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Abstract. Recently external memory graph algorithms have received
considerable attention because massive graphs arise naturally in many
applications involving massive data sets. Even though a large number of
I/O-efficient graph algorithms have been developed, a number of funda-
mental problems still remain open. In this paper we develop an improved
algorithm for the problem of computing a minimum spanning tree of a
general graph, as well as new algorithms for the single source shortest
paths and the multi-way graph separation problems on planar graphs.

1 Introduction

Recently external memory graph algorithms have received considerable attention
because massive graphs arise naturally in many applications involving massive
data sets. One example of a massive graph is AT&T’s 20TB phone-call data
graph [11]. Other examples of massive graphs arise in Geographic Information
Systems (GIS). For instance, GIS terrains are often represented using planar
graphs and many common GIS problems can be formulated as standard graph
problems (Arc/Info [4], the most commonly used GIS package, contains functions
that correspond to computing depth-first, breadth-first, and minimum spanning
trees, as well as shortest paths and connected components). When working with
such massive graphs the I/O-communication, and not the internal memory com-
putation time, is often the bottleneck. Designing efficient external memory algo-
rithms for such problems can thus lead to considerable runtime improvements,
as for example illustrated in our previous work [7].

Even though a large number of I/O-efficient graph algorithms have been
developed in recent years, a number of important problems still remain open. For
example, developing efficient algorithms for basic problems such as breadth-first
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search and depth-first search remain open. In this paper we develop I/O-efficient
algorithms for the minimum spanning tree (MST) and single source shortest
paths (SSSP) problems, as well as for multi-way planar graph separation.

1.1 Problem Statement

MST and SSSP are well-known problems on a weighted graph G = (V, E): MST
is the problem of finding a spanning tree for G of minimum weight and SSSP is
the problem of finding the shortest paths from a given source vertex in G to all
other vertices in G (the length of a path is the sum of the weights of the edges
on the path).

Consider an undirected graph G = (V, E).! An f(V)-separator of G is a
subset S of the vertices of G of size f(V') such that the removal of S disconnects G
into two subgraphs G; and Gs, each of size at most % Lipton and Tarjan [23]
proved that any planar graph has an O(v/V)-separator and gave a linear time
algorithm for finding such a separator. Using this result recursively, a planar
graph can be decomposed into (%) subgraphs G; with O(R) vertices each and
O(%) separator vertices, such that there is no edge between a vertex in G;
and a vertex in G for ¢ # j. We call such a decomposition a multi-way planar
graph separation of G. Graph separation is often used in the design of divide-
and-conquer algorithms.

Throughout this paper we assume that the input graph G is given in edge-list
representation. If G is planar we assume it is embedded in the plane. We also
assume without loss of generality that G is connected and that no two edges
have the same weight. In some of our algorithms we will assume that a breadth-
first-search tree T of G is given. In such cases we assume that T is represented
implicitly by storing with each vertex u in G its parent in T and marking every
edge of G as either a tree or a non-tree edge.

1.2 Previous Results on I/O-efficient Graph Algorithms

We work in the standard two-level I/O model with one (logical) disk [3,20]. The
model defines the following parameters:

N =V +E,
M = number of vertices/edges that can fit into internal memory,
B = number of vertices/edges per disk block,

where M < N and 1 < B < M'/+9) for some ¢ > 0.2 An Input/Output (or
simply I/0) involves reading (or writing) a block from disk into (from) internal
memory. Our measure of performance of an algorithm is the number of I/Os
it performs. The number of I/Os needed to read N contiguous items from disk
is scan(N) = O(%) (the scanning bound), and the number of I/Os required to

! For convenience we will use the name of a set to denote both the actual set and its
cardinality.

2 Often it is only assumed that B < M /2 but sometimes, as in this paper, the very
realistic assumption that the main memory is capable of holding B elements is
made (or as here, B>** for some ¢ > 0).



sort N items is sort(N) = O(% log,, /B &) [3] (the sorting bound). In practice
the difference between an algorithm doing N I/Os and one doing scan(N) or
sort(N) I/Os can be significant [7].

Table 1. Best known upper bounds for basic graph theoretic problems.

| Problem|General undirected graphs |

DFS |O(x%5+V) [12]
O ((V +scan(E)) - log 3 + sort(E)) [22]

BFS  |O(V + Z -sort(V)) [25]
ccC O (sort( ) log log Y2) [25]
MST  |O (sort(E) - log 15) [12]
(sort(E) log B + scan(E) - log V') [22]

SSSP |O(V + £ -1og %) [22]

I/O-efficient graph algorithms have been considered by a number of au-
thors [1,2,5,6,10,12,16,19,22,24-26,29]. Table 1 reviews the best known al-
gorithms for basic graph theoretic problems on general undirected graphs. For
directed graphs the best known algorithm for breadth-first search (BFS) and
depth-first search (DFS) use O ((V + scan(E)) - log % + sort(E)) I/Os [10]. Lower
bound results were proved in [6,12, 25]. Note that no O(sort(E)) (deterministic)
algorithm is known for any of the problems, and that the best known algorithms
for DFS, BFS and SSSP require 2(V) I/Os. MST and connected components
(CC) can be solved in O(sort(E)) I/Os with randomized algorithms [12,1].

Improved algorithms have been developed for several special classes of graphs.
For trees, O(sort(N)) algorithms are known for BFS and DFS numbering, Eu-
ler tour computation, expression tree evaluation, topological sorting, as well as
several other problems [10,12]. For planar graphs, O(sort(N)) algorithms are
known for CC and MST [12]. For grid graphs O(sort(N)) algorithms are known
for BFS and SSSP, and an O(scan(N)) algorithm for CC [7]. See [30] for a
complete reference.

Given that even very basic graph problems seem hard to externalize, it is
natural to try to reduce the problems to one another. A first step in this direction
was taken by Hutchinson et al. [19] who considered the problem of computing
an O(v/N)-separator of a planar graph I/O-efficiently. Given a BFS tree they
showed how to compute a separator in O(sort(N)) I/Os. Given this algorithm,
it is straightforward to solve the multi-way planar graph separation problem in
O(log % - sort(N))) I/Os, simply by applying the algorithm recursively.

1.3 Our results

In Section 2, we give an O(sort(E) - loglog Y2) = O(sort(E) - loglog B) algo-
rithm for the MST problem on general undirected weighted graphs, improving
the previous bound of O (sort(E) - log B + scan(FE) -log V) [22]. The algorithm
uses the same general idea as the CC algorithm by Munagala and Ranade [25]
and consists of two phases: first a vertex contraction algorithm is used to reduce



the number of vertices to O(£), and then an O(V + sort(E)) MST algorithm
is used on the reduced graph. The new contraction algorithm uses ideas sim-
ilar to the ones used in [8,14,25], as well as a simplified version of the basic
contraction step used in previous MST algorithms [8,12-14, 22, 25, 28]. The new
O(V + sort(E)) MST algorithm is a modified version of Prim’s algorithm. It
remains a challenging open problem to develop an O(sort(E)) MST algorithm.

In Section 3 and 4, we show that the multi-way planar graph separation prob-
lem and the SSSP problem can be reduced to the BFS problem in O(sort(V))
I/Os: In Section 3, we give an O(sort(N)) algorithm for the multi-way pla-
nar graph separation problem given a BFS tree. The algorithm improves the
straightforward bound of O(log % -sort(NN)) I/Os and uses a divide-and-conquer
algorithm based on ideas from [18]. In Section 4, we show how to use this result
to solve the SSSP problem in O(sort(N)) I/0s. The algorithm is a generaliza-
tion of our SSSP algorithm on grid graphs [7] and uses ideas similar to the ones
utilized by Frederickson [17]. We believe that our O(sort(N)) graph separation
algorithm might prove helpful in reducing other problems on planar graphs to
the BFS problem. It remains a challenging problem to develop an O(sort(E))
BFS algorithm. Another interesting open problem is if it is possible to develop
an O(sort(E)) BFS algorithm for a planar graph given a multi-way separation
of the graph.

2 Minimum Spanning Tree on General Graphs

In this section we describe our MST algorithm on general undirected weighted
graphs. The basic idea is to reduce the number of vertices to % using an
O(sort(E)) vertex reduction algorithm O(loglog %2) times, and then use an
O(V + sort(E)) MST algorithm on the resulting graph. The overall I/O com-
plexity will thus be O(sort(E)-loglog Y2 + £ +sort(E)) = O(sort(E)-loglog ¥2)
I/0s. In Section 2.1 we first describe the O(V + sort(E)) MST algorithm, and
in Section 2.2 we then describe the reduction algorithm. The MST result is

summarized in the following theorem.

Theorem 1. The MST of an undirected weighted graph can be found in
O(sort(E) -loglog Y2) 1/0s.

2.1 An O(V +sort(E)) MST Algorithm

Our algorithm is a modified version of Prim’s internal memory algorithm [15].
The idea of Prim’s algorithm is to grow the MST iteratively from a source node
while maintaining a priority queue on the vertices not included in the MST so
far; the priority of a vertex is the weight of the minimum edge connecting it
to the current MST. The algorithm repeatedly extracts the minimum priority
vertex v, adds it to the MST, and updates the priority of the vertices u adjacent
to v. Specifically, the weight w of edge (v,u) is compared with the priority of
vertex u in the priority queue, and an update is performed if w is smaller than the
current priority. Prim’s algorithm cannot be implemented efficiently in external
memory, the main reason being that the current priority of a given vertex cannot



in general be obtained without doing one I/O. A direct implementation would
thus lead to an O(E) I/O bound. Previously known algorithms [12,22] rely
instead on vertex contraction methods [8,13, 14].

Our modification of Prim’s algorithm consists of storing edges in the priority
queue instead of vertices. During the algorithm the priority queue contains (at
least) all edges connecting vertices in the current MST with vertices not in the
tree. The queue can also contain edges between two vertices in the MST. The
algorithm works as follows: Repeatedly perform extract-min to extract the min-
imum weight edge (u,v) from the priority queue. If v is already in the MST the
edge is discarded. Otherwise v is included in the MST and all edges incident to
v, except (v,u), are inserted in the priority queue. The key to the I/O-efficiency
of the algorithm is that because we store edges in the priority queue we have a
simple way of checking whether a vertex is already included in MST — as all
edges incident to v are inserted in the priority queue when v is included in the
MST, it follows that if both 4 and v are in the MST when processing an edge
e = (u,v), the edge e must appear in the priority queue twice. Thus we can check
if v is already included in the MST simply by performing one more eztract_min
and checking if it returns the same edge e (recall that we assume that no two
edges have the same weight).

The algorithm performs at least one I/O for each vertex which is included in
the MST in order to read its adjacent vertices (traverse its adjacency lists). Thus
processing all vertices and edges takes V +£ 1/0s. It also performs O(E) insert’s
and extract_min’s on the priority queue. Using an external priority queue [5,9]
supporting these operations in O(4 logy, /B %) I/Os amortized we obtain:

Lemma 1. The MST of an undirected weighted graph can be computed in O(V +
sort(E)) I/Os.

2.2 MST Vertex-Reduction Algorithm

Our MST vertex reduction algorithm is obtained using ideas from the connected-
component algorithm of Munagala and Ranade [25] and the notion of “blocking
values”. The standard MST algorithm based on vertex contraction proceeds in
[log V] phases [12,22]. In each phase the minimum cost edge adjacent to every
vertex v is selected and output as part of the MST and the vertices connected by
the selected edges are contracted to supervertices. Let the size of a supervertex
be the number of vertices it contains from the original graph. After the ith phase
the size of every supervertex is at least 2¢. Since one contraction phase can be
performed in O(sort(E)) I/Os [12] this results in an O(sort(E)-log V') algorithm.
The algorithm in [22] utilizes that a contraction step can be performed more
efficiently after O(log B) phases and obtains an O(sort(E)-log B+scan(E)-log V)
algorithm.

Our algorithm runs for [log %1 phases after which the number of super-
vertices is at most £. Furthermore we reduce the number of I/Os used in the
process by dividing the [log Y21 phases into superphases requiring O(sort(E))
I/Os each: Let N; = 263/2)" i.e. N;y ;1 = N;j\/N;. Superphase i, for i > 0, consists
of [log+/N;] phases. In a preprocessing step we run the basic vertex contrac-



tion algorithm once to insure that the number of vertices before superphase 0
is Vp < NLO = % We will maintain the invariant that before superphase ¢ the

number of supervertices is at most V . To reduce the number of vertices to at
most £ it is therefore sufficient to perform 3+ [logz s [log Y271 superphases and
we obtam the O(sort(E) - loglog Y2 ) algorithm.

The phases in each superphase only work on a subset of the (remaining)
edges. The edge subsets are chosen in order to allow each supervertex to grow
by a factor of /N; in superphase i. Let G; = (V;, E;) be the graph just prior to
superphase i. We construct a graph G} = (V;, E}), where E is a subset of E;.
For each vertex v, E! contains the [/N;] lightest edges adjacent to v. Heavier
edges e = (v,u) adjacent to v are only included in E! if e is among the [\/NV;]
lightest edges adjacent to u. We define the blocking value of v to be the weight
of the ([v/N;] + 1)-th lightest edge adjacent to v. The set E. and blocking
values can be computed using O(sort(E;)) I/Os. If we guarantee that V; < -

as stated above, it follows that E] < 2V;[v/N;| < 4\/V_ As each contracmon

phase in superphase i can be performed in O(sort(E;])) I/Os, it follows that
superphase i requires O(sort(E;)+sort(E;)-log(v/N;)) = O(sort(E) +sort(\/%)-
log(v/N;)) = O(sort(E)) 1I/0s. After performing all the phases of superphase 4
the edges E; — E}, i.e. the heavy edges which were not included in the sample,
need to be re-incorporated in F;1;. This can be easily be done as in [25] using

O(sort(E)) I/0s in total. Details will appear in the full paper.

The only thing that remains to be described is how the individual phases
in superphase ¢ are performed such that after superphase ¢ the number of su-
pervertices is at most T and such that only edges that actually belong to
the MST are included. A phase is performed as in the basic vertex reduction
algorithm: For each vertex v consider the adjacent edge e with minimum weight
in E;. If the weight of e is smaller than the blocking value of v, then we select e
for contraction. If the weight of e is larger than the blocking value, no edges is
selected for v, since there might be a lighter edge adjacent to v in E; — E}. The
selected edges are contracted in O(sort(E})) I/Os (using the algorithm in [12, 22,
25] or a simpler algorithm which we will include in the full version). After the
contraction, the blocking value of a supervertex is set to be the minimum of the
blocking values of the contracted vertices. The algorithm is correct as a simple
induction argument can be be used to show that for every supervertex v the
(contracted) edge sample contains all edges adjacent to v with weight smaller
than the blocking value of v (i.e. the edges selected in the next phase belong
to the MST). If in superphase i the blocking value of a supervertex v prevents
us from selecting an edge for v to be included in the MST, then v must be the
contraction of at least v/IN; vertices from V;. This follows from the fact that the
blocking value of v corresponds to the blocking value of some vertex » in V; and
v must span the [\/N;] vertices adjacent to u in E.. If no blocking value prevents
us from selecting an edges for v, then after [log+/N;] phases v must have size at
least 2'°8 VNi — +/N;. It follows that superphase i reduces the number of vertices



by a factor of at least v/NV;, i.e. the number of vertices after superphase ¢ is at

most = < —Y_ = Y a5 claimed by the invariant.

'\/N,' - Ni'\/Ni Ni+1

Lemma 2. Let G = (V, E) be an undirected weighted graph. The MST problem
on G can be reduced to the MST problem on a graph with at most % vertices in

O(sort(E) - loglog ¥2) 1/0s.

3 Multi-way Planar Graph Separation

In this section, we show how to separate a planar graph G into @(%) sub-
graphs with O(R) vertices each and a set of O(sort(/N)) separator vertices using
O(sort(N)) I/0Os.

Given a BFS tree T of G, Hutchinson et al. [19] showed how to compute a
O(V/'N)-separator for G in O(sort(N)) I/Os. Their algorithm closely follows the
algorithm by Lipton and Tarjan [23]: The BFS tree T has the property that no
edge crosses two or more levels, and hence every level in T is a separator in G.
The basic idea is to use the “middle” level ¢; in T (the level containing the
vertex with number N/2 in the BFS numbering) as the separator. Level ¢; has
the property that the total number of vertices on levels above ¢1, as well as in
levels below /1, is less than N/2. The problem is that £; might contain more than
O(V/N) vertices. However, there exists a level £, above £; and a level ¢ below
¢; with O(v/N) vertices each, such that £ — £y < v/N (that is, £y and £, are not
too far away from /;). Levels £y and £» divide G into three subgraphs G, G; and
G consisting of the vertices on the levels above £y, between £y and /2 and below
{5 respectively, with the property that Gy and G2 contain less than N/2 vertices
and G has a spanning tree of bounded height v/N. Refer to Fig. 1 (a). It is easy
to see that in order to find a separator for G it is enough to find a separator
in Gy [23]. Such a separator can be found using properties of the dual graph
of G1. The dual graph G* = (V*, E*) of a planar graph G is a planar graph with
a vertex for each face of G whose edges are in one-to-one correspondence with
the edges of G. The dual graph G* is obtained by placing a vertex in each face
of G and connecting two faces f; and f; adjacent to a common edge e = (u,v)
of G with an edge (f;, f;) in E*. The edge (f;, f;) in G* is called the dual edge
of (u,v) in G. Let E' C E be a subset of edges in G. It is well known that
(V,E') is a spanning tree of G if and only if (V*,(E — E')*) is a spanning tree
in G* [21]. Thus the edges in (E — T)* form a spanning tree in G* which we
denote TT. An example is shown in Fig. 2(a). If T has bounded height /N
then every edge in (E — T') (and therefore the corresponding edge in (E — T)*)
determines a cycle in T with at most 2v/N vertices. Assuming (without loss
of generality) that G is triangulated, Lipton and Tarjan [23] proved that there
exists an edge e € (E — T') such that the number of vertices inside and outside
the cycle defined by e is < 2N/3, and showed how it can be computed efficiently
using a bottom-up traversal of the dual tree T'T. Hutchinson et al. [19] showed
how to perform all these operations using O(sort(NN)) I/Os.

As discussed in the introduction, the O(sort(IN)) separator algorithm [19] can
be used to develop a recursive O(log & - sort(N)) multi-way separator algorithm



in a straightforward way. The idea in our new O(sort(N)) algorithm is to obtain
O(log /B %) recursion depth by increasing the fan-out of the separation from 2

to % and implement each step in O(%) I/Os. In order to divide the graph in %
subgraphs we use ideas similar to the ones used by Goodrich [18]. The general
idea is the following: Instead of finding only one level cutting the graph in two
halves, we find (roughly) 4% levels which cut the graph in O(ML/B)—sized chunks.
We then use these levels to find a set of levels with few vertices which divide
G into subgraphs such that each subgraph is either of size O(%) or has a
spanning tree of bounded height O(v/R). We then subdivide the subgraphs with
bounded height into graphs of size O(R) using properties of the dual graph. In
Section 3.2 we show how this can be done I/O-efficiently and prove the following
lemma:

Lemma 3. A graph G with a spanning tree T of height H can be divided into
O(&) subgraphs of size O(R) each and O(3% H) separator vertices in total using
O(sort(N)) I/0:s.

After subdividing the bounded height subgraphs we recursively subdivide the
subgraphs of size O(ML/B). In Section 3.1 we give the details in our algorithm
and prove the following:

Theorem 2. Let G = (V, E) be a planar graph and T' a breadth-first search tree
for G. Furthermore assume 3 & > 0 such that M > B?T¢. For any R = Q2(M),
G can be partitioned into O(%) subgraphs G; of size O(R) each and a set of
separator vertices S of size O(sort(N)) using O(sort(N)) I/Os.

3.1 Separating Planar Graphs

In this section we prove Theorem 2 using Lemma 3. Let L(4) be the total number
of vertices on levels 0 through 7 of 7" and define the starter levels to be the levels
i such that the interval (L(i), L(i 4+ 1)] contains a multiple of [£], for some
0 < X < N. There are at most X starter levels and the number of vertices
between consecutive starter levels is smaller than [%]
sareslovls Just like the ¢; level in
Lipton and Tarjan’s algo-
rithm [23], the starter lev-
els divide G in subgraphs
of “small” size. However,
as previously, the starter
levels can contain too many
o : vertices. Therefore we con-
sider the first level above
Fig. 1. (a) Illustration of the planar separator al- each starter level, as well
gorithm [23]; (b) Starter and cutter levels in T as the first level below each
starter level containing at
most Y vertices, for some 0 < Y < N. We call these levels the cutter levels.
The cutter levels divide G into O(X) subgraphs G;, consisting of the vertices

cutter levels: < Y vertices




between two consecutive cutter levels, with the property that if the two cut-
ter levels defining G; are within two (consecutive) starter levels then G; has size
O(%) If the two cutters defining G; are not within two consecutive starter levels
then G; has a spanning tree of depth O(). Refer to Fig. 1 (b).

As mentioned, the idea in our algorithm is to apply Lemma 3 to the sub-
graphs of bounded height O(%) and recursively separate the subgraphs of size

O(%) By choosing Y = % each bounded height subgraph G; of size N; has

height v/R and it can thus be separated into @(%) subgraphs of size O(R) and

0(11\%' -VR) = O(%) separator vertices using O(sort(N;)) I/Os. Note that as

we are not recursing on G; (that is, we are not touching G; again), the total
cost of separating all such subgraphs over all levels of the recursion adds up to
O(sort(N)) in total. The separator vertices are the vertices of the O(X) cutter

levels (each cutter level has at most ¥ = % vertices), the separator vertices

resulting from applying Lemma 3 to the subgraphs of bounded height and the
separator vertices resulted from the recursive calls. Thus the total number of
separator vertices is given by S(N) < X % + % + X - S(%). If we choose
X = (#)Y* and assume M > B?**¢, for some € > 0, it can be shown that
X\/iﬁ =O0(%) and logx & = O(log /B &), so that S(N) = O(sort(N)).

The only thing remaining to discuss is how to represent a subgraph G; be-
tween two cutter levels ¢; and c¢;41 in the format needed in order to apply
Lemma 3 or perform the recursive call. Both these steps require that a BFS tree
is given along with the subgraph. The part of T' included in G; is not connected
and thus it is not a BFS tree for G;. However, we can easily produce such a
tree by introducing a “fake” root v; and connecting it with “fake” edges to all
vertices on level ¢; ;1. Note that if T is given level-by-level this can easily be done
for all the subgraphs in O(%) I/Os. The fake vertices and edges are marked so
that they can be removed at the end of the algorithm. Details will appear in the
full paper.

That our algorithm uses O(sort(NN)) I/Os can be seen as follows. The pre-
processing step of computing the BFS level for each vertex in T' and sorting the
edges of G by level can easily be performed in O(sort(N)) I/Os using standard
techniques (such as list ranking and Euler tours) [12]. If we do not count the
I/Os used to separate the subgraphs with bounded height, one recursion step
can be performed in O(%) I/Os, and the recurrence for the number of I/Os used
becomes T(N) < & + X -T(X). Thus T(N) = O(sort(IN)). As the total number
of I/Os used to separate the subgraphs of bounded height is O(sort(N)), we
have shown that our algorithm uses O(sort(N)) I/Os in total. This concludes
the proof of Theorem 2.

So far we have only discussed the case R = 2(M). If R is o(M) then we
can use Theorem 2 to separate G in subgraphs of size O(M), then load each
subgraph into main memory one at a time and apply Lipton and Tarjan pla-
nar separator algorithm [23] until all subgraphs have size O(R). This results
in O(%) separator vertices. In some applications of the graph separation it
is necessary to bound not only the total number of separators S, but also the



number of separator vertices adjacent to any subgraph. This can be done as
follows: For each subgraph which has !)(NL/R) adjacent separator vertices mark
the inner vertices as inactive and apply Theorem 2 until the resulting subgraphs
have O(%) (active) vertices. Fredrickson [17] proves that this maintains the
same bounds for the number of subgraphs and separators given that the graph
has bounded degree. Details will appear in the full paper.

Corollary 1. Let G = (V, E) be a planar graph and T a breadth-first search tree
for G. Furthermore assume 3 > 0 such that M > B*t¢. Then G can be sepa-
rated in @(%) subgraphs of O(R) vertices each and a set S of O(sort(N) + %)
separator vertices using O(sort(N)) I/0s.

If G has bounded degree then the separation can be constructed such that each
subgraph G; is adjacent to O(STR) separator vertices.

3.2 Separating Planar Graphs of Bounded Height Spanning Tree

In this section describe how we can separate in O(sort(/N)) I/Os a planar graph
G = (V,E) with a spanning tree T' of height H into ©(%) subgraphs of size
O(R) each and O(%H ) separator vertices.

Assume for simplicity that G is triangulated. (If this is not the case, we can
triangulate it using O(sort(IN)) I/Os [19] and mark the added edges so that they
can be removed at the end of the separation. Note that T remains a spanning
tree after the triangulation). Let G* be the dual of G and let Tt = (E — T)* be
the spanning tree in G*. The spanning tree Tt can be computed from G and T
in O(sort(N)) I/Os using a face finding algorithm as in [19] and a few sorting
steps. Each edge in T is the dual of an edge e = (u,v) in (E — T) and there
exists a unique path from u to v in T'; this path and e forms a cycle in G, and
since T has bounded height H, the cycle contains at most 2H — 1 vertices. Thus
each edge in Tt determines a cycle of size O(H) in G which separates G into the
vertices inside the cycle and vertices outside the cycle. Refer to Fig. 2(a). It can
be shown that if e is the centroid edge of T't, then the number of vertices inside
and outside the cycle is roughly the same [18].

The main idea in our algorithm is to find O(%) cycles which partition G
into subgraphs of roughly equal size O(R). In order to do so, we first discuss
how to find O(%) edges in T such that their removal divides T into subtrees
of roughly equal size O(R). Then we show that the duals of these edges define
O(%) cycles in G with the desired properties.

The decomposition of a tree into independent subtrees of approximately equal
size was studied by Gazit et al. [27] in the context of parallel R-contractions.
We review briefly their notations and results. Let D = (V, E) be a tree with
N vertices. The weight W (v) of a vertex v in D is the number of vertices in
the subtree rooted at v. A vertex v is called R-critical if v is not a leaf and
[@] > [%] for all children v' of v. Let C C V. Two edges e and €' of G
are C-equivalent if there exists a path from e to e’ that avoids the vertices C. The
graphs induced by the equivalence classes of the C-equivalent edges are called the
bridges of C. The attachments of a bridge I are the vertices of I that are also in
C. The R-bridges of a tree D are the bridges of C, where C is the set of R-critical
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Fig. 2. (a) A graph G (solid lines), T (solid thick lines) and TT (dotted lines). (b)
The decomposition of Tt into its 10-bridges; square vertices are the attachments. (c)
Subtree of Tt and the induced cycle in G.

vertices of D. An example of the decomposition of a tree into its R-bridges is
shown in Fig. 2 (b). Gazit et al. [27] prove the following: (1) The number of
R-critical vertices in a tree of size N is at most % — 1. (2) The number of
R-bridges in a tree with bounded degree d is at most d(2¥ —1). (3) The number
of vertices of an R-bridge is at most R + 1. (4) If I is an R-bridge, then I can
have at most two attachments.

As the basic step in the computation of the R-bridges of D is the computa-
tion of the weight of each vertex, it is easy to show how standard I/O-efficient
algorithms can be used to compute the R-bridges in O(sort(N)) I/0s. If G is a
triangulated graph, Tt is a binary tree, and thus it has at most % R-bridges.
Each R-bridge defines two cycles in G determined by the two edges incident
to the two attachments. One of these cycles will be inside the other and there
are at most R + 1 faces inside the outer cycle but outside the inner cycle (the
faces corresponding to the vertices in the R-bridge). Thus the R-bridges of T't
determine a separation of G into % subgraphs of at most R vertices adjacent
to 0(%H ) separator vertices in total. Given the R-bridges, the decomposition
of G can be easily computed in O(sort(N)) I/Os and Lemma 3 follows.

4 Single Source Shortest Paths on Planar Graphs

In this section we show how to use our graph separation result to obtain an
efficient SSSP algorithm for planar graphs with bounded degree.?

Consider separating a planar graph G into @(%) subgraphs G; = (V;, E;) of
O(R) vertices each and a set S of separator vertices, such that each subgraph is
adjacent to O(STR) separator vertices. We call the separator vertices adjacent to
G; the boundary vertices of G;. Our algorithm relies on the following observa-
tion: Consider a shortest path §(s,t) between two vertices s and ¢ in G and let
{s0, 81, ...} denote its intersection with S. The portion of §(s,t) between s; and
si+1 is completely within some subgraph G; and it must be the shortest path
between s; and s;4; within G;.

The main idea in our algorithm is to construct a new graph G¥ by re-
placing each subgraph G; with a complete graph on its boundary vertices. If
the source vertex s is not a separator vertex, we also include s in G and
connect it to the boundary vertices of the subgraph containing it. The graph

3 Note that any graph can be transformed into a graph with each vertex having degree
at most 3 using a simple transformation [17]



G* has S vertices and O(% - (STR)z) = O(SZTR) edges. The weight of an edge
in G® is the length of the shortest path in G; between the corresponding
two boundary vertices. If R = O(M) these weights can be computed as fol-
lows: We load each subgraph G; into main memory together with its boundary
vertices and use an internal memory all-pair-shortest-paths algorithm to com-
pute the weights of the new edges between the boundary vertices of G; and
write these edges to the disk. Since each separator vertex is a boundary vertex
for at most O(1) subgraphs (because of the bounded degree), we use at most
(% + 5) 1/Os to load all the subgraphs and their boundary vertices. As we use

O(scan(2#)) 1/0s to write the new edges, it follows that G can be computed

in O(S + scan(SQTR)) I/0Os in total. Using S = O(sort(N) + %) (Corollary 1)
and choosing R = N = B < M, this is O(sort(N)) I/0s.

sort2(N) — logf\l/B N/B
Now assume we know how to com-
pute the shortest paths from s to all
separator vertices in O(sort(N)) I/Os.
Using the observation mentioned above,
we know that these paths are identi-
cal to the shortest paths in the orig-
inal graph G. We can then compute
the shortest paths from s to all the re-
maining vertices in G by loading each  Fig.3. (a) Separation of a graph
subgraph G; and its boundary ver- into subgraphs (boxed) and separators
tices in main memory, and using an  (black); (b) a subgraph in the partition,
internal memory algorithm to com- its boundary vertices and boundary sets.
pute the shortest path from s to each vertex ¢ in V; using the formula (s, t) =
min, {0(s,v) + dg,(v,t)}, where v ranges over all boundary vertices of G;. This
takes O(S + scan(N)) I/0Os, so the total number of I/Os used is O(sort(N)).
All that remains is to show how to solve the SSSP problem on the graph G%
with S = O(sort(IV)) vertices and 0(‘92TR) = O(N) edges in O(sort(N)) I/Os.
To do so we use a slightly modified version of Dijkstra’s algorithm which avoids
the use of a decrease_key priority queue operation. We want to avoid such an
operation since the I/O bound of the best known external data structure with
this operation is O(%) [22], while priority queues with O(M) I/0
bound are known if this operation is not supported [5,9]. During the algorithm
we maintain a list L of pairs of vertices of GF and their distances. Initially all
distances are co. We maintain the invariant that the distance of a vertex in
L is identical to the distances stored in the priority queue controlling the algo-
rithm. The algorithm repeatedly performs a delete_min operation on the priority

()

queue to obtain the next vertex v to process; then the O(5&) = O(m)
edges incident to v are loaded using O(1) I/Os and the O(3E) = O(m)

boundary vertices adjacent to v are determined. These vertices (and their cur-
rent distances) are loaded from L using O( m) I/Os, and, without further

I/0s we then compute which vertices need to have their distances updated. Fi-
nally, the new distances are written back to L and the corresponding updates



are performed on the priority queue. Note that as we know the current distance
of a vertex which needs to have its distance updated, we can perform the update
in O(%) I/Os using a delete and an insert operation.

Our algorithm performs O(N) operations on the priority queue using O(sort(N))
I/Os in total. It also uses O(S) = O(sort(IN)) I/Os in total to load the neighbors
of each vertex. Thus the I/O use is dominated by the O(m) I/Os used

for each vertex to load its adjacent vert1ces from L. Since there are O(sort(N))
vertices, this sums up to O(——=+5) - O(sort(N)) = O(N) I/Os in total.

In order to improve the I/%l/bound to O(sort(N)) we modify the algorithm,
taking into account that there is some implicit adjacency between the boundary
vertices. Let a boundary set be a maximal subset of boundary vertices such that
all boundary vertices in the subset are adjacent to exactly the same subgraphs.
An example is shown in Fig. 3 (b). Fredrickson [17] showed that the number of
boundary sets is equal to the number of subgraphs O(%). We therefore modify
our algorithm such that the vertices in the same boundary sets are stored con-
secutively in L. Otherwise the algorithm remains unmodified. When a vertex v is
processed, the relevant boundary sets are determined and loaded from L as be-
fore. However, now we can think of the accesses as involving full boundary sets,
as opposed to boundary vertices. Each boundary set is accessed O(L)
times (once by each of its adjacent boundary vertices), and as there are 63(

boundary sets we use O(ﬁ - &) = O(sort(N)) I/Os in total.
M/B B

Theorem 3. Let G be a bounded degree planar graph and T o BFS tree for G.
Assume furthermore & > 0 such that M > B**. The SSSP problem on G can
be solved in O(sort(N)) I/Os.
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