every edge in such a connected
component corresponds to a missing vertex of T ′

E ; we map
this vertex to the leaf of T c

E corresponding to this compo-
nent. Given this mapping of missing vertices to the leaves of
T c
E , we show that tree T ′

E can be obtained by inserting every
missing vertex β on an edge of T c

E connecting two appropri-
ate ancestors of α, where α is the leaf that β was mapped
to.

The bijection between the connected components of T+

and the leaves of T c
E is provided by the following lemma,

whose proof we provide in the full paper.

Lemma 8. Consider a connected component T ′ of T+.
Then the set of nodes in T ′

E corresponding to the edges in
T ′ contains exactly one leaf α of T c

E , and all other nodes in
this set are ancestors of α in T ′

E .

By Lemma 8, we can obtain T ′
E by inserting every node β

mapped to a leaf α on an edge connecting two appropriate
ancestors of α. To find the correct edge for every node β
and to arrange the nodes inserted on the same edge in the
right order, we use the monotonicity of root-to-leaf paths in
T ′
E . In particular, observe that for a node α with E(α) = Pi

and any proper ancestor β of α in T ′
E with E(β) = Pj ,

j < i. Hence, we can use the following three-step approach
to construct T ′

E from T c
E :

First we map the connected components of T+ (and the
corresponding nodes of T ′

E) to the leaves of T c
E . This requires



sorting and scanning the set of leaves of T c
E and the edge set

of T+ to find for every connected component T ′ of T+, the
leaf α of T c

E with E(α) = Pi so that ei ∈ T ′. Next, to
map every node β currently mapped to a leaf α of T c

E to the
appropriate edge (γ, δ) of T c

E , we find the two ancestors γ
and δ of α so that h < i < j, where E(γ) = Ph, E(β) = Pi,
and E(δ) = Pj . In the full paper, we argue that finding
vertices γ and δ is an oblivious search query on tree T c

E in the
sense defined in [18]. Hence, these queries can be answered
in O(sort(N)) I/Os for all missing nodes of T ′

E , using the
topology buffer tree [18]. Finally, to replace every edge e of
T c
E with the correct path in T ′

E , we sort the nodes mapped
to edge e by increasing indices of their associated ears and
replace edge e with a path having these nodes as internal
vertices, in this order. This takes another O(sort(N)) I/Os.
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