Our results

n = input size;

$$M = \text{main memory size};$$

$$B = \operatorname{disk} \operatorname{block} \operatorname{size}$$

$$scan(n) = \frac{n}{B}$$
 $<$ $sort(n) = \frac{n}{B} \log_{M/B} \frac{n}{B}$ $<<$ n

Previously:

- ullet Arge et al.: map overlay in O(sort(n) + k/B) I/O's (complicated, super-linear space)
- Crauser et al.: randomized, linear space

Our results: in O(sort(n)) I/O's we can build a data structure that supports:

- map overlay in O(scan(n)) I/O's;
- \bullet point location in $O(\log_B n)$ I/O's;
- ullet range queries in $O(\frac{1}{\varepsilon}(\log_B n) + scan(k_{\varepsilon}))$ I/O's;
- ullet for triangulations: basic updates in $O(\log_B n)$ I/O's.

Condition: input must be *fat* triangulation (all angles > positive constant), or a *low-density* set of segments (for any circle C, #intersecting segments $> \operatorname{diam}(C)$ is O(1))