How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - ullet find smallest cell Q that contains L_i and L_{i+1} ;
 - ullet output cell boundaries of Q and its subquadrants
- 3. Sort cell boundaries in Z-order (removing duplicates)
- 4. Put line segments in cells

To prove for input of n line segments:

(compressed)

- together cell boundaries form quadtree subdivision of unit square;
- \bullet O(1) line segments per cell;
- O(n) cells in total;
- ullet algorithm runs in O(sort(n)) I/O's

Works if line segments have *low density*: for every circle C of diam d,

 $\# \mbox{line segments longer than } d \mbox{ that intersect } C$

is at most a constant independent of \boldsymbol{n}