# Flow Modeling on Massive Terrains

Laura Toma

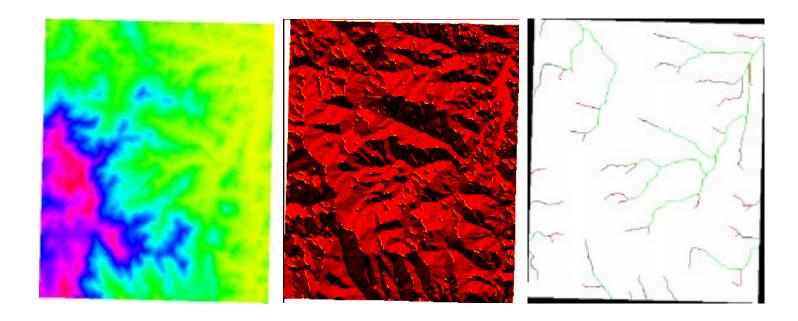
Duke University

## Flow Modeling

**★** Flow direction

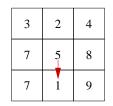
The direction water flows at a point in the terrain.

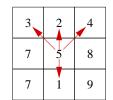
**★** Flow accumulation value


Total amount of water which flows through a point in the terrain.

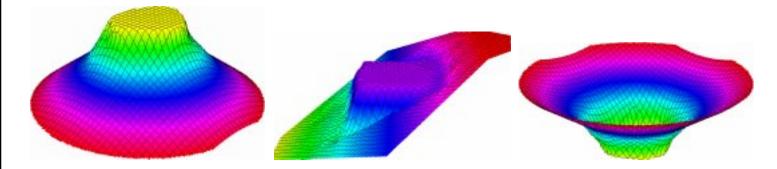
#### Objective

- ★ Flow routing: Compute flow directions for all points in the terrain.
- ★ Flow accumulation: Compute flow accumulation values for all points in the terrain.


# **Applications**

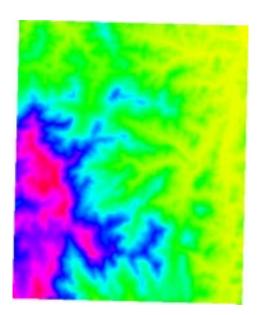

- ★ Watersheds, drainage network
- ★ Erosion, infiltration, drainage, solar radiation distribution, sediment transport, vegetation structure, species diversity

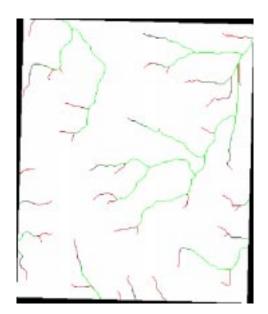



## Flow Routing

**★** Water flows downhill.





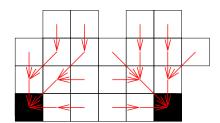


- ★ Compute flow directions by inspecting 8 neighbor cells.
- ★ Flat areas: plateaus and sinks.



### Flow Accumulation

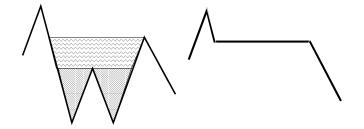
- ★ Compute the total amount of flow through each grid point
  - Initially one unit of water on each grid point
  - Every point distributes water to the neighbors pointed to by its flow direction(s)






## Scalability to Massive Data

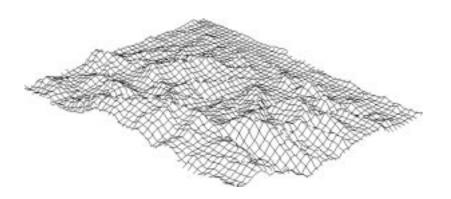
- ★ Massive remote sensing data available
  - USGS: entire US at 10m resolution; 3m and 1m resolution available
  - NASA's Shuttle Radar Topography Mission: collect data for 80% of earth's land mass (10 terabytes)
  - LIDAR
- **★** Existing software
  - ArcInfo: cannot process files > 2GB
  - GRASS, TARDEM: run for weeks..

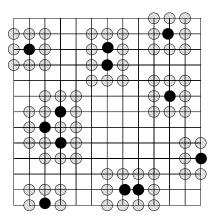

# I/O-Efficient Flow Routing

- ★ Flow routing
  - Every cell has flow direction
  - Flow directions do not induce cycles
  - Every cell has a flow path to the edge of the terrain



- **★** Plateaus
- **★** Sinks
  - Flooding: Fill the terrain up to the steady state level reached when an infinite amount of water is poured onto the terrain and the outside is viewed as a giant ocean.


## Flooding




- ★ Previous work: Jenson & Domingue '88
  - Watershed: part of the terrain that flows into the sink.
  - Partition the terrain into watersheds watershed graph
  - Identify and collapse cycles in the watershed graph
  - $W = \text{number of watersheds: } O(W^2) \text{ time, } O(W^2) \text{ I/Os}$
- ★ I/O-efficient flooding:  $O(W \cdot \alpha(W, N))$  time and I/Os

# Flow Accumulation—Internal memory algorithm

↑ Process (sweep) points in decreasing order of heights, distributing flow to neighbors one sweep enough  $\Longrightarrow O(N \log N)$  time





- **★** Problem: algorithm uses O(N) I/Os if directions and flow stored as grids (not fitting in memory)
  - Points with same height are distributed over the terrain ⇒ scattered accesses

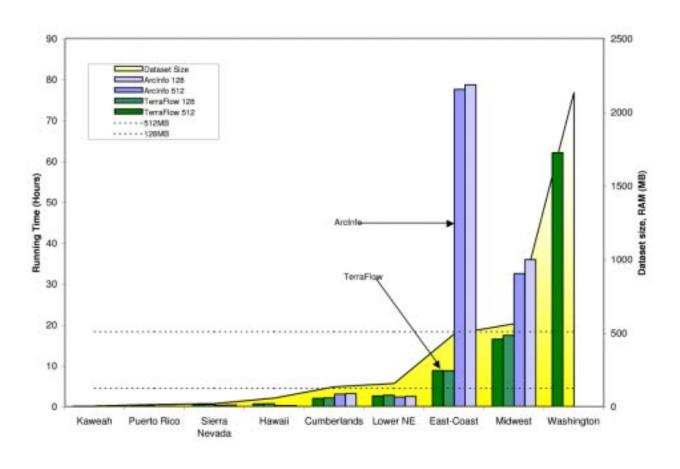
# I/O-Efficient Flow Accumulation

- ★ Eliminate scattered accesses to flow grid
  - Idea: neighbor only needs the distributed flow when the sweep plane reaches its elevation
  - Use a  $O(\frac{1}{B}\log_{M/B}\frac{N}{B})$  priority queue [A95, BK98]
    - \* Distribute flow by inserting it in priority queue with priority equal to neighbor's height (and grid position as secondary key)
    - \* Augment each height with heights of neighbors (trade space for I/Os)
  - O(N) priority queue operations  $\Rightarrow O(\frac{N}{B} \log_{M/B} \frac{N}{B})$  I/Os

#### **TerraFlow**

http://www.cs.duke.edu/geo\*/terraflow/

Collection of programs for flow routing and flow accumulation on massive grids.


- **★** Efficient
  - 2-1000 times faster on massive grids than existing software
- **★** Scalable
  - 1 billion elements! (> 2GB)
- **★** Flexible
  - different flow models

# **Experimental Results: Datasets**

| Dataset              | Resolution | Dimensions           | Grid Size |
|----------------------|------------|----------------------|-----------|
| Kaweah               | 30m        | 1163 x 1424          | 3.2MB     |
| Puerto Rico          | 100m       | $4452 \times 1378$   | 12MB      |
| Sierra Nevada        | 30m        | $3750 \times 2672$   | 19MB      |
| Hawaii               | 100m       | 6784 x 4369          | 56MB      |
| Cumberlands          | 80m        | 8704 x 7673          | 133MB     |
| Lower New England    | 80m        | 9148 x 8509          | 156MB     |
| Central Appalachians | 30m        | 12042 x10136         | 232MB     |
| East-Coast USA       | 100m       | 13500 x 18200        | 491MB     |
| Midwest USA          | 100m       | 11000 x 25500        | 561MB     |
| Washington State     | 10m        | $33454 \times 31866$ | 2GB       |

Laura Toma 12

### TerraFlow Performance



Laura Toma 13

#### TerraFlow Performance

- ★ Significant speedup over ArcInfo for large grids
  - East-Coast dataset
    - \* TerraFlow: 8.7 hours
    - \* ArcInfo: 78 hours
  - Washington state dataset
    - \* TerraFlow: 63 hours
    - \* ArcInfo: cannot process it!
- ★ Other software
  - GRASS: killed after 17 days on Hawaii
  - TARDEM: Can handle Hawaii. Killed after 20 days on Cumberlands (CPU utilization 5%, 3GB swap file)

Laura Toma

#### **Future Directions**

- ★ Flow modeling on TINs
  - Flow along edges. Compute flow accumulation of nodes.
  - Extend grid approach: assign flow at triangle level. Flow across edges and along channel edges. Compute flow accumulation of triangles and channel nodes.
  - Compute contributing area directly: trace steepest downslope paths across triangles.
- ★ Grid/TIN conversion
  - Maintain global features