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The potential and use of Geographic Information Systems (GIS) is rapidly increasing due to the
increasing availability of massive amounts of geospatial data from projects like NASA’s Mission to
Planet Earth. However, the use of these massive datasets also exposes scalability problems with
existing GIS algorithms. These scalability problems are mainly due to the fact that most GIS
algorithms have been designed to minimize internal computation time, while I/O communication
often is the bottleneck when processing massive amounts of data.

In this paper, we consider I/O-efficient algorithms for problems on grid-based terrains. Detailed
grid-based terrain data is rapidly becoming available for much of the earth’s surface. We describe
O(% logy/p %) 1/0O algorithms for several problems on v/N by v/N grids for which only O(N)
algorithms were previously known. Here M denotes the size of the main memory and B the size
of a disk block.

We demonstrate the practical merits of our work by comparing the empirical performance of
our new algorithm for the flow accumulation problem with that of the previously best known
algorithm. Flow accumulation, which models flow of water through a terrain, is one of the most
basic hydrologic attributes of a terrain. We present the results of an extensive set of experiments
on real-life terrain datasets of different sizes and characteristics. Our experiments show that while
our new algorithm scales nicely with dataset size, the previously known algorithm “breaks down”
once the size of the dataset becomes bigger than the available main memory. For example, while
our algorithm computes the flow accumulation for the Appalachian Mountains in about three
hours, the previously known algorithm takes several weeks.
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1. INTRODUCTION

Geographic Information Systems (GIS) is emerging as a powerful management and
analysis tool in science and engineering, environmental and medical research, and
government administration. The potential and use of GIS is rapidly increasing due
to the increasing availability of massive amount of data from projects like NASA’s
Mission to Planet Earth [NASA a]. For example, very detailed terrain data for
much of the earth’s surface is becoming publicly available in the form of a regular
spaced grid with an elevation associated with each grid point. Data at 5 minute
resolution (approximately 10 kilometers between grid points) and 30 arc second
resolution (approx. 1 kilometer) is available through projects like ETOPO5 [USGS
a] and GTOPO30 [USGS b], while data at a few seconds resolution (approx. 10 or
30 meters) is available from USGS [USGS c]. Data at 1 meter resolution also exists
but is not yet publicly available. Furthermore, new projects are aimed at collecting
larger amounts of terrain data. For example, NASA’s Shuttle Radar Topography
Mission [NASA b] (SRTM) to be launched with the space shuttle shortly, will
acquire 30 meter resolution data for 80% of the earth’s land mass (home to about
95% of the world’s population). SRTM will collect around 10 terabytes of data!

While the availability of geospatial data at detailed resolutions increases the po-
tential of GIS, it also exposes scalability problems with existing GIS algorithms.
Consider for example a (moderately large) terrain of size 500 kilometers x 500 kilo-
meters sampled at 10 meter resolution; such a terrain consists of 2.5 billion data
points. When sampled at 1 meter resolution, it consists of 250 billion data points.
Even if every data point is represented by only one word (4 bytes), such a terrain
would be of size at least 1 terabyte. When processing such large amounts of data
(bigger than main memory of the machine being used) the Input/Output (or I/0)
communication between fast internal memory and slow external storage such as
disks, rather than internal computation time, becomes the bottleneck in the com-
putation. Unfortunately, most GIS algorithms, including the ones in commercial
GIS packages, are designed to minimize internal computation time and consequently
they often do not scale to datasets just moderately larger than the available main
memory. In fact, the work presented in this paper was initiated when environmen-
tal researchers at Duke approached us with the problem of computing the so-called
topographic convergence index for the Appalachian Mountains. Their dataset con-
tained about 64 million data points (approximately 800 km. x 785 km. at 100
meter resolution) with 8 bytes per point, totaling approximately 500 megabytes,
and even on a fast machine with 512MB of main memory the computation took
several weeks!

In this paper, we consider I/O-efficient algorithms for problems on grid-based
terrains. We describe theoretically optimal algorithms for several such problems
and present experimental results that show that our algorithm for the topographic
convergence index problem scales very well with problem size and greatly outper-
forms the previously known algorithm on large problem instances. Our algorithm
solves the problem on the Appalachian mountains dataset in about three hours.
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1.1 Digital Elevation Models and GIS algorithms on grid-based terrains

A Digital Elevation Model (DEM) is a discretization of a continuous function of two
variables. Typically it represents the spatial distribution of elevations in a terrain,
but in general it can represent any of a number of attributes. There are three
principal ways of representing a DEM, namely, in a grid-based way as described
above, using a so-called triangulated irregular network (TIN), or in a contour-based
way [Moore et al. 1991]. Grid-based DEMs are most commonly used in practice,
mainly because data are readily available in grid form from remote sensing devices
and because for many problems the regular grid facilitates the development of
very simple algorithms. On the other hand, TINs often use much less space than
grid-based DEMs—see e.g [Moore et al. 1991; Kreveld 1997] for a discussion of
advantages and disadvantages of the different representations.

Grid-based DEMs are used in many areas, like topographic and hydrologic anal-
ysis, landscape ecology, and wildlife habitat analysis, to compute terrain indices
which model processes like susceptibility of terrain to erosion, rainfall infiltration,
drainage characteristics, solar radiation distribution, forest and vegetation struc-
ture, and species diversity [Moore et al. 1991]. One of the most basic hydrologic
attributes of a terrain is flow accumulation which models flow of water through the
terrain. To compute the flow accumulation of a terrain, one assumes that every
grid point initially has one unit of flow (water) and that the flow (initial as well as
incoming) at a grid point is distributed to downslope neighbor points proportional
to the height difference between the point and the neighbors. The flow accumula-
tion is the total amount of flow through each grid point of the terrain [O’Callaghan
and Mark 1984; Wolock 1993].! Once flow accumulation has been computed for
a terrain, some of the most important hydrologic attributes can be deduced from
it. For example, the drainage network consists of all grid points for which the flow
accumulation is higher than a certain threshold, and the topographic convergence
indez, which quantifies the likelihood of saturation, is defined as the (logarithm of
the) ratio of the flow accumulation and the local slope in a point. Figure 1 shows
a terrain, its grid-based DEM, and a graphical representation of its topographic
convergence index.

There is a natural correspondence between a grid-based DEM and a grid graph
where each vertex is labeled with a height. Here we define a grid graph as a graph
with vertices on a v/N by v/N regular grid, where each vertex can only have edges
to its eight neighbors. Note that a grid graph is not necessarily planar. The flow
accumulation problem can naturally be described as a problem on a directed acyclic
grid graph with edges directed from a vertex to its downslope neighbors. It turns
out that many other common GIS problems on grid-based terrains correspond to
standard, or minor variations of, graph theoretic problems on grid graphs. For
example, Arc/Info [ARC/INFO 1993], the most commonly used GIS package, con-

!Several definitions of flow accumulation on grids have been proposed; see e.g. [Fairfield and
Leymarie 1991; Moore et al. 1993; Moore 1996; Wolock 1993]. We use the definition proposed
by Callaghan and Mark [O’Callaghan and Mark 1984] and refined by Wolock [Wolock 1993],
which seems to be the most appropriate and widely used definition. Some work has been done on
extending the flow accumulation concept to TINs; see e.g. [Kreveld 1997; Frank et al. 1986; Yu
et al. 1996].
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Fig. 1. Terrain, its grid-based DEM, and a representation of its topographic convergence index.

tains functions that correspond to computing depth-first, breadth-first, and mini-
mum spanning trees, as well as shortest paths and connected components on grid
graphs.

1.2 Memory model and previous results on |/O-efficient algorithms

We will be working in the standard model for external memory with one (logical)
disk [Aggarwal and Vitter 1988; Knuth 1998]:

N = number of vertices/edges in the problem instance;
M = number of vertices/edges that can fit into internal memory;
B = number of vertices/edges per disk block,

where M < N and?> 1 < B < VM. An Input/Output (or simply I/0) involves
reading (or writing) a block from disk into (from) internal memory. Our measure
of performance of an algorithm is the number of I/Os it performs.

At least % I/Os are needed to read N items, and thus the term %, and not N,
corresponds to linear complexity in the I/O model. Aggarwal and Vitter [Aggarwal
and Vitter 1988] show that external sorting requires © (% log,, /B ) = O(sort(N))
I/0Os. Note that in practice the difference between an algorithm doing N I/Os and
one doing sort(N) I/Os can be very significant: Consider for example a problem
involving N = 256 x 10° four-byte items (1 GB), and a typical system with block
size B = 8 x 10° items (approx. 32 KB) and internal memory size M = 64 x 10°
items (approx. 256 MB). Thus 4& = 8000 blocks fit in memory and logar/m X <3,
and the speedup is more than three orders of magnitude. If the external memory
algorithm takes 10 minutes to complete, the internal memory algorithm could use
more than 150 hours, or equivalently, about 6 days!

I/O-efficient graph algorithms have been considered by a number of authors [Arge
1995a; Arge 1995b; Chiang et al. 1995; Ullman and Yannakakis 1991; Kumar and
Schwabe 1996; Feuerstein and Marchetti-Spaccamela 1993; Nodine et al. 1996;
Agarwal et al. 1998; Abello et al. 1998; Munagala and Ranade 1999; Hutchin-
son et al. 199; Maheshwari and Zeh 1999; Buchsbaum et al. 2000]. If V is the

20ften it is only assumed that B < M /2 but sometimes, as in this paper, the very realistic
assumption that the main memory is capable of holding B? elements is made.
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number of vertices and E the number of edges in a graph, the best known algo-
rithms for depth-first search, depending on the exact relationship between V' and
E, use O(% £ + V) [Chiang et al. 1995] or O ((V + £)log, % + sort(E)) [Ku-
mar and Schwabe 1996; Buchsbaum et al. 2000] I/Os. For breadth-first search
an O(V + sort(E)) algorithm has been developed for the undirected case [Mu-
nagala and Ranade 1999], while the best known algorithm for the directed case
uses O ((V + £)log % + sort(E)) I/Os [Buchsbaum et al. 2000]. The best known
algorithms for connected components, minimum spanning tree, and single-source
shortest path all work on undirected graphs and use O (sort(E)loglog ¥£) [Mu-
nagala and Ranade 1999], O (sort(E) log B + scan(E) log V) [Kumar and Schwabe
1996], and O (V + £1log, ¥%) [Kumar and Schwabe 1996] I/Os, respectively. For
the special case of grid graphs the connected component and minimum spanning
tree algorithms of [Chiang et al. 1995] use O(sort(IN)) I/Os. For the other three
problems the best known algorithms, even for grid graphs, all use Q(N) I/0s. See
recent surveys for a complete reference on the field [Arge 1996; Vitter 1998].

1.3 Our results

In the first part of this paper (Sections 2 and 3), we develop I/O-efficient algorithms
for several standard graph theoretic problems on grid graphs, and thus for many
common GIS problems on grid-based terrains, as well as for the problem of comput-
ing flow accumulation on a grid-based terrain. Our new algorithms for breadth-first
search, single source shortest path, and flow accumulation use O(sort(N)) I/Os. For
all of these problems the previously best known algorithm use O(N) I/Os. We also
develop a new algorithm for connected components that uses O(scan(N)) I/Os.
The previously best known algorithm for this problem uses O(sort(N)) I/Os.

In the second part of the paper (Section 4), we demonstrate the practical merits
of our work by comparing the empirical performance of our new flow accumulation
algorithm with that of the previously best known algorithm. We present the results
of an extensive set of experiments on real-life terrain data set of different sizes and
characteristics. Our experiments show that while our new algorithm scales nicely
with dataset size, the previously know algorithm “breaks down” once the size of
the dataset becomes bigger than the available main memory.

2. COMPUTING FLOW ACCUMULATION ON GRIDS

Recall the definition of flow accumulation; initially one unit of flow is placed on
every grid point and then flow is continuously distributed to downslope neighbor
points proportional to height difference. The flow accumulation of a grid point is
the total amount of flow through that point [O’Callaghan and Mark 1984; Wolock
1993].

Assume that the grid points are given in a v/N by v/N elevation matrix H and let
H;; denote the height of point (i,7). Let A be a similar matrix such that after the
flow accumulation computation, A;; contains the flow accumulation of grid point
(i,7). The standard flow accumulation algorithm works as follows [Wolock 1993]:
First a list L is produced by sorting the elevations in H in decreasing order, and
every entry in A is initialized to one unit of flow. Then the points are visited in
decreasing order of elevation by scanning through L, while flow is distributed to
downslope neighbors by updating entries in A. It is easy to see that when point
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(4,7) is processed, A;; contains the correct final flow accumulation value for (4, j),
since all other points (if any) pushing flow into (i, j) have already been processed.
Note that conceptually the algorithm corresponds to sweeping the terrain top-down
with a horizontal plane, “pushing” flow down the terrain in front of the plane.

The above algorithm uses © (N log N) time on the initial sort and ©(N) time on
sweeping the terrain. The space use is linear. However, if the terrain is bigger than
the available main memory and assuming virtual memory is used, the number of
I/Os performed during the sweep is ©(NN). The reason for this is that the accesses
to H and A exhibit very little temporal locality. At first glance it seems that the
computation actually exhibits some sort of locality, because once a point (4, ) is
accessed its eight neighbors are also accessed. However, globally the points are
accessed in decreasing order of elevation and they are not necessarily well-clustered
in this order—refer to Figure 2.

2.1 |/O-Efficient algorithm

The inferior I/O behavior of the standard flow accumulation algorithm is a result
of two types of scattered disk access; accesses to A to obtain the flow of the grid
point (7, j) being processed and to update the flow of the neighbor points to which
(z,7) distributes flow, and accesses to H to obtain the elevations of the neighbors
in order to decide how to distribute flow. The latter accesses can be eliminated
simply by augmenting each point in L with the elevations of its eight neighbors.
Using external sorting, L can be produced in O(sort(N)) I/Os. Note that we have
to sort a dataset which is 9 times bigger than the original set.

The key observation that allows us to eliminate the scattered access to A is that
when point (7, ) is processed and we want to update the flow of its neighbors,
we already know at what “time” the neighbors are going to be processed, that is,
when we will need to know how much flow (7, j) distributed to them. This happens
when the sweep-plane reaches their elevation and we know their elevation from the
information in L. The key idea is therefore to send the needed information (flow)
“forward in time” by inserting it in an I/O-efficient priority queue. This idea is
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Fig. 2. Points with the same height (black Fig. 3. Point (3, j) receives flow 5+6+8 =
circles) are distributed over the terrain: Pro- 19 from its three upslope neighbors and dis-
cessing them after each other might result in tributes it to its 5 downslope neighbors using
loading most of the disk blocks storing the a priority queue. (For example, point with

terrain. height 90 gets % - 20 units of flow).
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similar to time forward processing [Chiang et al. 1995; Arge 1995a].

Our new sweep algorithm works as follows; We maintain an external priority
queue [Arge 1995a; Brodal and Katajainen 1998] on grid points (4, ), with primary
key equal to the elevation H;; and secondary key equal to (¢,j). Each priority
queue element also contains a flow value (the flow “sent forward” to (i,j) from
one of its neighbors). When we process a grid point (7, ) during the sweep (scan
of L), its flow is distributed to downslope neighbors by inserting an element for
each of them into the queue. The accumulated flow of (4, j) is found by performing
ertract_maz operations on the priority queue. As a grid point can receive flow
from multiple neighbors, we may need to perform extract_maz operations several
times to obtain its total flow. Flow sent to (i,j) from its upslope neighbors will
be returned by consecutive extract_maz operations as they all have the same key.
If extract_maz does not return flow for (i,j) (an element with key (H;j,i,7)), it
means that (i,j) does not have any upslope neighbors and we only distribute its
initial one unit of flow. The processing of a grid point is illustrated in Figure 3. As
the total number of priority queue operations performed is O(N), and as external
priority queues with O(% logar %) I/0 bound per operation exist [Arge 1995a;
Brodal and Katajainen 1998], the sweep uses O(sort(N)) I/Os in total.

The above sweep algorithm does not directly output the flow accumulation matrix
A. Instead, the flow accumulation of grid points are written to a list as they are
calculated during the sweep. After the sweep, A can then be obtained by sorting
this list in an appropriate way. We have the following.

THEOREM 1. The flow accumulation of a terrain stored as o VN by VN grid
can be computed using O(sort(N)) I1/0s, O(N log N) time, and linear space.

3. I/O-EFFICIENT ALGORITHMS ON GRID GRAPHS

In the previous section we designed an O(sort(N)) algorithm for the flow accumu-
lation problem. In this section we develop O(sort(N)) algorithms for breadth-first
search (BFS) and single source shortest path (SSSP) on grid graphs. The previous
best known algorithms use Q(N) I/Os. We also develop an O(scan(N)) algorithm
for computing connected components on a grid graphs, compared to the previous
O(sort(N)) algorithm. As discussed in the introduction, all these problems corre-
spond to important GIS problems on grids. In Section 3.1 we describe our new
SSSP algorithm in detail. In Section 3.2 we then briefly discuss the two other
algorithms. Further details will appear in the full paper.

3.1 Single Source Shortest Paths

Consider a grid of size v/N by v/N divided into O(N/M) subgrids of size v/ M by
v M each. Our algorithm will rely on the following key lemma (proof omitted)—
refer to Figure 4 (a).

LEMMA 1. Consider o shortest path §(s,t) between two vertices s and t in the
grid. Let {s = Ao, A1, A4s,..., Ap_1,Ar = t} denote the intersections of the path
with the boundaries of the subgrids. Then the paths A; — A;y1 induced by §(s,t)
in a subgrid is the shortest paths between A; and A; 1 in that subgrid.

Using lemma 1, our first idea for improving the general O (V + % log, %) =
O (N + X log, &) SSSP algorithm [Kumar and Schwabe 1996] in the case of a grid
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graph is via sparcification (Similar to e.g. [Frederickson 1987]): We first replace each
VM x v/M subgrid with a full graph on the “boundary vertices”. The resulting
graph R has ©(N/v/M) vertices and ©(N) edges. The weight of an edge in R is
the shortest path between the corresponding two boundary vertices, among all the
paths within the subgrid—refer to Figure 4 (b). The new edges and weights of R can
easily be computed in O(N/B) I/0s, simply by loading each subgraph in turn and
use an internal memory all-pair-shortest-paths (APSP) algorithm to compute the
weights of the new edges. Next we use the general SSSP algorithm on R to compute
the length of the shortest paths from the source vertex s to all the boundary vertices.
Using Lemma 1, we know that these paths are identical to the shortest paths in
the original grid graph. Finally, we compute the shortest paths from s to all the
vertices we removed, simply by loading each subgraph in turn (together with the
shortest path lengths we found for the corresponding boundary vertices) and use
an internal memory algorithm to compute for each vertex ¢ in the subgrid, the
shortest path from s using the formula §(s, t) = min,{(s,v) + dsubgria(v, t) }, where
v ranges over all the boundary vertices in #’s subgrid, and where Jdsubgria denotes
the shortest path within a subgrid.

The above algorithm uses O(%¥) + O(N/vVM + ¥ log,(N/VMB)) + O(%) =
O(% log,(N/VMB)) I/Os. We would like to improve this bound to O(sort(N)) =
O(% logy, /B &), that is, the base of the logarithm should be M/B instead of 2. The
binary logarithm in our bound comes from the general SSSP algorithm by Kumar
and Schwabe [Kumar and Schwabe 1996]. Their algorithm is a variant of Dijkstra’s
algorithm [Dijkstra 1969], modified so that when processing a vertex v, no lookup
is needed in order to determine the length of the currently known shortest path
to neighbors of v (used to determine if a new shorter path has been found and
thus if a decrease_key operation should be performed on the priority queue that
controls the order in which vertices are processed). Such lookups would result in an
E-term in the I/O bound. The priority queue used in their algorithm is an external

\m
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(a) Lemma 1. (b) Modified graph R.

Fig. 4.
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version of a tournament tree, which supports insert, delete_min, and decrease_key
in O(% log, %) I/Os amortized.

The idea in the improvement of our algorithm is to avoid using decrease_key
operations and thus to be able to use one of the O(% log,, /B %)—I/ O-per-operation
priority queues discussed earlier [Arge 1995a; Brodal and Katajainen 1998]. In
order to do so, we use Dijkstra’s algorithm directly, instead of the algorithm by
Kumar and Schwabe, and take advantage of the special structure of R to avoid
the E term Kumar and Schwabe avoid using the external tournament tree. The
main idea is to store R so that when we process a vertex, we can access its ©(v/M)
neighbors in O(v/M/B) 1/Os. To see how to do so, recall that the ©(N/v/M)
vertices of R consist of every v/Mth column and v/Mth row of the original grid
graph. We store all ©@(N/M) “corner vertices” (vertices which are both on one of
the columns and one of the rows) consecutively in © (N/(M B)) blocks. We store the
remaining vertices row by row and column by column, such that consecutive vertices
are consecutive on disk. To obtain the neighbors of a vertex in R, we then just
need to access six corner vertices and access the disk in five different places, reading
©(v/M/B) blocks in each of these places, using O(vM/B+11) = O(v'M/B) 1/Os
in total.

Our SSSP algorithm on R now works as follows: Together with each vertex in the
above representation we store a distance, initially set to co. We then use a slightly
modified version of Dijkstra’s algorithm where we maintain the invariant that for
every vertex the distance in the above representation is identical to the distance
stored in the priority queue controlling the algorithm (the shortest distance seen so
far). We repeatedly perform a delete_min on the priority queue to obtain the next
vertex v to process, and then we load all ©(v/M) edges incident to v and all the
O(v/M) neighbor vertices (and their current distances) into main memory using
O(VM/B) 1/0s. Without any further 1/O, we then compute which vertices need
to have their distance updated. Finally, we write the updated distances back to
disk and perform the corresponding updates (decrease_key) on the priority queue.
One decrease_key operation is performed using a delete and an insert operation—
we can do so since we now know the key (distance) of the vertex that we update.
In total, we perform O(E) = O(N) operations on the queue and use O(v/M/B) on
each of the ®(N/v/M) vertices, and thus our algorithm uses O(sort(N)) I/Os.

THEOREM 2. The single source shortest path problem on a VN by VN grid
graph can be solved in O(sort(N)) I/Os.

So far we have only described how to compute the lengths of the shortest paths.
By adding an extra step to our algorithm we can also produce the shortest path
tree. Using a recent result due to Hutchinson, Maheshwari and Zeh [Hutchinson
et al. 199], we can then construct a structure such that for any vertex ¢, the actual
shortest path between s and ¢ can be returned in L/B I/Os, where L is the length
(number of vertices) of the path.

3.2 Other problems

Given our O(sort(NN)) SSSP algorithm, we can also develop an O(sort(N)) BFS
algorithm. We simply use the SSSP algorithm on the graph where all edges have
weight one. The BFS numbering of the vertices can then be found in a few sorting
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steps.

The problem of finding connected components (CC) of a grid graph can be solved
efficiently in a way similar to the way we solved SSSP; we divide the grid into
subgrids of size VM by vM and find connected components in each of them.
We then replace each subgrid with a graph on the boundary vertices, where we
connect boundary edges in the same connected component. Each subgraph has size
O(V/M) so the modified graph has size N’ = O(N/+/M) and we can find connected
components in it using the standard DFS algorithm using O(N') = O(scan(N))
I/0s. Using this information we can easily solve CC.

THEOREM 3. The breadth-first search tree and the connected components of a
VN by V/N grid graph can be found in O(sort(N)) and O(scan(N)) 1/Os, respec-
tively.

4. EXPERIMENTAL RESULTS
4.1 Implementation

Our implementations are based on the TPIE (Transparent Parallel I/O Environ-
ment) system developed at Duke University [Arge et al. 1999; Vengroff 1994]. TPIE
is a collection of templated functions and classes designed to facilitate easy and
portable implementation of external memory algorithms. The basic data struc-
ture in TPIE is a stream, representing a list of objects of the same type. The
system contains I/O-efficient implementations of algorithms for scanning, merging,
distributing, and sorting streams. TPIE facilitated the implementation of the two
flow accumulation algorithms discussed in section 2, as it contains all the building
blocks we needed, except for the external priority queue. We implemented a sim-
plified version of the external priority queue of Brodal and Katajainen [Brodal and
Katajainen 1998], very similar to the implementation discussed in [Brengel et al.
1999].

We implemented the flow accumulation algorithms described in Section 2 with
one minor modification. In order to more accurately model water flow through
horizontal portions of the terrain (where there are no downslope neighbors), as
well as through small depressions of the terrain, our algorithms take as input not
only the elevation grid, but also an auxiliary grid of the same dimensions which
is used during the sweep. The latter grid contains values output from another
terrain application and the use of these values does not affect our analysis of the
algorithms. The modification is a result of the fact that our implementations are
being used by global change researchers at Duke in real applications. Details will
appear in the full version of this paper.

In our implementation of the standard algorithm (in the following called the
internal algorithm), we first read the elevation and auxiliary grids from disk into
a two-dimensional array in internal memory. For a grid of size N, the array is
of size 8N bytes. Then we sort the elevations (along with information about the
position of a given elevation in the grid) in decreasing order using the standard
system quicksort implementation and store them in a file on disk; in the following
we refer to this file as the sweep file. The sweep file is of size 16 N bytes. We then
allocate a flow accumulation array of size equal to the elevation array and sweep the
terrain by reading the elevations from the sweep file, while accessing the elevation



[/O-Efficient Algorithms for Problems on Grid-based Terrains . 11

and flow arrays as described in Section 2. The amount of memory needed during
both the sorting and sweeping phases of the algorithm is roughly 16 N bytes and
if this is more than the available main memory, we rely on the underlying virtual
memory system to perform the necessary I/0s.

Our implementation of the I/O-efficient algorithm (in the following called the
external algorithm) differs from the internal algorithm in that it uses TPIE’s I/O-
efficient sorting algorithm [Aggarwal and Vitter 1988] to sort the sweep file and
utilizes an external priority queue during the sweep. It also has to perform an
extra sort after the sweep in order to produce the flow accumulation grid in the
right format. As discussed in Section 2, each elevation in the sweep file is augmented
with the elevations of its eight neighbors. Thus in the external algorithm the sweep
file is of size 64N bytes. All the I/O performed during the external algorithm is
controlled explicitly by TPIE and the virtual memory system is never in use. The
external memory priority queue was implemented such that no I/0O is performed if
enough memory is available for it to be in main memory.

4.2 Experiments

Experimental setup. In order to investigate the efficiency of our algorithms we
performed a set of experiments on real-life terrain data of different sizes and char-
acteristics, as well as with different main memory sizes. Our test data consisted of
three 100 meter resolution datasets of Puerto Rico, Hawaii, and the Appalachian
Mountains, as well as two 30 meter resolution datasets of the Kaweah River (in the
foothills the Sierra Nevada Range of California), and a part of the Sequoia/Kings
Canyon National Park in the Sierra Nevada region. The datasets vary in size from
1.6 million points or 12.8 MB (Kaweah) to 63.5 million points or 508 MB (Ap-
palachian), and they also vary greatly in terms of elevation distribution. Intuitively,
the latter should affect the performance of the sweep phase of both the internal and
the external algorithms; especially of the external memory algorithm, because the
size of the priority queue is determined by the elevation distribution. The char-
acteristics of the five terrains are summarized in Table 1, which also contains the
maximal size of the priority queue during the sweep. We performed experiments
with main memory sizes of 512, 256, 128, 96, and 64 MB. We performed experi-
ments with relatively low main memory sizes, as well as with more realistic sizes, in
order to simulate flow accumulation computations on terrains of much larger size
than the ones that were available to us. Such much bigger datasets will soon be
available. If for example the Appalachian dataset was sampled at 30 instead of 100
meter resolution, it would be of size 5.5 gigabytes. Sampled at 10 meter it would
be 50 gigabytes, and at 1 meter a mind-blowing 5 terabytes.

We performed our experiments on a 450MHz Xeon Intel PII with 512 MB of
main memory running FreeBSD 4.0, and with an external local (striped) disk array
composed of four 17GB Maxtor 91728D8 IDE drives. For each experiment the
machine was rebooted with the indicated amount of main memory. In the case of
the external algorithm, the TPIE limit on main memory use was set (somewhat
conservatively) to 25, 50, 95, 200, and 350MB, in the experiments with 64, 96, 128,
256, and 512MB of main memory. The rest of the memory was reserved for the
operating system.

Experimental results. The main results of our experiments are shown in Fig-
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ure 5 and Figure 6. As it can be seen, the external algorithm scales nicely for all
main memory sizes. The internal algorithm on the other hand “breaks down” (or
thrashes) when the memory use exceeds the main memory size; At 512MB the in-
ternal algorithm can handle all datasets except Appalachian. At 256MB the picture
is the same, but the algorithm starts thrashing on the Hawaii dataset. At 96MB
the algorithm thrashes on the Sierra dataset, while Hawaii slows down further. The
algorithm can still handle Hawaii because of the “nice” distribution of elevations
in that dataset (part of the grid is over water). At 64MB the algorithm can only
handle the relatively small Kaweah and Puerto Rico datasets. It should be noted
that on the small datasets the internal algorithm is slightly faster than the exter-
nal algorithm. However, the external algorithm could easily be made “adaptive”
so that it runs the internal algorithm if enough memory is available. This would
result in the external algorithm always being at least as fast as the internal.

An interesting observation one can make from Table 1 is that in most of the
experiments discussed so far, the priority queue used in the external algorithm ac-
tually fits in main memory. External memory is only really needed when processing
the Appalachian dataset using only 64MB of main memory. This suggests that in
most cases one could greatly simplify the implementation by just using an internal
memory priority queue. One could even suspect that in practice an internal priority
queue implementation would perform reasonably well, since the memory accesses
incurred when operating on the queue are relatively local. In order to investigate
this, we performed experiments with the external algorithm modified to use an
internal priority queue in the sweep while letting the OS handle the I/O. We ran
the algorithm on the Appalachian dataset using 64 and 48MB of main memory
and compared its performance to that of the unmodified external algorithm (that
is, using the external priority queue). Our experiments showed that the external
priority queue is needed on large terrains. Using 64MB of main memory the inter-
nal priority queue algorithm performance was only slightly worse (5844 seconds)
than the external algorithms (4738 seconds). However, using only 48MB of main
memory the external algorithm finished the sweep in 5056 seconds, only slightly
worse than when using 64MB, while the internal priority queue implementation
only finished 70% of the sweep in 13 hours.

Detailed running time analysis. Figure 5 and 6 only illustrate the overall
results of a set of much more detailed experiments we performed with the two
algorithms and the five data sets. The detailed results are included in Tables 2 and 3
at the end of the paper. In these tables, the running time of each experiment is

Dataset Surface Grid size Approx. size Priority queue
Coverage size

Kaweah 34 x 42 km | 1163 x 1424 1.6 x10°%, 13MB | 2 x10%, 0.4MB

Puerto Rico 445 x 137 km | 4452 x 1378 5.9 x10°%, 47MB | 14 x10%, 2.8MB

Sierra 112 x 80 km | 3750 x 2672 9.5 x10°, 76MB | 19 x10%, 3.8MB

Hawaii 678 x 4369 km | 6784 x 4369 | 28.2 x10°%, 225MB | 9 x10%, 1.8MB

Appalachian | 847 x 785 km | 8479 x 7850 | 63.5 x10°, 508MB | 2.8 x10°%, 56 MB

Table 1.

Characteristics of terrain data sets.
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External v.s. Internal Algorithm at 512M8 External v.s. Internal Algorithm at 256MB

20000 20000

external memory alg. —+— i external memory alg. ——
internal memory alg. ---x--- H interal memory alg. -----

15000 4 15000

10000

time (seconds)

E

5000 5000

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

dataset size (million elements) dataset size (million elements)

External v.s. Internal Algorithm at 128MB External v.s. Internal Algorithm at 96MB
T T 20000 T T T T

20000 T —

) T
external memory alg. —+—
internal memory alg. ------

) T
external memory alg. ——
internal memory alg. ---x---

15000 15000

10000 - 10000

time (seconds)
time (seconds)

5000 5000

o Le=* 1 1 1 1 1
0 10 20 30 a0 50 60 70 0 10 20 30 40 50 60 70
dataset size (million elements) dataset size (million elements)

External v.s. Internal Algorithm at 64MB
20000 T T T T

) T
external memory alg. —+—
internal memory alg. ------

15000

10000

time (seconds)

5000

o Le2 1 1 1 1
0 10 20 30 40 50 60 70
dataset size (million elements)

Fig. 5. Comparison of standard (internal) and I/O-efficient (ezternal) algorithms at different
main memory sizes. Running times are in seconds and data size in million elements. Results
shown for each main memory size.

split into three parts; input time, sweep time and output time, which is further
divided into CPU time and idle (I/O) time. For the internal algorithm, the input
time is the time used to load the elevation grid into memory and to create and
sort the sweep file. The sweep time is the time used to perform the sweep, and the
output time is the time used to write the flow accumulation matrix to disk. For
the external algorithm, the input time is the time used to read the elevation grid
and create and sort the sweep file. The sweep time is the time used to perform the
sweep (scan the sweep file performing insert and extract-maz on the priority queue
as needed), as well as to write the flow accumulation values to a stream and sort
this stream once the sweep is completed. The output time is the time used to scan
the sorted stream and write the flow accumulation to disk. As already discussed,
the internal algorithm thrashes in several of the experiments on large datasets and
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Puerto Rico dataset: external v.s. internal algorithm
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Fig. 6. Comparison of standard (internal) and I/O-efficient (ezternal) algorithms for each
dataset. Running times are in seconds and main memory sizes in megabytes. Results shown

for each dataset.

we had to stop the program before it finished. The corresponding entries in the
table are marked with oo. Below we discuss the results in a little more detail.
First consider the internal algorithm (Table 3). The Kaweah dataset is small
enough to fit in internal memory at all memory sizes and the algorithm consistently
takes 60 seconds to complete. Its CPU utilization is around 85%. The Puerto Rico
dataset fits in memory at 512MB and 256MB and completes in 100 seconds. When
memory is reduced to 64MB, the CPU utilization drops from 87% to 19% and the
performance is 5 times slower (480 seconds). Similarly, the Sierra Nevada dataset
completes in 4 (5) minutes and 79% (66%) CPU utilization using 512MB (256 MB)
internal memory where it fits in memory. At 128MB, the running time jumps from
4 minutes to 4 hours, and the algorithm spends 98% of the time waiting for I/0.
When the memory is reduced even more the algorithm thrashes—after 13 hours
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only half of the sweep had been completed. The Hawaii dataset fits in memory
only at 512MB. As main memory gets smaller, the CPU utilization falls from 49%
at 512MB to 2% at 64MB, and the running time increases from 15 minutes at
512MB to almost 8 hours at 64MB. The Appalachian dataset is beyond the limits
of the internal algorithm—with 512MB of main memory we let it run for 4 days
without finishing. Note that the thrashing of the internal algorithm is mainly due
to sweeping. For instance, sorting the 425MB in the Hawaii dataset sweep file using
512MB of main memory takes 462 seconds (64% CPU), while at 64MB memory
it takes 2668 seconds (7% CPU). Sweeping the same file takes 299 seconds using
512MB of main memory, but 24347 seconds using 64MB of main memory. The
sorting performance is better due to the relatively good locality of quicksort.

Unlike the internal algorithm, the external algorithm scales (almost) linearly
with memory decrease and maintains its CPU utilization constant (Table 2). For
instance, the flow accumulation computation for the Appalachian dataset (which
the internal algorithm thrashes on) takes 2 hours in total (79% CPU) using 512MB
of main memory. Using 64MB of main memory it uses only 40 minutes more (68%
CPU).

Finally, as already discussed briefly, it should be noted how the sweeping time
depends not only on the size of the dataset but also on intrinsic terrain properties
(quantified by the size of the priority queue in the external algorithm). Consider
for example the performance of the internal algorithm on the Sierra and Hawaii
dataset. With 512 and 256MB of main memory both datasets fit in memory but
the sweep of the Sierra dataset is significantly faster than the sweep of the Hawaii
dataset, the reason being that the Hawaii sweep file is around six times bigger than
the sierra sweep file. Using 128MB of main memory the algorithm thrashes on
the Sierra dataset even though it is smaller than the Hawaii dataset. The reason
for this is that that the Hawaii dataset is relatively easy to sweep (small priority
queue size). This can also be seen from the CPU utilization during sweeping in the
external algorithm.

5. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we have developed I/O-efficient algorithms for several graph problems
on grid graphs with applications to GIS problems on grid-based terrains. We have
also shown that while the standard algorithm for the flow accumulation problem is
severely I/O bound when the datasets get larger than the available main memory,
our new I/O-efficient algorithm scales very well.

A number of interesting problems on grid graphs remain open, for example, if
it is possible to develop an O(sort(NN)) depth-first search algorithm. For general
graphs it remains an intriguing open problem if any graph problem can be solved
in O(sort(E)) I/0s.

In terms of computing flow accumulation, it would be interesting to develop
more realistic models of flow of water over a terrain than the one used in current
algorithms. Other interesting problems include developing models and algorithms
for flow accumulation on DEMs stored as TINs.
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Mem Time Kaweah Puerto Rico Sierra Nevada Hawaii Appalachian
MB secs || cpu | idle | total || cpu | idle | total cpu | idle | total cpu | idle | total cpu | idle | total
input 34 3 37 155 60 215 257 199 456 786 580 1366 1778 1289 3067
512 sweep 76 1 7 97 10 107 872 14 886 303 45 348 3513 215 3728
output 5 1 6 22 1 23 31 1 32 111 3 114 231 4 235
TOTAL 115 5 120 274 71 345 || 1160 | 214 | 1374 || 1200 628 1828 || 5522 | 1508 7030

% 96 4 79 21 84 16 66 34 79 21
input 35 2 37 156 134 290 256 240 496 803 637 1440 1825 1344 3174
256 sweep T 11 88 98 14 112 870 17 887 324 97 421 3517 266 3783
output 5 0 5 22 1 23 31 1 32 111 2 113 231 4 235
TOTAL 117 13 130 276 | 149 425 || 1157 | 258 1415 || 1238 736 1974 || 5573 | 1619 | 7192

% 90 10 65 35 82 18 63 37 7 23
input 42 18 60 164 151 315 263 280 543 829 752 1581 1888 1337 3225
128 sweep 7 11 88 104 14 118 882 25 907 329 120 449 3531 267 3798
output 5 0 5 22 1 23 32 1 33 111 3 114 231 4 235
TOTAL 124 29 153 290 | 166 456 || 1177 | 306 1483 || 1269 875 2144 || 5650 | 1608 7258

% 81 19 64 36 79 21 59 41 78 22
input 41 28 69 159 209 368 468 87 555 845 924 1769 1917 2185 4102
96 sweep 7 10 87 98 15 113 885 35 920 331 131 462 3784 292 4076
output 5 1 6 22 1 23 32 1 33 111 2 113 232 5 237
TOTAL 123 39 162 279 | 225 504 || 1385 123 1508 || 1287 | 1057 | 2344 || 5933 | 2482 | 8415

% 76 24 55 45 92 8 55 45 71 29
input 43 32 75 169 226 395 277 293 570 873 950 1823 1978 2561 4539
64 sweep 4 14 91 105 19 124 887 64 951 339 143 482 4228 510 4738
output 5 1 6 22 1 23 32 1 33 111 2 113 231 5 236
TOTAL 125 47 172 296 | 246 542 || 1196 | 358 1554 || 1323 | 1095 2418 || 6437 | 3076 | 9513

% 73 27 55 45 T 23 55 45 68 32

81

JS1UA 110G Aauyer pue ewo) euneT 981y sie



'€ dI9eL

‘syuawILIddxa WY)II03[e AIOWLW [RUIIUT

Mem Time Kaweah Puerto Rico Sierra Nevada Hawaii Apallachian
MB secs || cpu | idle | total || cpu | idle | total || cpu idle | total || cpu idle | total || cpu | idle | total
input 36 3 39 57 7 64 99 24 123 296 166 462 00 oo
512 sweep 6 3 9 9 6 15 78 32 110 24 275 299 00 00
output 5 0 5 21 0 21 29 0 29 103 4 107
TOTAL 47 6 53 87 13 100 206 56 262 423 445 868 00 00
% 88 12 87 13 79 21 49 51
input 35 1 36 57 5 62 101 9 110 306 1527 1833
256 sweep 6 3 9 8 2 10 71 94 165 25 424 449 00 00
output 5 0 5 21 0 21 29 1 30 104 81 185
TOTAL 46 4 50 86 7 93 201 104 305 435 2032 2467 o0 0
% 92 8 92 8 66 34 18 82
input 35 4 39 60 50 110 103 323 426 307 2076 2383
128 sweep 7 3 10 8 5 13 124 11949 12073 27 343 370 00 oo
output 5 1 6 21 2 23 29 131 160 104 208 312
TOTAL 47 8 55 89 57 146 256 | 12403 | 12659 438 2627 3065 00 0o
% 85 15 61 39 2 98 14 86
input 35 3 38 58 129 187 107 413 520 325 2052 2377
96 sweep 7 4 11 9 20 29 S o0 30 1268 1298 00 S
output 5 0 5 21 12 33 104 181 285
TOTAL 47 7 54 88 | 161 249 (% 00 459 3501 3960 % (%
% 87 13 35 65 1 99 12 88
input 36 6 42 62 234 296 109 493 602 199 2469 2668
64 sweep 7 3 10 9 101 110 o 0o 101 24246 24347 00 o
output 5 1 6 21 53 74 110 138 248
TOTAL 48 10 58 92 | 388 480 0 00 410 | 26853 | 27263 00 00
% 83 17 19 81 2 98
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