An edge quadtree for external memory

Mark McGranaghan Laura Toma

Department of Computer Science Bowdoin College

NCGIA, University of Maine, March 2011

Outline

- The problem and motivation
- Quadtrees and Z-order
- Our algorithm
- **Empirical evaluation**

Outline

- The problem and motivation

Map overlay

 Maps: planar subdivisions, sets of non-intersecting line segments, triangulations

Map overlay

Maps: triangulations

Maps: triangulations

DFS in one triangulation, traverse triangles in the other

figures thanks to H. Haverkort

Maps: triangulations

DFS in one triangulation, traverse triangles in the other

figures thanks to H. Haverkort

Maps: triangulations

DFS in one triangulation, traverse triangles in the other

figures thanks to H. Haverkort

Maps: triangulations

Maps: triangulations

Maps: triangulations

Maps: triangulations

Maps: triangulations

DFS in one triangulation, traverse triangles in the other

igures thanks to H. Haverkort

Maps: triangulations

Maps: triangulations

DFS in one triangulation, traverse triangles in the other

igures thanks to H. Haverkort

Maps: triangulations

- DFS in one triangulation, traverse triangles in the other
 - O(1) operations per edge, O(1) operations per crossing
- Total: O(n+k) CPU operations
 - for *n* triangles, *k* crossings

- The disk is 10⁶ times slower than the memory
- B is big (8KB or more)
- With large data the bottleneck is usually the IO

What your computer does while you wait

Intel Core 2 Duo at 3.0GHz

http://duartes.org/gustavo/blog

...To put this into perspective, reading from L1 cache is like grabbing a piece of paper from your desk (3 seconds), L2 cache is picking up a book from a nearby shelf (14 seconds), and main memory is taking a 4-minute walk down the hall to buy a Twix bar. Waiting for a hard drive seek is like leaving the building to roam the earth for one year and three months [...]

- one IO \approx 40,000,000 CPU operations
- IO-complexity: number of IOs
- Fundamental bounds
 - scanning: $scan(n) = \frac{n}{R} lOs$
 - sorting: $\operatorname{sort}(n) = \Theta(\frac{n}{B} \log_{M/B} \frac{n}{M}) \operatorname{IOs}$

Triangulation overlay IO-efficiently?

The triangulation is on disk, arranged in blocks

- DFS in one triangulation, traverse triangles in the other
- CPU: $\Theta(n+k)$ operations
- IO:
 - one IO per edge and triangle
 - total: O(n) IOs

IO-efficient map overlay: Related work

n = input size, M = memory size, B = disk block size

- Arge et al 1995: O(sort(n) + k/B) IOs
 - complicated, super-linear space
- Crauser et al 2001: $O(\operatorname{sort}(n) + k/B)$ IOs
 - randomized
- De Berg et al 2007: in O(sort(λn)) IOs can build a data structure that supports map overlay in O(scan(λn)) IOs
 - λ is the density of the set of segments (for any circle C, intersecting segments > diam(C) is $O(\lambda)$).

Outline

- Quadtrees and Z-order

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

Ingredients: ... and Z-order

Z-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: ... and Z-order

Z-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Z-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Quadtree cell \equiv interval on Z-order curve

Quadtree subdivision

subdivision of Z-order curve

Map overlay with quadtrees

- IO-complexity
 - $scan(n_1 + n_2 + k) lOs$
 - assuming a cell fits in memory

Building edge quadtrees: Related work

- Build quadtree induced by endpoints and distribute edges
 - O(n) cells, \leq 1 point per cell, $I = O(n^2)$
- Split a region until it intersects a single edge
 - unbounded size
- Formulate specific stopping criteria
 - PM quadtree (PM1, PM2, PM3)
 - segment quadtree
 - PMR quadtree
 - Samet 85, 86, 87, 89, 92, 97, 99, 02...

Contributions

Given a set of *n* segments in the plane

- New algorithm to construct a linear edge-quadtree with O(n) cells in O(sort(n+1)) IOs
 - I is the nb. edge-cell intersections, $I = O(n^2)$
 - same IO bound as [De Berg et al], but much simpler
- k-quadtree
 - O(k) vertices per cell, O(n/k) cells
 - can be constructed in $O(\operatorname{sort}(n+I))$ IOs
- Empirical evaluation
 - triangulated terrains, TIGER data

Outline

- Our algorithm

Input: A file with *n* segments in the plane

Input: A file with *n* segments in the plane

Algorithm:

Find the endpoints of the segments.

Input: A file with *n* segments in the plane

- Find the endpoints of the segments.
- Sort them in Z-order.

Input: A file with *n* segments in the plane

- Find the endpoints of the segments.
- Sort them in Z-order.
- For every two consecutive points p_i and p_{i+1} in order:
 - find smallest cell Q that contains p_i and p_{i+1}

Input: A file with *n* segments in the plane

- Find the endpoints of the segments.
- Sort them in Z-order.
- For every two consecutive points p_i and p_{i+1} in order:
 - find smallest cell Q that contains p_i and p_{i+1}
 - output cell boundaries of Q and its quadrants

Input: A file with *n* segments in the plane

- Find the endpoints of the segments.
- Sort them in Z-order.
- For every two consecutive points p_i and p_{i+1} in order:
 - find smallest cell Q that contains p_i and p_{i+1}
 - output cell boundaries of Q and its quadrants

Input: A file with *n* segments in the plane

Algorithm:

- Find the endpoints of the segments.
- Sort them in Z-order.
- For every two consecutive points p_i and p_{i+1} in order:
 - find smallest cell Q that contains p_i and p_{i+1}
 - output cell boundaries of Q and its quadrants

⇒ compressed quadtree subdivision with O(n) cells and \leq 1 point per cell.

Input: A file with *n* segments in the plane

- Find the endpoints of the segments.
- Sort them in Z-order.
- For every two consecutive points p_i and p_{i+1} in order:
 - find smallest cell Q that contains p_i and p_{i+1}
 - output cell boundaries of Q and its quadrants
- Distribute edges to cells.

Edge distribution

Input

- E: a set of edges in the plane.
- $Q = \{z_0, z_1, z_2,\}$: a quadtree subdivision of [0, 1]

Output

• For each interval $I_k = [z_k, z_{k+1}]$, the set of edges that intersect σ_k

- Let E⁺ be the edges of positive slope
- Let E⁻ be the edges of negative slope

We'll process E^+ and E^- separately.

Distributing E⁺

Input:
$$Q = \{z_0, z_1, ...\}, E^+$$

Input:
$$Q = \{z_0, z_1, ...\}, E^+$$

- Sort E⁺ by the z-index of the first endpoint.
- For each interval $I_k = [z_{k-1}, z_k]$ in Q:
 - Find all edges in E⁺ that intersect I_k

Algorithm:

- Sort E⁺ by the z-index of the first endpoint.
- For each interval $I_k = [z_{k-1}, z_k]$ in Q:
 - Find all edges in E⁺ that intersect I_k

Distributing E+

Lemma

An edge of positive slope intersects the cells in Q in z-order.

Lemma

An edge of positive slope intersects the cells in Q in z-order.

The edges that intersect I_k either:

- start in I_k, or,
- start in an interval before I_k

Input:
$$Q = \{z_0, z_1, ...\}, E^+$$

Algorithm:

- Sort E⁺ by the z-index of the first endpoint.
- For each interval $I_k = [z_{k-1}, z_k]$ in Q:
 - Find all edges in E⁺ that start in I_k

Distributing E+

 B_k : the boundary between $\sigma_1 \cup$ $\sigma_2 \cup ... \cup \sigma_k$ and $\sigma_{k+1} \cup \sigma_{k+2}...$

 B_k : the boundary between $\sigma_1 \cup \sigma_2 ... \cup \sigma_k$ and $\sigma_{k+1} \cup \sigma_{k+2} ...$

 BL_k : the edges that intersect B_k , in order.

 B_k : the boundary between $\sigma_1 \cup \sigma_2 ... \cup \sigma_k$ and $\sigma_{k+1} \cup \sigma_{k+2} ...$

 BL_k : the edges that intersect B_k , in order.

Lemma

 B_k is a monotone staircase and the intersection of σ_k and B_{k-1} covers a connected part of B_{k-1} .

Algorithm:

- Sort E⁺ by the z-index of the first endpoint.
- For each interval $I_k = [z_{k-1}, z_k]$ in Q:
 - Find all edges in E⁺ that start in I_k
 - Use BL_{k-1} to find the edges that start before σ_k and intersect σ_k

Algorithm:

- Sort E⁺ by the z-index of the first endpoint.
- For each interval $I_k = [z_{k-1}, z_k]$ in Q:
 - Find all edges in E⁺ that start in Ik
 - Use BL_{k-1} to find the edges that start before σ_k and intersect σ_k
 - Update BL_{k-1} to BL_k

Distributing E+

How to find an edge in BL_{k-1} that intersects σ_k ?
• avoid searching

How to find an edge in BL_{k-1} that intersects σ_k ?

Start from the first edge in σ_{k-1} that intersects BL_{k-1}

How to find an edge in BL_{k-1} that intersects σ_k ?

Start from the first edge in σ_{k-1} that intersects BL_{k-1}

Lemma

The number of edges traversed and skipped is O(I).

Distributing E+

Lemma

The number of edges traversed and skipped is O(I), where I is the number of edge-cell intersections.

How to find an edge in BL_{k-1} that intersects σ_k ?

Start from the first edge in σ_{k-1} that intersects BL_{k-1}

Lemma

The intersections of E⁺ and Q can be found in O(scan(n+1))IOs, once Q and E^+ are sorted.

 E^{-}

Our algorithm

Theorem

Given a set of n edges in the plane, a compressed quadtree subdivision with O(n) cells and O(1) points per cell can be computed in O(sort(n+1)) IOs, where I is the number of edge-cell intersections.

Motivation Background Our algorithm Empirical evaluation

The k-quadtree

The algorithm can be extended to get a quadtree with O(k) vertices per cell.

- Find the endpoints of the segments.
- Sort them in Z-order.
- **Solution** For every two consecutive points in $p_0, p_k, p_{2k}, ...$:
 - find smallest cell Q that contains them
 - output cell boundaries of Q and its quadrants
- Distribute edges to cells.
 - interleave the edges in σ_k with the edges in BL_{k-1} , etc

Theorem

A quadtree subdivision with O(n/k) cells, each cell with O(k) vertices can be computed in O(sort(n+l)) IOs, where $l = O(n^2/k)$ is the number of edge-cell intersections.

Motivation Background Our algorithm Empirical evaluation

The k-quadtree

The algorithm can be extended to get a quadtree with O(k) vertices per cell.

- Find the endpoints of the segments.
- 2 Sort them in Z-order.
- **③** For every two consecutive points in $p_0, p_k, p_{2k}, ...$
 - find smallest cell Q that contains them
 - output cell boundaries of Q and its quadrants
- Distribute edges to cells.
 - interleave the edges in σ_k with the edges in BL_{k-1} , etc

Theorem

A quadtree subdivision with O(n/k) cells, each cell with O(k) vertices can be computed in O(sort(n+l)) IOs, where $l = O(n^2/k)$ is the number of edge-cell intersections.

Outline

- **Empirical evaluation**

- We ignored the elevation.
- Delaunay triangulation
- Lots of small angles on the boundary

Dataset	е	Max inc.	Min ∠
Kaweah	1.2 · 10 ⁶	31	.0704
Puerto Rico	4.1 · 10 ⁶	291	.0010
Cumberlands	5.1 · 10 ⁶	44	.0016
Sierra	7.9 · 10 ⁶	75	.0137
Central App.	10.1 · 10 ⁶	62	.0013
Hawaii	19.7 · 10 ⁶	356	.0007
Haldem	37.1 · 10 ⁶	78	.0097
Lower NE	53.9 · 10 ⁶	168	.0021

Motivation Background Our algorithm Empirical evaluation

- min angle around .001°
- max angle close to 180°
- 5% below 18°
- 5% above 108°
- median angle 57°
- max degree varies widely across all datasets, ranging between 31 and 356
- average degree across all datasets is approx. 6.

Datasets: TIGER data

- Available at http://www.census.gov/geo/www/tiger/
- 50 sets, one set for each state, containing roads, hydrography, railways and boundaries
- Largest set: TX ($e = 40.4 \cdot 10^6$)
- We assembled larger bundles.

Dataset	е		
New England	25.8 · 10 ⁶		
East Coast	113.0 · 10 ⁶		
Eastern Half	208.3 · 10 ⁶		
All USA	427.7 · 10 ⁶		

Platform

- C
- q++ 4.1.2 -03
- HP 220 blade servers
- Intel 2.83 GHz
- 5400 rpm SATA drive
- 512 MB RAM

Motivation Background Our algorithm Empirical evaluation

Results: TIN data

Quadtree build time

- Our algorithms: QDT-k (k=1, 10, 100, ..)
- Previous work [De Berg et al]: Qdt-1-old, Star
- QDT-k gets faster up to k = 100 and then levels

Results: TIN data

QDT-1 size

- ec: nb edge-cell intersections
- c: nb cells
- ec/c: avg cell size

• Across all datasets: $c \approx .6e$, $ec \approx 3e$, $ec \approx 5c$

Motivation Background Our algorithm Empirical evaluation

Results: TIN data

QDT-k total size

- As k increases
 - c decreases, ec/c increases, ec/e decreases
 - fewer cells → fewer edge-cell intersections

Results: TIN data

Sizes and build time on LowerNE ($e = 53.9 \cdot 10^6$)

	С	ес	ec/c	build (min)
QDT-1	32.5 · 10 ⁶	158.8 · 10 ⁶	4.8	210
QDT-100	.24 · 10 ⁶	62.8 · 10 ⁶	257.4	57
QDT-500	.06 · 10 ⁶	58.4 · 10 ⁶	957.4	53

Motivation Background Our algorithm Empirical evaluation

Results: TIGER data

Quadtree build time

- Our algorithms: Qdt-K (k=1, 10, 100, ..)
- Previous work [De Berg et al]: Qdt-1-old
- QDT-k gets faster up to k = 100 and then levels
- QDT-100 on AllUSA in 9.7 hours

QDT-1 size

- ec: nb edge-cell intersections
- c: nb cells
- ec/c: avg cell size

Sizes relatively consistent across all data sets (!).

QDT-1: maximum cell size

- Varies widely from state to state
 - E.g.: Easthalf: max cell intersects 58 edges
 - ME: max cell intersects 8 edges

QDT-k total size: ec/e

- As k increases
 - c decreases, ec/c increases, ec/e decreases

Sizes and build time on EastHalf ($e = 208 \cdot 10^6$)

	С	ес	ec/c	build (min)
QDT-1	472.5 · 10 ⁶	589.7 · 10 ⁶	1.3	1,482
QDT-10	36.8 · 10 ⁶	284.4 · 10 ⁶	7.7	539
QDT-100	3.2 · 10 ⁶	228.4 · 10 ⁶	71.4	287

Results: Map overlay

- We overlayed a TIN stored as QDT-1 with TIGER data stored as QDT-k
 - All data scaled to unit square
- Fast and scalable
- Optimal k: $k \in [100, 500]$
 - cell-cell intersection time increases with k
 - nb. of cells decreases with k

Summary

- A simple and IO-efficient algorithm to build k-quadtrees
- Fast and scalable in practice
 - tested up to $e = 427 \cdot 10^6$ with 512MB RAM
- k-quadtrees are a viable solution for two classes of data widely used in practice, TIN and TIGER
- Outlook
 - Comparison with PMR quadtree
 - Other applications?

Thank you!

