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Map overlay

Maps: planar subdivisions, sets of non-intersecting line
segments, triangulations

figures thanks to H. Haverkort
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Overlaying triangulations CPU-efficiently

Maps: triangulations

DFS in one triangulation, traverse triangles in the other
O(1) operations per edge, O(1) operations per crossing

Total: O(n + k) CPU operations
for n triangles, k crossings

Mark McGranaghan, Laura Toma An edge quadtree for external memory



Motivation Background Our algorithm Empirical evaluation

In external memory

If main memory is too small to hold all data

disk

read/write head

main memory of 
size M

my triangle
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size M

my triangle

B triangles

one IO

Mark McGranaghan, Laura Toma An edge quadtree for external memory



Motivation Background Our algorithm Empirical evaluation

In external memory

If main memory is too small to hold all data

disk

read/write head

main memory of 
size M

my triangle

B triangles

one IO

The disk is 106 times slower than the memory

B is big (8KB or more)

With large data the bottleneck is usually the IO
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What your computer does while you wait

Intel Core 2 Duo at 3.0GHz

8 GB
Latency:  83 ns 

(250 cycles)

RAM

Latency:  15 ms 
(~40 million cycles)

disk

32KB
Latency: 1ns 

(3 cycles)

L1
6 MB

Latency: 4.7 ns 
(14 cycles)

L2

1 cycle: .33 nanoseconds 

3GHz core

http://duartes.org/gustavo/blog

...To put this into perspective, reading from L1 cache is like grabbing a
piece of paper from your desk (3 seconds), L2 cache is picking up a
book from a nearby shelf (14 seconds), and main memory is taking a
4-minute walk down the hall to buy a Twix bar. Waiting for a hard drive
seek is like leaving the building to roam the earth for one year and
three months [...]
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The IO-Model [Agarwal & Vitter, 1988]

main memory 
of size M

disk
(infinite size)

processor

one  IO

B

input of size n 

one IO ≈ 40, 000, 000 CPU operations

IO-complexity: number of IOs
Fundamental bounds

scanning: scan (n) = n
B IOs

sorting: sort (n) = Θ( n
B logM/B

n
M ) IOs
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Triangulation overlay IO-efficiently?

The triangulation is on disk, arranged in blocks

DFS in one triangulation, traverse triangles in the other

CPU: Θ(n + k) operations
IO:

one IO per edge and triangle
total: O(n) IOs

figures thanks to H. Haverkort
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IO-efficient map overlay: Related work

n = input size, M = memory size, B = disk block size

Arge et al 1995: O(sort(n) + k/B) IOs
complicated, super-linear space

Crauser et al 2001: O(sort(n) + k/B) IOs
randomized

De Berg et al 2007: in O(sort(λn)) IOs can build a data
structure that supports map overlay in O(scan(λn)) IOs

λ is the density of the set of segments (for any circle C,
intersecting segments > diam(C) is O(λ)).
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Map overlay with quadtrees

IO-complexity
scan(n1 + n2 + k) IOs
assuming a cell fits in memory

figures thanks to H. Haverkort
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Building edge quadtrees: Related work

Build quadtree induced by endpoints and distribute edges
O(n) cells, ≤ 1 point per cell, l = O(n2)

Split a region until it intersects a single edge
unbounded size

Formulate specific stopping criteria
PM quadtree (PM1, PM2, PM3)
segment quadtree
PMR quadtree
Samet 85, 86, 87, 89, 92, 97, 99, 02..
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Contributions

Given a set of n segments in the plane
New algorithm to construct a linear edge-quadtree with
O(n) cells in O(sort(n + l)) IOs

l is the nb. edge-cell intersections, l = O(n2)
same IO bound as [De Berg et al], but much simpler

k -quadtree
O(k) vertices per cell, O(n/k) cells
can be constructed in O(sort(n + l)) IOs

Empirical evaluation
triangulated terrains, TIGER data
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Our algorithm

Input: A file with n segments in the plane

Algorithm:
1 Find the endpoints of the

segments.
2 Sort them in Z-order.
3 For every two consecutive points

pi and pi+1 in order:
find smallest cell Q that
contains pi and pi+1

output cell boundaries of Q and
its quadrants

=⇒ compressed quadtree
subdivision with O(n) cells and
≤ 1 point per cell.
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Our algorithm

Input: A file with n segments in the plane

Algorithm:
1 Find the endpoints of the

segments.
2 Sort them in Z-order.
3 For every two consecutive points

pi and pi+1 in order:
find smallest cell Q that
contains pi and pi+1

output cell boundaries of Q and
its quadrants

4 Distribute edges to cells.
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Edge distribution

Input

E : a set of edges in the plane.

Q = {z0, z1, z2, ....}: a quadtree subdivision of [0, 1]

Output

For each interval Ik = [zk , zk+1], the set of edges that
intersect σk

Let E+ be the edges of positive slope

Let E− be the edges of negative slope

We’ll process E+ and E− separately.
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Distributing E+

Input: Q = {z0, z1, ...}, E+
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Distributing E+

Input: Q = {z0, z1, ...}, E+

Algorithm:
Sort E+ by the z-index of
the first endpoint.
For each interval
Ik = [zk−1, zk ] in Q:

Find all edges in E+ that
intersect Ik

5

4

3

2

1

6

7

8

9

10 12

13

14

15

16

11

Mark McGranaghan, Laura Toma An edge quadtree for external memory



Motivation Background Our algorithm Empirical evaluation

Distributing E+

Algorithm:

Sort E+ by the z-index of
the first endpoint.
For each interval
Ik = [zk−1, zk ] in Q:

Find all edges in E+ that
intersect Ik

Mark McGranaghan, Laura Toma An edge quadtree for external memory



Motivation Background Our algorithm Empirical evaluation

Distributing E+

Lemma

An edge of positive slope
intersects the cells in Q in
z-order.
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Distributing E+

Lemma

An edge of positive slope
intersects the cells in Q in
z-order.

The edges that intersect Ik ei-
ther:

start in Ik , or,

start in an interval before Ik
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Distributing E+

Input: Q = {z0, z1, ...}, E+

Algorithm:
Sort E+ by the z-index of
the first endpoint.
For each interval
Ik = [zk−1, zk ] in Q:

Find all edges in E+ that
start in Ik
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Distributing E+

Bk : the boundary between σ1 ∪
σ2 ∪ ... ∪ σk and σk+1 ∪ σk+2...
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Distributing E+

Bk : the boundary between
σ1 ∪σ2...∪σk and σk+1 ∪σk+2...

BLk : the edges that inter-
sect Bk , in order.
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Distributing E+

Bk : the boundary between
σ1 ∪σ2...∪σk and σk+1 ∪σk+2...

BLk : the edges that inter-
sect Bk , in order.

Lemma
Bk is a monotone staircase and
the intersection of σk and Bk−1

covers a connected part of
Bk−1.
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Distributing E+

Algorithm:

Sort E+ by the z-index of
the first endpoint.
For each interval
Ik = [zk−1, zk ] in Q:

Find all edges in E+ that
start in Ik
Use BLk−1 to find the
edges that start before
σk and intersect σk
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Distributing E+

Algorithm:

Sort E+ by the z-index of
the first endpoint.
For each interval
Ik = [zk−1, zk ] in Q:

Find all edges in E+ that
start in Ik
Use BLk−1 to find the
edges that start before
σk and intersect σk

Update BLk−1 to BLk
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Distributing E+

How to find an edge in BLk−1

that intersects σk?
avoid searching 5
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Distributing E+

How to find an edge in BLk−1

that intersects σk?

Start from the first edge in σk−1

that intersects BLk−1
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Distributing E+

How to find an edge in BLk−1

that intersects σk?

Start from the first edge in σk−1

that intersects BLk−1

Lemma

The number of edges traversed
and skipped is O(l).
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Distributing E+

Lemma

The number of edges traversed and skipped is O(l), where l is
the number of edge-cell intersections.
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Distributing E+

How to find an edge in BLk−1

that intersects σk?

Start from the first edge in σk−1

that intersects BLk−1

Lemma

The intersections of E+ and Q
can be found in O(scan(n + l))
IOs, once Q and E+ are sorted.
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Distributing E−

E+

2 4

1 3

E−

1 2

3 4
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Our algorithm

Theorem

Given a set of n edges in the plane, a compressed quadtree
subdivision with O(n) cells and O(1) points per cell can be
computed in O(sort(n + l)) IOs, where l is the number of
edge-cell intersections.
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The k-quadtree

The algorithm can be extended to get a quadtree with O(k)
vertices per cell.

1 Find the endpoints of the segments.
2 Sort them in Z-order.
3 For every two consecutive points in p0, pk , p2k , ...:

find smallest cell Q that contains them
output cell boundaries of Q and its quadrants

4 Distribute edges to cells.
interleave the edges in σk with the edges in BLk−1, etc

Theorem

A quadtree subdivision with O(n/k) cells, each cell with O(k)
vertices can be computed in O(sort(n + l)) IOs, where
l = O(n2/k) is the number of edge-cell intersections.
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Datasets: Triangulated terrains

We ignored the elevation.

Delaunay triangulation

Lots of small angles on the boundary

Dataset e Max inc. Min ∠

Kaweah 1.2 · 106 31 .0704
Puerto Rico 4.1 · 106 291 .0010
Cumberlands 5.1 · 106 44 .0016
Sierra 7.9 · 106 75 .0137
Central App. 10.1 · 106 62 .0013
Hawaii 19.7 · 106 356 .0007
Haldem 37.1 · 106 78 .0097
Lower NE 53.9 · 106 168 .0021
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Datasets: Triangulated terrains
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Datasets: Triangulated terrains

min angle around .001◦

max angle close to 180◦

5% below 18◦

5% above 108◦

median angle 57◦

max degree varies widely across all datasets, ranging
between 31 and 356

average degree across all datasets is approx. 6.
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Datasets: Triangulated terrains
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Datasets: Triangulated terrains
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Datasets: TIGER data

Available at http://www.census.gov/geo/www/tiger/

50 sets, one set for each state, containing roads,
hydrography, railways and boundaries

Largest set: TX (e = 40.4 · 106)

We assembled larger bundles.

Dataset e

New England 25.8 · 106

East Coast 113.0 · 106

Eastern Half 208.3 · 106

All USA 427.7 · 106

Mark McGranaghan, Laura Toma An edge quadtree for external memory



Motivation Background Our algorithm Empirical evaluation

Platform

C

g++ 4.1.2 -O3

HP 220 blade servers

Intel 2.83 GHz

5400 rpm SATA drive

512 MB RAM
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Results: TIN data

Quadtree build time
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Our algorithms: QDT-k (k=1, 10, 100, ..)

Previous work [De Berg et al]: Qdt-1-old, Star

QDT-k gets faster up to k = 100 and then levels
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Results: TIN data

QDT-1 size

ec: nb edge-cell intersections

c: nb cells

ec/c: avg cell size
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Across all datasets: c ≈ .6e, ec ≈ 3e, ec ≈ 5c
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Results: TIN data

QDT-k total size
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As k increases
c decreases, ec/c increases, ec/e decreases
fewer cells → fewer edge-cell intersections
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Results: TIN data

Sizes and build time on LowerNE (e = 53.9 · 106)

c ec ec/c build (min)

QDT-1 32.5 · 106 158.8 · 106 4.8 210
QDT-100 .24 · 106 62.8 · 106 257.4 57
QDT-500 .06 · 106 58.4 · 106 957.4 53
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Results: TIGER data

Quadtree build time
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Our algorithms: Qdt-K (k=1, 10, 100, ..)
Previous work [De Berg et al]: Qdt-1-old
QDT-k gets faster up to k = 100 and then levels
QDT-100 on AllUSA in 9.7 hours
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Results: TIGER data

QDT-1 size

ec: nb edge-cell intersections

c: nb cells

ec/c: avg cell size
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Sizes relatively consistent across all data sets (!).
c ≈ 2.5e, ec ≈ 3e, ec ≈ c
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Results: TIGER data

QDT-1: maximum cell size
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QDT-1: maxcell
QDT-1: ec/c

Varies widely from state to state
E.g.: Easthalf: max cell intersects 58 edges
ME: max cell intersects 8 edges
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Results: TIGER data

QDT-k total size: ec/e
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As k increases
c decreases, ec/c increases, ec/e decreases
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Results: TIGER data

Sizes and build time on EastHalf (e = 208 · 106)

c ec ec/c build (min)

QDT-1 472.5 · 106 589.7 · 106 1.3 1,482
QDT-10 36.8 · 106 284.4 · 106 7.7 539
QDT-100 3.2 · 106 228.4 · 106 71.4 287
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Results: Map overlay

We overlayed a TIN stored as QDT-1 with TIGER data
stored as QDT-k

All data scaled to unit square

Fast and scalable
Optimal k: k ∈ [100, 500]

cell-cell intersection time increases with k
nb. of cells decreases with k
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Summary

A simple and IO-efficient algorithm to build k -quadtrees
Fast and scalable in practice

tested up to e = 427 · 106 with 512MB RAM

k -quadtrees are a viable solution for two classes of data
widely used in practice, TIN and TIGER

Outlook
Comparison with PMR quadtree
Other applications?

Thank you!
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