
I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma

 $n = {\sf input \ size}; \quad M = {\sf main \ memory \ size}; \quad B = {\sf disk \ block \ size}; \quad scan(n) < sort(n) << n$

For low-density triangulations / sets of line segments*, there is a data structure that supports:

- ullet map overlay in O(scan(n)) I/O's;
- ullet range queries in $O(\frac{1}{\varepsilon}(\log_B n) + scan(k_{\varepsilon}))$ I/O's.
- ullet point location in $O(\log_B n)$ I/O's;
- (triangulations only) updates in $O(\log_B n)$ I/O's;

The data structures are built with O(sort(n)) I/Os.

That's all folks

*) for any circle C, number of intersecting segments bigger than diam(C) is at most a constant