Our results

N = Input size;
M = main memory size; scan(n) = % < sort(n) = %logM/B% <<
B = disk block size

Previously:
e Arge et al.: map overlay in O(sort(n)+ k/B) 1/O's (complicated, super-linear space)

e Crauser et al.: randomized, linear space

Our results: in O(sort(n)) |/O's we can build a data structure that supports:
e map overlay in O(scan(n)) 1/O’s;

e point location in O(loggn) 1/O's;

e range queries in O(%(logB n) + scan(ks)) 1/Q’s;

e for triangulations: basic updates in O(loggn) 1/0's.

Condition: input must be fat triangulation (all angles > positive constant), or a

low-density set of segments (for any circle C', #intersecting segments > diam(C') is O(1))




