Flow Computation on Massive Grids”

Laura Toma
Lars Arge

Jeffrey S. Chase

Rajiv Wickremesinghe
Jeffrey Scott Vitter

Department of Computer Science, Duke University, Durham, NC 27708.

Patrick N. Halpin

Dean Urban

Nicholas School of the Environment, Duke University, Durham, NC 27708.

ABSTRACT

As detailed terrain data becomes available, GIS applications
target larger geographic areas at finer resolutions. Process-
ing the massive data presents significant challenges to GIS
systems and demands algorithms that are optimized for both
data movement and computation.

In this paper we develop efficient algorithms for flow rout-
ing on massive terrains, extending our previous work on
flow accumulation. Our implementations of these algorithms
constitute the first comprehensive terrain flow software sys-
tem designed and optimized for massive data. We compare
the performance of our system, called TERRAFLOW, with
that of state of the art commercial and open-source GIS
systems. On large terrains, TERRAFLOW outperforms ex-
isting systems by a factor of 2 to 1000, and is capable of
solving problems of a scope and scale that are impractical
with previous algorithms.

1. INTRODUCTION

A wealth of terrain data has been made available with the
advent of remote sensing projects such as NASA’s Shuttle
Radar Topography Mission (SRTM). SRTM acquired 30-
meter resolution data for 80% of the Earth’s land area, or
about 10 terabytes of data, forming the most complete high-
resolution database of the Earth. As applications target
larger geographic regions at finer resolution, the compu-
tations involved become infeasible using conventional ap-
proaches. In many cases, GIS packages are designed to be
efficient on small datasets, but are inefficient in terms of
their I/O behavior on large problems. For these problems,

*This research was supported in part by the National Sci-
ence Foundation through grants EIA-9870724 and EIA-
9972879. Arge and Toma are supported in part by Arge’s
NSF CAREER award EIA-9984099. Vitter was supported
in part by NSF grant CCR-9877133 and by the Army Re-
search Office through MURI grant DA AH04-9601-0013.

The contact author is Laura Toma, lauraQcs.duke.edu.

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatichpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ACM-GIS'01 Atlanta, GA, USA

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

the bottleneck is typically not the CPU, but rather the data
movement between the fast main memory and disk. The
explosion of massive data in GIS thus presents significant
challenges and demands solutions that optimize data move-
ment as well as computation.

Our work was motivated by experiences with terrain anal-
ysis applications on large datasets. Flow routing and flow
accumulation are basic operations at the core of these ap-
plications. Intuitively, low routing is the assignment of flow
directions at every point in a terrain in order to model the
global flow of water. Flow accumulation quantifies the flow
through each point if water is poured uniformly onto the
terrain. In our previous work [4] we demonstrated that us-
ing I/O-efficient algorithms reduced the running time of the
flow accumulation computation on large terrains from weeks
to hours.

This paper extends our previous work on flow accumula-
tion by presenting an external memory optimal algorithm
for the flow routing problem and a practical implementa-
tion that, together with our previous work, constitutes a
complete and comprehensive software system, TERRAFLOW.
TERRAFLOW is the first terrain analysis software designed
and optimized for massive grids. We compare TERRAFLOW
with the state of the art commercial and open-source GIS
systems (including ArcInfo and GRASS) and present exper-
iments on real-life terrains of various sizes and characteris-
tics. Our system scales well with problem size and outper-
forms existing software on large problem instances by factors
of 2 up to 1000, although results vary with properties of the
topography.

The paper is organized as follows. Section 1 describes
flow routing and flow accumulation, discusses related work
and scalability issues, and outlines the formal basis for our
algorithms. Section 2 describes our novel approach to flow
routing and the main components of TERRAFLOW. Section 3
presents the experimental results and comparisons.

1.1 Background

Much of the terrain data encountered in GIS applications
is obtained from remote sensing devices in raster (grid) form:
the coordinates of the data correspond to a uniform lattice,
and elevations are given for each cell in the grid. Grids are
common because they are simple, and because data is readily
available in this form. This paper assumes the terrain is
represented as a grid.

The neighbors of a grid cell s are the eight cells around
s. A neighbor of s is called a downslope neighbor if it has
a strictly lower elevation than s. The gradient of s towards

R0 N
O

Figure 1: Example of SFD and MFD flow routing.

one of its neighbors can be estimated as the ratio between
the height difference of the cells and the horizontal distance
between them. The gradient at s is positive towards its
downslope neighbors. The steepest downslope neighbor of s
is the downslope neighbor with the largest gradient.

The flow directions of a cell represent the directions in
which water would flow if poured onto that cell. The first
issue in modeling flow is how to represent the flow direc-
tion. Keeping in mind that water flows downhill, the two
standard representations (Fig. 1) are as follows: (1) Single-
flow-direction (SFD) in which water follows a single direc-
tion from each cell toward the steepest downslope neighbor;
and (2) Multi-flow-direction (MFD) in which water follows
multiple directions toward all the downslope neighbor cells.
Water flowing along the flow directions follows a flow path.
The use of SFD or MFD is a modeling choice: Although it
does not affect the computational complexity of the prob-
lem, it does introduce subtle differences in the definitions
and correctness proofs of our algorithms. The rest of this
paper assumes SFD; the full paper shows how to deal with
MFD.

Figure 2: Plateaus (left, center) and sink (right) in
a terrain.

Neither SFD nor MFD specify flow directions for cells
without downslope neighbors. In reality, water flows through
such cells and we want to assign flow directions to most re-
alistically model the global water flow through the terrain.
We call a cell flat if: (1) it has height less than or equal
to all its neighbors; or (2) it has a neighbor of same height
that satisfies (1). A flat area is a maximal set of adjacent
flat cells. The flat area has a spill point if it contains a cell
that has a downslope neighbor. Flat areas are of two types:
plateaus and sinks (Fig. 2). A plateau is a flat area that has
at least one spill point. Intuitively flow directions on the
plateau should be assigned such that, globally, the flow of
the plateau is directed towards its spill points [11]. A sink is
a flat area with no spill points. We cannot route flow out of
a sink, because there is no downslope flow path of water to
the terrain edge. Sinks may represent geographic features
(that have finite capacity and fill under sufficient rainfall),
or they may be artifacts of the input data generation. They
are removed to allow the complete definition of flow routes
across the terrain [10, 13, 11, 17].

The intuitive way to remove sinks is by flooding [11].
Flooding fills the terrain to the steady state level reached
when an infinite amount of water is poured onto the terrain

Figure 3: Flooding a terrain: Sinks fill and overflow
to form a filled terrain.

and the outside is viewed as a giant sink (ocean) (Fig. 3).
Flooding produces a sinkless terrain in which every cell has
a downslope flow path to the edge and can be assigned a
flow direction.

We are now ready to define the flow routing process. Flow
routing floods the terrain and then assigns flow directions
to all cells in the terrain such that the following three con-
ditions are fulfilled:

1. Every cell has at least one flow direction;
2. No cyclic flow paths exist; and

3. Through any cell of the terrain there exists a flow path
to the edge of the terrain.

Flow directions are used to compute the flow accumula-
tion, another important index of a terrain. Flow accumu-
lation quantifies how much water flows through each cell of
the terrain. To compute the flow accumulation of a terrain
we assume that each cell initially has one unit of flow (wa-
ter) and that the flow at a cell, initial as well as incoming,
is distributed according to the flow directions and is propor-
tional to the gradient. Flow accumulation computed using
SFD routing is known as D8 [13, 11, 12, ?].

Once flow direction and flow accumulation have been com-
puted, many other indices of the terrain can be computed
based on them, including watersheds, drainage network and
topographic convergence index. There is a large body of GIS
literature describing methods to estimate and compare flow-
related terrain indices [?, 17, ?, 16, 15, 9, 18]. Most of
these methods are concerned with suitability in analyzing
real phenomena, and not with the computational aspects of
the problem.

1.2 Scalability with massive datasets

While many GIS software packages include algorithms for
flow routing and flow accumulation (e.g. ArcInfo, GRASS,
TOPAZ [9], TARDEM [15], TAPES-G [?], RiverTools [14]),
most of these algorithms are designed to minimize internal
computation time and consequently they often do not scale
to large datasets. To our knowledge, there is no previous
research focusing on both the algorithmic and practical as-
pects of flow routing on massive terrains. The only approach
that is concerned with performance is RiverTools.

We optimize performance by developing algorithms that
explicitly manage data placement and movement (Ezter-
nal Memory or I/O-efficient algorithms) using the stan-
dard two-level I/O-model with one (logical) disk [1]. Data
is transferred between main memory and disks in blocks to
amortize the cost of seeking. The model defines the follow-
ing parameters:

N = number of cells in the grid,
M = number of cells that can fit into internal memory,
B = number of cells per disk block,

where M < N and where we assume that M > B%. An I/O
operation transfers one block of consecutive data between
disk and internal memory. The complexity and cost of an
algorithm in this model is the number of I/Os performed.

The scanning (linear) bound, scan(N) = ©(N/B), is the
number of I/Os needed to read N contiguous items from
disk. The sorting bound, sort(N) = © (% log /s &), is the
number of I/Os to sort N items [1]. For practical values of
B and M, scan(N) < sort(N) < N.

2. TERRAFLOW

This section describes TERRAFLOW’s algorithms for flow
routing and flow accumulation. Section 2.1 describes the
flow routing process. This process requires us to identify
watersheds (Section 2.2) and flood the terrain (Section 2.3).
The TERRAFLOW flow accumulation algorithm has been de-
scribed in detail in our previous work; we summarize the
results in Section 2.4. The main result of this section is the
following theorem:

THEOREM 1. The TERRAFLOW algorithms use O(N log N)
time and O(sort(N)) I/Os.

2.1 TerraFlow Flow Routing

Recall that flow routing consists of flooding the terrain
and then assigning flow directions. The algorithm starts by
computing the flat areas (plateaus and sinks) of the terrain:
To do this, it first assigns flow directions to all cells with a
downslope neighbor. Flat areas are then found by comput-
ing the connected components of the cells with no assigned
flow direction (in the graph representing adjacencies of these
cells) in linear time and linear 1/0 [4].

[]]
VIV ‘

|
Figure 4: Flow directions on a plateau with two
sinks (black cells).

Among the flat areas we can identify the plateaus. On
each plateau we assign directions by doing a breadth-first
search (BFS) starting from all the spill points. When a
node is discovered for the first time, we set its flow direction
towards the node that discovered it. At the end of the BFS
process the total flow of the plateau is partitioned among
its spill points (Fig. 4). We can do this in O(sort(N)) I/Os
using the best known BFS algorithm on grid graphs [4]. It is
easy to see that this assignment of flow directions fulfills flow
routing conditions (1) and (2); furthermore, if condition (3)
is fulfilled for the rest of the terrain, it will also be fulfilled
for the cells on the plateau.

At this point, flow directions have been assigned to all
but the sink cells. We can use these directions to compute
watersheds and flood the terrain in O(sort(N)) I/Os. After
flooding, it does not contain any more sinks, and flow direc-
tions can be assigned for every cell simply by repeating the
two steps above (the previously computed values cannot be
used, since flooding modifies the terrain). This allows us to
state the following theorem.

THEOREM 2. The flow routing problem can be solved in
O(Nlog N) time and O(sort(N)) I/Os.

2.2 Computing Water sheds

A watershed consists of the set of cells around a sink that
route their flow to the sink. (The full paper handles the am-
biguity caused by MFD). The watershed graph is a directed
graph with a node for each watershed and edges labeled with
the lowest elevation between adjacent watersheds. Given a
terrain with precomputed flow directions for all but the sink-
cells, we compute watersheds as follows. We first assign
a watershed label to each sink using O(scan(N)) I/Os and
O(N) time. We then sweep the terrain bottom-up with a
horizontal plane, propagating watershed labels to the neigh-
bors that flow into each cell (a cell s flows into a cell ¢ if one
of the flow directions assigned to s is towards t). The sweep
plane touches the cells in the grid in reverse topological order
of the flow directions: When a cell is processed, the cell(s)
that it flows into have already been touched by the sweep
plane and hence have already been assigned a watershed
label. The naive way to do this is to keep the watershed
labels in a grid W and to access individual cells as needed.
However, to process the N cells, we might do O(N) I/Os,
since the accesses to W may be scattered: this is because
the cells are processed in reverse topological order and are
not necessarily well clustered spatially in this order.

The main property that TERRAFLOW uses to eliminate the
scattered accesses to W and reduce the I/O-complexity from
O(N) to O(sort(N)) is that the neighbors of a cell need to
know the labels of the cells that flow into them only when
they are being processed; that is, when the sweep plane
reaches their elevation. We associate with each cell a prior-
ity equal to its rank in the reverse topological order of the
flow directions (thus, cells are processed in increasing order
of their priorities). Instead of maintaining the watershed
labels in a grid W, we maintain an I/O-efficient priority
queue containing the watershed labels “sent forward” to the
cells not yet processed. In this way, when a cell is processed
during the sweep, we can propagate its watershed label to
the neighbors that flow into it by inserting an element for
each such neighbor into the priority queue. We set the key
equal to the priority of the neighbor and data equal to the
watershed label. We augment each cell with the priorities
of its neighbors. To obtain the watershed label of a cell
being processed, we can simply perform extract_min opera-
tions on the priority queue. We can see that for each cell
in the grid we perform at most a constant number of insert
and extract_min operations, resulting in a total of O(N)
operations in total. The amortized I/O cost of a priority
queue operation is O(% log s/) [2, 5], so the sweep uses
o(% logy/ 5) = O(sort(N)) I/Os. After the sweep deter-
mines the labels of each cell, we sort them by grid position
to obtain the grid of watershed labels.

The full paper discusses how to find the boundaries be-
tween watersheds and how to generate and label the water-
shed graph in the same I/O bounds. For later use, we add
“another” watershed to the watershed graph, called the out-
side watershed, representing the outside of the terrain. We
introduce a special node ¢ for it and include an edge (u, ()
between any watershed u on the boundary of the terrain and
¢. We can do this in linear time and with a linear number
of I/Os. We have the following;:

LEMMA 1. Partitioning a terrain into watersheds and com-

puting the watershed graph can be done in O(N log N) time
and O(sort(N)) I/Os.

2.3 Floodingthe Terrain

We can now describe our new flooding algorithm, which
can be elegantly expressed in terms of sweeping the terrain
using the watershed graph. Based on the definition of flood-
ing, there is a steady-state flow path from each cell to the
edge of the terrain with the height of the cells along the path
being non-increasing. After flooding, we say that a water-
shed u has been raised to height h if every cell in u lower
than h is raised to h. Using the watershed graph we can
formally define flooding as follows.

DEFINITION 1. Let G be the watershed graph of a terrain
T and let the height of a path p in G be defined as the mazx-
imum height of an edge along p. Flooding T is the process
of raising each watershed u in T to height h., where h, is
the height of the lowest height path from u to the outside
watershed (.

Let hy, be the height of edge (u,v) in G, i.e. the lowest
elevation on the boundary between watersheds u and v. The
spill elevation S, of a watershed u in G is the elevation of
the lowest cell on the boundary of u: S, = min{hu.|(u,v) €
E)}. We define the flow graph F to be a subset of G with
same nodes (one node for each watershed including (), and
with an edge from u to v if hy, is the spill elevation of wu.
Note that each node in the flow graph except for ¢ has at
least one outgoing edge (it may have more than one in case
of ties). We first give the following result about the structure
of F, proved in the full paper.

LEMMA 2. The heights of the edges along a path in F
form a non-increasing sequence. If a node u has a path to
in F, the path must be the lowest path from u to ¢ in G. If
the flow graph F' is acyclic then for each node u in F there
is a path from u to (.

By Definition 1, in order to flood the terrain we need to
find for each node its lowest path to { in G. Based on the
Lemma 2, we see that if F' is acyclic then we are done: every
node in F' has a path to ¢ and this path is the lowest path
from u to ¢ in G. The height of the path must the weight
of the first edge on it, i.e., the spill elevation of u. If F' is
not acyclic, in earlier work the paths were computed using a
cycle contraction method [11, 14]. A cycle-contraction is the
process of replacing a cycle ui — ua... = ur = w1 with one
node u and all edges (u;,v) and (v, u;) with edges (u,v) and
(v,u), respectively. The method is based on the following
lemma, proved in the full paper:

LEMMA 3. The height of the lowest height path from any
node u to ¢ in G s invariant under cycle contraction in F.

Thus, after first computing F' and then repeatedly finding
a cycle in F', contracting the corresponding cycle in G, and
updating F' (contracting the cycle and computing the new
outgoing edge of the contracted node) until F' is acyclic, we
have effectively computed the flooded terrain. The prob-
lem with this approach is that it seems difficult to predict
the order in which the watersheds are merged, and there-
fore difficult to store F' and G such that cycle finding and
cycle contraction can be modeled I/O-efficiently. If W is the
number of watersheds, this approach leads to an algorithm
having I/O- and CPU-complexity O(W?).

Our new flooding algorithm is simpler and naturally mod-
els flooding. The main idea is to merge the watersheds in a
predefined order that allows us to avoid the expensive com-
putation of cycles and computation of the spill elevations
of the merged watersheds. Conceptually, our algorithm is
a bottom-up sweep of the terrain with a horizontal plane.
Imagine water falling onto the terrain and gradually filling
the terrain. As the level of the water increases uniformly, it
reaches the spill point of two adjacent watersheds and causes
them to merge. This is equivalent to contracting the edge
between the two watersheds. If one of the watersheds has
found a path off the edge, then the other one, by merging
with it, has found one too, so we mark them as done and
ignore all subsequent events. Initially only the outside wa-
tershed is done. As we move the sweep plane bottom-up,
when it hits some height h corresponding to the edge (u,v)
between watersheds v and v, then we contract the edge (u, v)
and: (1) If none of u or v is done, then raise both to h. (2)
If precisely one of u or v is done then h,, must be the spill
elevation for the watershed that is not done, so raise that
watershed to h and mark it as done. (3) If both u and v
are done, then h cannot be the spill elevation for u or v, so
ignore and continue. Note that all edges of a cycle in the
flow graph are at the same height. Thus they are hit by the
sweep plane at the same time and contracted one by one, so
even if the cycle is not detected and contracted all at once
as in the previous algorithm, the final outcome is the same.
The full paper includes a formal proof of correctness of our
flooding algorithm.

We now analyze the complexity of our flooding algorithm.
Let W be the number of watersheds in the terrain. We keep
track of merged watersheds using a straightforward Union-
Find structure. Initially each watershed is in a separate set
created using a MakeSet operation. We contract an edge
(u,v) by finding the union of the two corresponding sets of
watersheds FindSet(u) and FindSet(v) using a UnionSet
operation. Apart from the sorting of the edges, our algo-
rithm performs O(W) UnionFind operations which can be
done in O(sort(N)) I/Os. The full paper includes a complete
analysis and proves the following;:

LEMMA 4. Given the watershed graph, the terrain can be
flooded in O(N log N) time and O(sort(N)) I/Os.

2.4 Flow Accumulation

The primary motivation for addressing the flow routing
problem is its role in computing flow accumulation. As men-
tioned, the flow accumulation of a cell represents the total
amount of flow draining through that cell. To compute the
flow accumulation for each cell we assume that every cell
initially has one unit of flow (water) and that each cell dis-
tributes its total flow according to its flow directions. In a
previous work [4] we described the flow accumulation prob-
lem in detail and gave an O(sort(N)) I/Os and O(N log N)
time algorithm for it. Our algorithm is similar to the water-
shed computation described in Section 2.2, with the differ-
ence that the terrain is swept top-down, instead of bottom-
up as in the solution of the flow routing problem.

THEOREM 3. The flow accumulation problem can be solved
in O(Nlog N) time and O(sort(N)) I/Os [4].

3. IMPLEMENTATION & PERFORMANCE

This section presents implementations of the algorithms
described in Section 2 in our TERRAFLOW system. We
demonstrate the practical merits of our work through a com-
parison of the efficiency of TERRAFLOW with that of other
GIS systems.

The TERRAFLOW flow routing program, FILL, takes an el-
evation grid and outputs the flooded elevation grid and the
corresponding flow direction grid. The TERRAFLOW flow ac-
cumulation program, FLOW, takes an elevation grid and the
corresponding flow direction grid and outputs the flow ac-
cumulation grid. The two programs consist of about 14,000
lines of C++ code and are based on the TPIE (Transparent
Parallel I/O Environment) system developed at Duke Uni-
versity [3]. TPIE is designed to facilitate easy and portable
implementation of external memory algorithms. All the
I/0 performed by TERRAFLOW is controlled by TPIE rather
than by the OS virtual memory system.

There are many GIS packages available, offering vary-
ing degrees of functionality. ESRI’s ArcInfo is the most
widely used commercial GIS. Geographic Resources Analy-
sis Support System (GRASS) is an open-source GIS origi-
nally developed by the U.S. Army. These two systems have
broad functionality, including flow accumulation computa-
tion. Other systems, such as TARDEM and TOPAZ are
more specialized and offer limited functionality.

One goal of our implementation efforts was compatibil-
ity with standard GIS software; on a given terrain, TER-
RAFLOW’s outputs are similar to those produced by ArcInfo
and GRASS. In addition, we designed TERRAFLOW to give
the user flexibility in modeling flow, for instance by provid-
ing options for choosing to route flow using SFD, MFD or a
combination of the two.

In order to investigate the performance of our programs
we experimented with different main memory sizes on a
set of real-life terrains of various characteristics (Table 1).
The smallest are 30m-resolution datasets of the Central
Appalachian Mountains, Kaweah Basin and Sequoia/Kings
Canyon National Park in the Sierra Nevada region. Our
largest dataset is Washington State at 10m resolution, con-
taining just over 1 billion elements. The datasets represent
different terrain features and elevation distributions.

We performed experiments with main memory sizes of
128 MB, 256 MB, 512 MB, 766 MB and 1 GB. All but
50 MB of the main memory was avalable to the TPIE-
based TERRAFLOW program. TERRAFLOW and ArcInfo ran
on 500 MHz Alphas with 1 GB of main memory running
FreeBSD 4.0. The workstations have local striped disk ar-

Dataset Dimensions | Grid Size
Kaweah 1163 x 1424 3.2MB
Puerto Rico 4452 x 1378 12MB
Sierra Nevada 3750 x 2672 19MB
Hawaii 6784 x 4369 56MB
Cumberlands 8704 x 7673 133MB
Lower New England 9148 x 8509 156MB
Central Appalachians 12042 x10136 232MB
East-Coast USA 13500 x 18200 491MB
Midwest USA 11000 x 25500 561MB
Washington State 33454 x 31866 2GB

Table 1: Characteristics of terrain datasets.

©
S

2500

C—Dataset Size

E—Arclnfo 128

E==Arcinfo 512 |
EETerraFlow 128
N TerraFlow 512 2000

®
]

~
S

01
3

1500

@
]

Arclnfe——————

N
3

1000

Running Time (Hours)

@
S

N
3

>

Kaweah Puerto Rico Sierra
Nevada

Hawaii Cumberlands Lower NE East-Coast Midwest Washington

Figure 5: Total running times of Terraflow and
ArcInfo with 128 MB and 512 MB main memory.
Area graph indicates dataset size in MB.

rays with 8 GB 10,000 RPM Cheetahs. GRASS ran on a
500 MHz Intel PIII with 1 GB of main memory running
FreeBSD 4.0 and a local striped disk array consisting of
36 GB 10,000 RPM IBM drives. Although running on a
slightly faster platform, GRASS was significantly slower.

3.1 Experimental Results

ArcInfo provides the grid functions flowdirection and
flowaccumulation. Flowdirection takes as input an eleva-
tion grid and outputs a flooded grid and the corresponding
SFD flow direction grid. Flowaccumulation takes as input
the flow direction grid and computes a D8 (SFD) flow accu-
mulation grid.

Fig. 5 shows the main results of our experiments. We
present only results for main memory sizes of 128 MB and
512 MB since the results for other memory sizes are very
similar. The main conclusion of our experiments is that
while TERRAFLOW scales well with dataset size, ArcInfo’s
behavior, although good for small datasets, becomes unpre-
dictable as data size increases. Arclnfo cannot process the
2 GB dataset because of what appears to be an internal grid
size limit.

TERRAFLOW is significantly faster than ArcInfo on large
inputs, but, since it is not optimized for small datasets, it
is slower on datasets which fit into main memory. For in-
stance, at 512 MB of memory, TERRAFLOW processes the
Kaweah dataset in 3 minutes, the Puerto Rico dataset in
8 minutes, and the Sierra Nevada dataset in 26 minutes,
while ArcInfo takes 1 minute, 3 minutes and 16 minutes, re-
spectively. As dataset size increases, the situation reverses
and TERRAFLOW becomes increasingly faster: at 512 MB of
memory it processes the Cumberlands dataset in 2 hours,
the Lower New England dataset in 2.5 hours, the East-
Coast USA dataset in 8.7 hours and the Midwest USA
dataset in 16 hours. At the same memory size ArcInfo uses
3 hours, 2.3 hours, 78 hours and 32.5 hours, respectively.
TERRAFLOW is a factor of 9 faster on the East-Coast USA
dataset (8.7 versus 78 hours) and a factor of 2 faster on the
Midwest USA dataset (16 versus 32.5).

Our experiments reveal that the running time depends not
only on the dataset size, but also on other intrinsic charac-
teristics of the terrain (such as mountainous v.s. flat). The

Dataset size, RAM (MB)

dependency is pronounced for Arclnfo and much less for
TERRAFLOW. For example, even though the East Coast
dataset is smaller than the Midwest USA dataset, ArcInfo
uses 78 hours to process it (8 hours flow routing, 70 hours
flow accumulation), while it only uses 32.5 hours to process
the slightly larger Midwest USA dataset (13.5 hours flow
routing, 19 hours flow accumulation). All running times
above are for 512 MB main memory. This behaviour is typ-
ical of a tiling heuristic that splits the terrain into small
pieces and then processes them individually. Often such
a strategy works well, but in general the pieces interact
(send/receive flow) with each other and cannot be processed
individually. The East-Coast USA dataset seems to be par-
ticularly bad for this strategy. Note the big spike in the run-
ning time of ArcInfo for this dataset. Interestingly, ArcInfo
does not exhibit the typical characteristics of an I/O-bound
process. On the datasets we used, ArcInfo’s CPU utiliza-
tion never dropped below 65% even when we reduced the
main memory to 64MB; it spent more of it’s time computing
rather than waiting for I/O. The use of the tiling heuristic
to improve data access locality could explain this behavior.
GRASS’s r.watershed function computes flow accumu-
lation directly from the elevation data. The command has
many extra options and uses an expensive least-cost search
algorithm [6]. This may explain why GRASS had poor per-
formance in all our experiments, doing worse than TER-
RAFLOW at large and small memory sizes. It took 12 min-
utes on Kaweah dataset and 5 days on Puerto Rico. We
let GRASS run for 17 days on the Hawaii dataset, in which
time it completed 65% of the task. The estimated run time
on Hawaii is thus 24 days, which is 960 times bigger than
the running time of TERRAFLOW (38 minutes at 512MB).

4. CONCLUSION

We have formulated a new approach toward flow computa-
tions on very large datasets by applying principles of CPU-
and I/O-efficient algorithms. Together with our previous
work this constitutes TERRAFLOW, the first I/O-optimal so-
lution for flow routing and flow accumulation on massive
grids. Experimental results demonstrate the scalability of
our approach. TERRAFLOW provides consistent performance
as data sizes increase, and significant speedups when com-
pared to standard GIS systems. TERRAFLOW is available on
the Web at http://www.cs.duke.edu/geo*/.

ACKNOWLEDGMENTS: We thank Drew Gallatin for his con-
tinual help with the many system problems encountered
when working with gigabytes, and David Finlayson for pro-
viding us helpful comments and the Washington dataset.

5. REFERENCES

[1] A. Aggarwal and J. S. Vitter. The Input/Output
complexity of sorting and related problems. Commun.
ACM, 31(9), 1988.

[2] L. Arge. The buffer tree: A new technique for optimal
I/0O-algorithms. In Proc. Workshop on Algorithms and
Data Structures, LNCS 955, pages 334-345, 1995.

[3] L. Arge, R. Barve, O. Procopiuc, L. Toma, D. E.
Vengroff, and R. Wickremesinghe. TPIE User Manual
and Reference. Duke University, 1999.

[4] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient
algorithms for problems on grid-based terrains. In

(10]

(11]

(12]

(13]

(14]

(15]

Proc. Workshop on Algorithm Engineering and
FEzxperimentation, 2000.

G. S. Brodal and J. Katajainen. Worst-case efficient
external-memory priority queues. In Proc.
Scandinavian Workshop on Algorithms Theory, LNCS
1432, pages 107-118, 1998.

C. Ehlschlaeger. Using the AT search algorithm to
develop hydrologic models from digital elevation data.
In International Geographic Information Systems
(IGIS) Symposium, pages 275-281. U.S. Army
Construction Engineering Research Laboratory, 1989.
Baltimore, MD, 18-19 March 1989.

J. Fairfield and P. Leymarie. Drainage network from
grid digital elevation model. Water Resource Research,
27, 1991.

T. Freeman. Calculating catchment area with
divergent flow based on a regular grid. Computers and
Geosciences, 17, 1991.

J. Garbrecht and L. Martz. Numerical definition of
drainage network and subcatchment areas from digital
elevation models. Computers and Geosciences,
18(6):747-761, 1992.

J. Garbrecht and L. Martz. The assignment of
drainage directions over flat surfaces in raster digital
elevation models. Journal of Hydrology, 193, 1997.

S. Jenson and J. Domingue. Extracting topographic
structure from digital elevation data for geographic
information system analysis. Photogrammetric
Engineering and Remote Sensing, 54(11), 1988.

L. Martz and E. DeJong. Catch: a FORTRAN
program for measuring catchment area from digital
elevation models. Computers and Geosciences,
14(5):627-640, 1988.

J. F. O’Callaghan and D. M. Mark. The extraction of
drainage networks from digital elevation data.
Computer Vision, Graphics and Image Proc., 1984.

S. Peckham. Self-similarity in the geometry and
dynamics of large river basins. PhD thesis, Univ. of
Colorado, Boulder, 1995.

D. Tarboton. A new method for the determination of
flow directions and contributing areas in grid digital
elevation models. Water Resources Research,
33:309-319, 1997.

D. Tarboton, R. Bras, and I. Rodriguez-Iturbe. On
the extraction of channel networks from digital
elevation data. Hydrological Processes, 5:81-100, 1991.
A. Tribe. Automated recognition of valley lines and
drainage networks from grid digital elevation models:
a review and a new method. Journal of Hydrology,
139:263-293, 1992.

D. Wolock and G. McCabe. Comparison of single and
multiple flow direction algorithms for computing
topographic parameters in topmodel. Water Resources
Research, 31:1315-1324, 1995.

