On External-Memory Planar Depth First Search

Lars Arge's*, Ulrich Meyer?:**, Laura Toma'*** and Norbert Zeh?-1

! Department of Computer Science, Duke University, Durham, NC 27708, USA
{large,laura}@cs.duke.edu
2 Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
umeyer@mpi-sb.mpg.de
3 School of Computer Science, Carleton University, Ottawa, Canada
nzeh@scs.carleton.ca

Abstract. Even though a large number of I/O-efficient graph algo-
rithms have been developed, a number of fundamental problems still
remain open. For example, no space- and I/O-efficient algorithms are
known for depth-first search or breadth-first search in sparse graphs. In
this paper we present two new results on I/O-efficient depth-first search
in an important class of sparse graphs, namely undirected embedded pla-
nar graphs. We develop a new efficient depth-first search algorithm and
show how planar depth-first search in general can be reduced to planar
breadth-first search. As part of the first result we develop the first I/0O-
efficient algorithm for finding a simple cycle separator of a biconnected
planar graph. Together with other recent reducibility results, the sec-
ond result provides further evidence that external memory breadth-first
search is among the hardest problems on planar graphs.

1 Introduction

External memory graph algorithms have received considerable attention lately
because massive graphs arise naturally in many applications. Recent web crawls,
for example, produce graphs with on the order of 200 million nodes and 2 billion
edges, and recent work in web modeling uses depth-first search, breadth-first
search, shortest path computation and connected component computation as
primitive routines for investigating the structure of the web [5]. Massive graphs
are also often manipulated in Geographic Information Systems (GIS), where
many common problems can be formulated as basic graph problems. Yet an-
other example of a massive graph is AT&T’s 20TB phone-call data graph [7].

* Supported in part by the National Science Foundation through ESS grant EIA-
9870734, RI grant EIA-9972879 and CAREER grant EIA-9984099.

** Supported in part by the IST Programme of the EU under contract number IST-
1999-14186 (ALCOM-FT). Part of this work was done while visiting Duke Univer-
sity.

*** Supported in part by the National Science Foundation through ESS grant EIA-
9870734 and CAREER grant EIA-9984099.
t Supported in part by NSERC and NCE GEOIDE research grants. Part of this work
was done while visiting Duke University.

When working with such massive graphs the I/ O-communication, and not the in-
ternal memory computation time, is often the bottleneck. Designing I/O-efficient
algorithms can thus lead to considerable runtime improvements.

Breadth-first search (BFS) and depth-first search (DFS) are the two most
fundamental graph searching strategies. They are extensively used in many
graph algorithms. The reason is that both strategies can be implemented in
linear time in internal memory; still they reveal important information about
the structure of the input graph. Unfortunately, no I/O-efficient BFS or DFS
algorithms are known for arbitrary sparse graphs, while known algorithms per-
form reasonably well on dense graphs. In this paper we consider an important
class of sparse graphs, namely undirected embedded planar graphs. This class is
restricted enough to hope for more efficient algorithms than for arbitrary sparse
graphs. Several such algorithms have indeed been obtained recently [3,15]. We
develop an improved DFS algorithm for planar graphs and show how planar DFS
can be reduced to planar BFS. Since several other problems on planar graphs
have also been shown to be reducible to BFS, this provides further evidence that
in external memory BFS is among the hardest problems on planar graphs.

1.1 I/0-Model and Previous Results

We work in the standard two-level I/O model with one (logical) disk [1] (our
results work in a D-disk model; but for brevity we only consider one disk in this
extended abstract). The model defines the following parameters:

N = number of vertices and edges (N = |V| + |E|),
M = number of vertices/edges that can fit into internal memory,

B = number of vertices/edges per disk block,

where 2B < M < N. An Input/Output operation (or simply I/0) involves
reading (or writing) a block from (to) disk into (from) internal memory. Our
measure of performance of an algorithm is the number of I/Os it performs. The
number of I/Os needed to read N contiguous items from disk is scan(N) = O (%)
(the linear or scanning bound). The number of I/Os required to sort N items
is sort(N) = (% logy, /B &) (the sorting bound) [1]. For all realistic values of
N, B, and M, scan(N) < sort(N) < N. Therefore the difference between the
running times of an algorithm performing N I/Os and one performing scan(N)
or sort(N) I/Os can be very significant [8,4].

I/O-efficient graph algorithms have been considered by a number of au-
thors. For a review see [19] and the references therein. We review the previ-
ous results most relevant to our work. The best previously known general DFS
algorithms on undirected graphs use O((|V| + (|E|/B))log, |V|) 1/Os [12] or
O(|V| + (|[V|/M) - (|E|/B)) 1/Os [8]. Since the best known general BFS algo-
rithm uses only O(|V| + (|E|/|V|)sort(|V])) = O(|V| + sort(|E|)) I/Os [17], this
suggests that on undirected graphs DFS might be harder than BFS. For di-
rected graphs the best known algorithms for BFS and DFS both use O((|V| +
|E|/B) - log(|V|/B) + sort(|E|)) I/Os [6]. In general we cannot hope to design

algorithms that perform less than 2(min(|V|,sort(|V]))) I/Os for either of the
two problems [2, 8,17]. As mentioned above, in practice O(min(|V|,sort(|V]))) =
O(sort(|V])). Still, all of the above algorithms use £2(|V]) I/Os. For planar graphs
this bound is matched by the standard internal memory algorithms.

Recently, the first o(N) DFS and BFS algorithms for undirected planar
graphs were developed [15]. These algorithms use O(% + sort(NB7)) I/0s
and O(NB") space, for any 0 < v < 1/2. Further improved algorithms have
been developed for special classes of planar graphs. For trees, O(sort(N)) I/0
algorithms are known for both BFS and DFS—as well as for Euler tour compu-
tation, expression tree evaluation, topological sorting, and several other prob-
lems [6, 8, 3]. BFS and DFS can also be solved in O(sort(/N)) I/Os on outerplanar
graphs [13] and on k-outerplanar graphs [14]. Developing O(sort(N)) I/O DFS
and BFS algorithms for arbitrary planar graphs is a challenging open problem.

1.2 Owur Results

The contribution of this paper is two-fold. In Sec. 2 we present a new DFS
algorithm for undirected embedded planar graphs that uses O(sort(NN)log N)
I/Os and linear space. For most practical values of B, M and N this algorithm
uses o(N) I/Os and is the first such algorithm using linear space. The algorithm
is based on a divide-and-conquer approach first proposed in [18]. It utilizes a
new O(sort(N)) I/0 algorithm for finding a simple cycle in a biconnected planar
graph such that neither the subgraph inside nor the one outside the cycle contains
more than a constant fraction of the edges of the graph. Previously, no such
algorithm was known.

In Sec. 3 we use ideas similar to the ones utilized in [9] to obtain an O(sort(N))
I/0 reduction from DFS to BFS on undirected embedded planar graphs. Con-
trary to what has been conjectured for general graphs, this shows that for planar
graphs BFS is as hard as DFS. A recent paper shows that given a BFS-tree of a
planar graph, the single source shortest path problem as well as the multi-way
separation problems can be solved in O(sort(N)) I/Os [3]. Together, these results
suggest that BFS may indeed be a universally hard problem for planar graphs.
That is, if planar BFS can be performed I/O-efficiently, most other problems on
planar graphs can also be solved I/O-efficiently.

2 DFS using Simple Cycle Separators

2.1 Outline of the Algorithm

Our O(sort(N)log N) I/0 and linear space algorithm for computing a DFS tree
of a planar graph is based on a divide-and-conquer approach proposed in [18].
A cutpoint of a graph G is a vertex whose removal disconnects G. We first
consider the case where G is biconnected, i.e., does not contain any cutpoints. In
Sec. 2.2 we show that for a biconnected planar graph G we can compute a simple
cycle a-separator in O(sort(NN)) I/Os (Thm. 2). A simple cycle a-separator C' of

Fig. 1. The path P’ is shown in bold. Components are shaded dark grey. Medium edges
are edges {u;, v;}. Light edges are non-tree edges.

G is a simple cycle such that neither the subgraph inside nor outside the cycle
contains more than «a|E| edges. The main idea of our algorithm is to partition
G using a simple cycle a-separator, for some constant 0 < a < 1, recursively
compute DFS-trees for the connected components of G \ C, and combine them
to obtain a DFS-tree for G. Given that each recursive step can be realized in
O(sort(N)) I/0Os, the whole algorithm takes O(sort(IN)log N) I/Os.

In more detail, we construct a DFS tree T of a biconnected embedded planar
graph G, rooted at some vertex s as follows (see Fig. 1): First we compute a
simple cycle a-separator C' of G in O(sort(N)) I/Os. Then we find a path P
from s to some vertex v in C' by computing a spanning tree 7' of G and finding
the closest vertex to s in C along T". This also takes O(sort(N)) I/Os [8]. Next
we extend P to a path P’ containing all vertices in P and C. To do so we
identify the counterclockwise neighbor w € C of v, relative to the last edge on
P, remove edge {v,w} from C, rank the resulting path to obtain the clockwise
order of the vertices in C, and finally concatenate P with the resulting path. All
these steps can be performed in O(sort(N)) I/Os [8]. We compute the connected
components Hi,...,H of G\ P' in O(sort(N)) I/Os [8]. For each component
H;, we find the vertex v; € P’ furthest away from s along P’ such that there is
an edge {ui,v;}, u; € H;. This can easily be done in O(sort(N)) I/Os. Next we
recursively compute DF'S trees 71, . .., T} for components Hy, ..., H; and obtain
a DFS tree T for G as the union of trees T1,. .., Tk, path P, and edges {u;,v;},
1 < i < k. Note that components Hy, ..., Hy are not necessarily biconnected.
Below we show how to deal with this case.

To see that T' is indeed a DFS tree, first note that there are no edges between
components Hy, ..., H,. For every non-tree edge {v,w} connecting a vertex v
in a component H; with a vertex w in P’, v is a descendant of u; and, by the
choice of v;, w is an ancestor of v;. Thus all non-tree edges in G are back-edges,
and T is a DFS tree.

We handle the case where G is not biconnected by finding the biconnected
components or bicomps (i.e., the maximal biconnected subgraphs) of G, com-
puting a DFS tree for each bicomp and joining them at the cutpoints. More
precisely, we compute the bicomp-cutpoint-tree Tg of G containing all cutpoints
of G and one vertex v(C) per bicomp C. There is an edge between a cutpoint v
and a bicomp vertex v(C) if v is contained in C'. We choose a bicomp C,. contain-
ing vertex s as the root of Tg. The parent cutpoint of a bicomp C' is the parent

p(v(C)) of v(C) in T. The parent bicomp of C is the bicomp C’ corresponding
to v(C") = p(p(v(C))). Te can be constructed in O(sort(N)) I/Os [8]. We com-
pute a DFS tree of C). rooted at vertex s. In all other bicomps C, we compute
a DFS tree rooted at the parent cutpoint of C'. The union of the resulting DFS
trees is a DFS tree for G rooted at s, as there are no edges between different
bicomps. Thus, we obtain our first main result.

Theorem 1. A DFS tree of an embedded planar graph can be computed in
O(sort(N)log N) I/0 operations and linear space.

2.2 Finding a Simple Cycle Separator

Utilizing ideas similar to the ones used in [11,16] we now show how to compute
a simple cycle %—sepa.rator for a planar biconnected graph.

Given an embedded planar graph G, the faces of G are the connected regions
of R2 \ G. We use F to denote the set of faces of G. The boundary of a face f is
the set of edges contained in the closure of f. For a set F’ of faces of G, let G g
be the subgraph of G defined as the union of the boundaries of the faces in F'.
The complement G+ of Gg is the graph obtained as the union of boundaries of
all faces in F'\ F'. The boundary of G is the intersection between Gpr and its
complement Ggr. The dual G* of G is the graph containing one vertex f* per
face f € F, and an edge between two vertices f; and f5 if faces f; and f» share
an edge. We use v*, e*, and f* to refer to the face, edge, and vertex which is
dual to vertex v, edge e, and face f, respectively. The dual G* of a planar graph
G is planar and can be computed in O(sort(N)) I/Os [10].

The main idea in our algorithm is to find a set of faces F' C F such that the
boundary of Ggr is a simple cycle %—separator. The main difficulty is to ensure
that the boundary of G is a simple cycle. We compute F” as follows: First we
check whether there is a single face whose boundary has size at least % (Fig. 2a).
If we find such a face, we report its boundary as the separator C. Otherwise,
we compute a spanning tree T™* of the dual G* of G rooted at an arbitrary node
r. Every node v € T* defines a maximal subtree T*(v) of T* rooted at v. The
nodes in this subtree correspond to a set of faces in G whose boundaries define
a graph G(v). Below we show that the boundary of G(v) is a simple cycle in
G. We try to find a node v such that §|E| < |G(v)| < 2|E|, where |G(v)| is
the number of edges in G(v) (Fig. 2b). If we succeed, we report the boundary
of G(v). Otherwise, we are left in a situation where for every leaf [€ T* (face
in G*) we have |G(l)| < ¢|E|, for the root r of T* we have |G(r)| = |E|, and
for every other vertex v € T* either |G(v)| < %|E| or |G(v)| > 2|E|. Thus,
there has to be a node v with |G(v)| > 3|E| and |G(w;)| < §|E|, for all children
wi, ..., wy of v. We show how to compute a subgraph G’ of G(v) consisting of
the boundary of the face v* and a subset of the graphs G(w;),...,G(wy) such
that ¢|E| < |G| < 2|E|, and the boundary of G' is a simple cycle (Fig. 2c).
Below we describe our algorithm in detail and show that all of the above steps
can be performed in O(sort(N)) I/Os. This proves the following theorem.

ﬂ\ [N\
Pl NN
7k

(a) (b) (c)

Fig. 2. (a) A heavy face. (b) A heavy subtree. (c) Splitting a heavy subtree.

Theorem 2. A simple cycle g—sepamtor of an embedded biconnected planar
graph can be computed in O(sort(N)) I/0 operations and linear space.

Checking for heavy faces. In order to check if there exists a face f in G
with a boundary of size at least %|E|, we represent each face of G as a list of
vertices along its boundary. Computing such a representation takes O(sort(V))
I/0s [10]. Then we scan these lists to see whether any of them has length at
least £|E|.

Checking for heavy subtrees. First we prove that the boundary of G(v)
defined by the nodes in T*(v) is a simple cycle. A planar graph is uniform if
its dual is connected. Since for every v € T*, T*(v) and T* \ T*(v) are both
connected, G(v) and its complement G(v) are both uniform. Using the following
lemma, this implies that the boundary of G(v) is a simple cycle.

Lemma 1 (Smith [18]). Let G' be a subgraph of a biconnected planar graph
G. The boundary of G' is a simple cycle if and only if G' and its complement
are both uniform.

Next we show how to find a node v € T* such that #|E| < |G(v)| < 2|E|.
G* and T* can both be computed in O(sort(N)) I/Os [10,8]. For every node
v € T*, let |v*| be the number of edges on the boundary of face v*. Let the
weight w(G(v)) of subgraph G(v) be defined as w(G(v)) = X, cr(y) [W*]- As
w(Gw)) = |1)*|+Zf:1 w(G(w;)), where wy, . . ., wy, are the children of v in T*, we
can process T bottom-up to compute the weights of all subgraphs G(v). Using
time-forward processing [8], this takes O(sort(NN)) I/Os. For anode v in T™* every
boundary edge of G(v) is counted once in w(G(v)); every interior edge is counted
twice. This implies that if 2|E| < w(G(v)) < 2|E|, then L|E| < |G(v)| < 2|E|.
Thus, we can find a node v € T* with #|E| < |G(v)| < 3|E| in O(scan(N))
I/0s by scanning through the list of nodes T* and finding a node v such that
3|E| < w(G(v)) < 2|E|, if such a node exists.!

' Note that even if a node v with #|E| < |G(v)| < 2|E| exists in T*, the algorithm
might not find it since it does not follow that |E| < w(G(v)) < 2|E|. This is not

(a) (b)

Fig. 3. (a) The boundary of v* U G(ws) is not a simple cycle. (b) Grey regions are in
H, ().

Splitting a heavy subtree. We are now in a situation where no vertex v € T*
satisfies 1|E| < w(G(v)) < 2|E|. Thus, there must be a vertex v € T* with
children wy, . .., wy such that w(G(v)) > 2|E| and w(G(w;)) < 3|E|, for 1 <i <
k. Our goal is to compute a subgraph of G(v) consisting of the boundary v* and
a subset of the graphs G(w;) whose weight is between %|E| and 2|E| and whose
boundary is a simple cycle C.

In [11] it is claimed that the boundary of the graph defined by v* and any
subset of graphs G(w;) is a simple cycle. Unfortunately this is not true in gen-
eral, as illustrated in Fig. 3(a). However, as we show below, we can compute a
permutation o : {1...k} — {1...k} such that if we start with v* and incre-
mentally “glue” G(w,(1)), G(we(2)), - -+, G(wyr)) onto face v*, the boundary
of each of the obtained graphs is a simple cycle. More formally, we show that if
we define H, (i) = v* U U, G(wy(;)) then H, (i) and H, (i) are both uniform
for all 1 < ¢ < k. This implies that the boundary of H,(¢) is a simple cycle
by Lemma 1. Since we have already computed the sizes |v*| of faces v* and
the weights w(G(v)) of all graphs G(v), it takes O(scan(N)) I/Os to compute
weights w(H, (7)), 1 < i < k, and find index i such that §|E| < w(H,(i)) < 2|E|.
Tt remains to show how to compute the permutation o I/O-efficiently.

To construct o, we extract G(v) from G, label v* with 0, and label every
face in G(w;) with 7. Next we label every edge in G(v) with the labels of the
two faces on each side of it. We perform the labeling in O(sort(N)) I/Os using
the previously computed representations of G and G* and a post-order traversal
of T*. Details will appear in the full paper. Now consider the vertices v,...,v;
on the boundary of v* in the order they appear clockwise around v*, starting
at the common endpoint of an edge shared by v* and the face corresponding to
v’s parent p(v) in T™*. As in Sec. 2, we can compute this order in O(sort(N))
I/0Os using list ranking. For each v; we construct a list L; of edges around v; in

a problem, however, since in this case a simple cycle %-sepa.rator will still be found
in the final phase or our algorithm. In the full paper we discuss how to modify the
algorithm in order to compute |G(v)| exactly for each node v € T™. This allows us
to find even a simple cycle %—separator.

clockwise order, starting with edge {v;—1,v;} and ending with edge {v;,viy1}.
These lists are easily computed in O(sort(N)) I/Os from the embedding of G.
Let L be the concatenation of lists Ly, La, ..., L;. For an edge e in L incident
to a vertex v;, let f; and fy be the two faces incident to e, where f; precedes
f2 in clockwise order around v;. We construct a list F' of face labels from L in
O(scan(N)) I/Os by considering the edges in L in order and appending the labels
of fi and f> in this order to F. List F' consists of integers between 1 and k. Some
integers may appear more than once, and the occurrences of some integer i are
not necessarily consecutive. (This happens if the union of v* with a subgraph
G(w;) encloses another subgraph G(w;); see Fig. 3(a).) We construct a final list
S by removing all but the last occurrence of each integer from F' (Intuitively, this
ensures that if the union of v* and G(w;) encloses another subgraph G(w;), then
J appears before i in S). This takes O(sort(NN)) I/Os by sorting and scanning F
twice. Again details will appear in the full paper. S contains each of the integers
1 through k exactly once and thus defines a permutation o. All that remains is
to prove the following lemma.

Lemma 2. For all1 <i <k, H;(i) and H,(i) are both uniform.

Proof. Every graph H, (i) is uniform because every subgraph G(w;) is uniform

and wj is connected to v by an edge in G*. Next we show that every H, (i) is

uniform. To do this we must show that every H, (z)* is connected. Note that
G(v) C H,(i), G(v) is uniform, and each graph G(w;) is uniform. Hence, in

order to prove that H, (z)* is connected, it suffices to show that for all i < j < k,
there is a path in H, (z)* connecting a vertex in G(w;)* to a vertex in m* So
assume for the sake of contradiction that there is a graph G(w;), i < j < k, such
that there is no such path from a vertex in G(w;)* to a vertex in W* in H, (z)*
(Fig. 3(b)). Let G be the uniform component of H, (i) containing G(w;), and C
be the boundary cycle of G. Let P be the path obtained by removing the edges
shared by v* and p(v)* from the boundary cycle of v*. Let v; be the first vertex
of C' encountered during a clockwise walk along P; let vs be the last such vertex.
We define P’ to be the path obtained by walking clockwise around G starting at
v1 and ending at vs. Let e; be the first and ey be the last edge on P'. Edge e;
separates two faces f; € H, (i) and fo € H,(i). Similarly, edge e> separates two
faces f3 € H,(i) and fq € H,(i). Let j1, j2, j3 and js be the labels of these faces.
We show that label j, appears before label j4 in S: Assume that label js appears
after label j4 in S. Then there has to be a face f' with label j» occurring after
face f4 clockwise around v*. In particular, face f' is outside cycle C, while face
fo is inside. As G*(wj,) is connected there has to be a path from f'* to f; in
G*(wj,). But this is not possible since every path from f3 to f'* must contain
an edge e*, for some edge e € C, and edge e* cannot be in G*(wj,) because
one of its endpoints is in H} (). Therefore it follows that label jo appears before
label j4 in S. But this means means that fs is being added to H, (i) before fi,
contradicting the assumption that fo € H, (i) and fy € Hy (7). O

., D
-] ' e
\ T -
——
(a) (b)

Fig. 4. (a) A graph G with its faces colored according to their levels; level 0 white,
level 1 light grey, level 2 dark grey. (b) Hp (solid), Hi (dotted), H> (dashed).

3 Reducing DFS to BFS

This section gives an I/O-efficient reduction from DFS in an embedded planar
graph G to BFS in its vertez-on-face graph, using ideas from [9]. The vertex-on-
face graph G' of G is defined as follows: The vertex set of Gt is V' U V*; there
is an edge (v, f*) in G if v is on the boundary of face f. The graph G' can be
computed from G in O(sort(N)) I/Os in a way similar to the computation of the
dual G* of G. We use the vertex-on-face graph instead of the graph used in [9],
because the vertex-on-face graph of an embedded planar graph G is planar. This
could be important in case planar BFS turns out to be easier than general BFS.

The basic idea in our algorithm is to partition the faces of G into levels
around a source face with the source s of the DFS tree on its boundary, and then
grow a DFS tree level-by-level; Let the source face be at level 0. We partition
the remaining faces of G into levels so that all faces at level 1 share a vertex
with the level-0 face, all faces at level 2 share a vertex with some level-1 face
but not with the level-0 face, and so on (Fig. 4a). Let G; be the subgraph of
G defined by the union of the boundaries of faces at level at most 7, and let
H; = G;\ G;—1 (Fig. 4b). We call the vertices of H; level-i vertices. To grow
the DFS tree we start by walking clockwise? around the level-0 face Gy until
we reach the counterclockwise neighbor of s on Gy. The resulting path is a DFS
tree Ty for Gy. Next we build a DFS tree for H; and attach it to Ty in a way
that does not introduce cross-edges, thereby obtaining a DFS tree T; for Gj.
We repeat this process until we have processed all layers H;. The key to the
efficiency of the algorithm lies in the simple structure of the graphs H;. Below
we give the details of our algorithm and prove the following theorem.

Theorem 3. Let G be an undirected embedded planar graph, G its vertez-on-
face graph, and f o face of G* containing the source vertex s. Given a BFS tree
of Gt rooted at f*, a DFS tree of G rooted at s can be computed in O(sort(N))
I/0s.

2 A clockwise walk on the boundary of a face means walking so that the face is to our
right.

(a) (b) (c)

Fig. 5. (a) G' shown in bold. (b) T1, H> and attachment edges {u;,v;}.Vertices in Ty
are labeled with their DFS-depths. (c) The DFS tree.

Corollary 1. If there is an algorithm that computes a BFS tree of a planar
graph in Z(N) 1/Os using S(N) space, then DFS on planar graphs takes O(Z(N))
I/0s and O(S(N)) space.

First consider the computation of graphs G; and H;. The level of all faces can
be obtained from a BFS tree for the vertex-on-face graph G' rooted at a face
containing s (Fig. 5(a)). Every vertex of G is at an odd level in the BFS tree;
every dual vertex corresponding to a face of G is at an even level. The level of a
face is the level of the corresponding vertex in the BFS tree divided by two. Given
the levels of all faces, the graphs G; and H; can be computed in O(sort(N)) I/Os
using standard techniques similar to the ones used in computing G* from G.

Now assume that we have computed a DFS tree T;_; for G;_;. Our goal is to
compute a DFS forest for H; and link it to T;_; without introducing cross-edges.
If we can do so in O(sort(|H;|)) I/Os we obtain an O(sort(IN)) I/O reduction
from planar DFS to planar BFS. Note that the entire graph H; lies “outside” the
boundary of G;_1, i.e., in G;_1. The boundary of G;_; is in H;_; and consists of
cycles, called the boundary cycles of G;_1. The graph G;_; is uniform; but G;_;
may not be uniform. Graph H; may consist of several connected components.
The following lemma shows that H; has a simple structure, which allows us to
compute its DFS tree efficiently.

Lemma 3. The non-trivial bicomps of H; are the boundary cycles of G;.

Proof. Consider a cycle C in H;. All faces incident to C are at level ¢ or greater.
Since G;_; is uniform, all its faces are either inside or outside C. Assume w.l.0.g.
that G;_; is inside C. Then none of the faces outside C shares a vertex with a
level-(i — 1) face. That is, all faces outside C must be at level at least ¢ + 1, which
means that C' is a boundary cycle of GG;. Thus any cycle in H; is a boundary cycle
of G;. Every bicomp that is not a cycle consists of at least two cycles sharing at
least two vertices; but the cycles must be boundary cycles, and two boundary
cycles of a uniform graph cannot share two vertices. Hence every bicomp is a
cycle and thus a boundary cycle. O

Assume for the sake of simplicity that the boundary of G;_; is a simple cycle,
so that G;_; is uniform. During the construction of the DFS tree for G we

maintain the following invariant used to prove the correctness of the algorithm:
For every boundary cycle C of G;_1, there is a vertex v on C such that the path
traversed by walking clockwise along C' is a path in T;_;, and v is an ancestor
of all vertices in C' (Figure 5b). The depth of a vertex in G;_ is its distance
from s in T;_4. Let Hy,..., H} be the connected components of H;. They can
be found in O(sort(|H;[)) I/Os [8]. For every component H}, we find the deepest
vertex v; on the boundary of G;_; such that there is an edge {u;,v,;} € G with
u; € Hj. We find these vertices using a procedure similar to the one used in
Sec. 2. Below we show how to compute DFS trees T for components H; rooted
at nodes u; in O(sort(|Hj|)) I/Os. Let T; be the spanning tree of G; obtained
by adding these DFS trees and all edges {u;,v;} to Ti_1. T; is a DFS tree for
G;: Let {v,w} be a non tree edge with v € H}. Then either w € H}, or w is a
boundary vertex of G;_; because H; C G\ G;_1. In the former case, {v,w} is a
back-edge, as T} is a DFS tree for Hj. In the latter case, {v,w} is a back-edge
because v is a descendant of u;, and w is an ancestor of v;, by the choice of v;
and by our invariant.

All that remains to show is how to compute the DFS tree rooted at wu;
for each connected component H; of H;. If we can compute DFS trees for the
biconnected components of H J’-, we obtain a DFS tree for H]’ using the bicomp-
cutpoint tree as in Sec. 2. By Lemma 3 the non-trivial biconnected components
of H; are cycles. Let C' be such a cycle in H J'-, and v be the chosen root for
the DFS tree of C. The path obtained after removing the edge between v and
its counterclockwise neighbor w along C is a DFS tree for C. We find w using
techniques similar to those applied in Sec. 2. In total we compute the DFS tree
for Hj in O(sort(|Hj|)) I/Os. As this adds simple paths along the boundary
cycles of G; to T;, the above invariant is preserved.

For the sake of simplicity all the previous arguments were based on the
assumption that the boundary of G;_; is a simple cycle. In the general case we
compute the boundary cycles (1, .. .,C}y of G;_1 and apply the above algorithm
to every C;. Each cycle Cj is the boundary of a uniform component G of Gi_.
Thus, cycles C4,...,C) separate subgraphs H; ; = H; N G; from each other.
Details will appear in the full paper. This concludes the proof of Thm. 3.

4 Conclusions

We developed the first o(/V) and linear space algorithm for DFS in planar graphs.
We also designed an O(sort(N)) reduction from planar DFS to planar BFS,
proving that in external memory DFS is not harder than BFS and thus providing
further evidence that BFS is among the hardest problems for planar graphs.

Adding the single source shortest path algorithm of [4] as an intermediate
reduction step, we can modify our reduction algorithm in order to reduce planar
DFS to BFS on either a planar triangulated graph or a planar 3-regular graph.
Developing an efficient BFS algorithm for one of these classes of graphs remains
an open problem.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

L. Arge. The I/O-complexity of ordered binary-decision diagram manipulation. In
Proc. Int. Symp. on Algorithms and Computation, LNCS 1004, pages 82-91, 1995.
L. Arge, G. S. Brodal, and L. Toma. On external memory MST, SSSP and multi-
way planar graph separation. In Proc. Scandinavian Workshop on Algorithms
Theory, LNCS 1851, pages 433—-447, 2000.

L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on grid-
based terrains. In Proc. Workshop on Algorithm Engineering and Experimentation,
2000.

A. Broder, R. Kumar, F. Manghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web: experiments and models.
In Proc. WWW Conference, 2000.

A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook.
On external memory graph traversal. In Proc. ACM-SIAM Symp. on Discrete
Algorithms, pages 859-860, 2000.

A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph views. In
Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 566-575, 2000.

Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and
J. S. Vitter. External-memory graph algorithms. In Proc. ACM-SIAM Symp. on
Discrete Algorithms, pages 139-149, 1995.

T. Hagerup. Planar depth-first search in O(log n) parallel time. STAM Journal on
Computing, 19(4):678-704, August 1990.

D. Hutchinson, A. Maheshwari, and N. Zeh. An external-memory data structure for
shortest path queries. In Proc. Annual Combinatorics and Computing Conference,
LNCS 1627, pages 51-60, 1999.

J. JaJa and R. Kosaraju. Parallel algorithms for planar graph isomorphism and
related problems. IEEE Transactions on Circuits and Systems, 35(3):304-311,
March 1988.

V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-
ing graph problems in external memory. In Proc. IEEE Symp. on Parallel and
Distributed Processing, pages 169177, 1996.

A. Maheshwari and N. Zeh. External memory algorithms for outerplanar graphs.
In Proc. Int. Symp. on Algorithms and Computation, LNCS 1741, pages 307-316,
1999.

A. Maheshwari and N. Zeh. I/O-efficient algorithms for graphs of bounded
treewidth. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 89-90, 2001.
U. Meyer. External memory bfs on undirected graphs with bounded degree. In
Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 87-88, 2001.

G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and System Sciences, 32(3):265-279, 1986.

K. Munagala and A. Ranade. I/O-complexity of graph algorithm. In Proc. ACM-
SIAM Symp. on Discrete Algorithms, pages 687—694, 1999.

J. R. Smith. Parallel algorithms for depth-first searches I. Planar graphs. SIAM
Journal on Computing, 15(3):814-830, August 1986.

J. S. Vitter. External memory algorithms and data structures. In J. Abello and
J. S. Vitter, editors, Ezternal Memory Algorithms and Visualization, pages 1-38.
DIMACS series in Discrete Mathematics and Theoretical Computer Science, 1999.

