| /O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

< “4

Qa

| /O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

Maps: planar subdivisions, sets of (non-intersecting) line segments,

<

a

| /O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

Maps: ..., triangulations

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7
T,
1
L
L
L
L
L]
L]
L
.
"y
L]
"y
L
L
.
L

DFS in one triangulation, traverse triangles in the other

7
Y,
'
L
L]
.
L
L]
"y,
L]
"y
L
'
"y
'
L
"
L

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7 7
:::::
", "
", L
", L]
", L
", L]
", L]
0, L]
' .
:::::
' '
' "y
,,,,,,
:::::
::::

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7 7
:::::
", "
", L
", L]
", L
", L]
", L]
0, L]
' .
:::::
' '
' "y
,,,,,,
:::::
::::

1
1
",

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7 7
:::::
", "
", L
", L]
", L
", L]
", L]
0, L]
' .
:::::
' '
' "y
,,,,,,
:::::
::::

1
"y,

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7 7
:::::
", "
", L
", L]
", L
", L]
", L]
0, L]
' .
:::::
' '
' "y
,,,,,,
:::::
. .
., .

1
'
",

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7 7
:::::
", "
", L
", L]
", L
", L]
", L]
0, L]
' .
:::::
' '
' "y
,,,,,,
:::::
. .
., .

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7
"y,
'
L
L
.
L
L]
.
L]
L]
L]
L]
'
"y
L]
L]
L
Ly}

q
te,
L

DFS in one triangulation, traverse triangles in the other

T
Y,
'
L
L
.
L
L]
ty,
.
L]
L
.
L]
L]
"y
L]
]

.
L
.

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7
T,
1
L
L
.
L
L]
.
L]
L]
L]
L]
'
"y
L]
L]
L
Ly}

q
te,
L

t
vt
vt
ot
ot
Ry
Ry
Ry
Ry
Wt
Ry
Ry
Ry
Ry
i

DFS in one triangulation, traverse triangles in the other

T
T,
I
L
L
.
L
L]
L]
L]
.
L]
L]
L]
L]
"y
L]
L]

l“‘
'
I“‘
\\\
I“‘
\“
\“
\“
e
\“
e

.
L
.

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7
T,
1
L
L
.
L
L]
.
L]
L]
L]
L]
'
"y
L]
L]
L
Ly}

q
.
L]
L

t
'
“““
'
'
ot
‘‘‘‘‘
~~~~
vt
vt
Wt
K
K

DFS in one triangulation, traverse triangles in the other

T
T,
I
L
L
.
L
L]
L]
L]
.
L]
L]
L]
L]
"y
L]
L]

ot
ot
R
vt
vt

Y
~ avt
~ Wt

W
v
i
W

ot
Wt

.
L
.




Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7
T,
1
L
L
.
L
L]
.
L]
L]
L]
L]
'
"y
L
L]
L
Ly}

q
.
L]
L

t
'
“““
[
'
ot
.....
~ Y
“““
vt
vt
Wt
R
T

DFS in one triangulation, traverse triangles in the other




Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

7
",
'
L
L
.
L
L]
.
L]
L]
L]
L]
'
"y
L]
L]
L
Ly}

q
",
L

I"
l“‘
.
.
l“‘
....
'
~~~~
\“
\“
v
oo
v

DFS in one triangulation, traverse triangles in the other:
e O(1) operations per edge
e O(1) operations per crossing

Total: ©(n + k) CPU-operations (for n triangles, k intersections)

T
.,
'
L
L
.
L
L]
L]
L]
.
L]
L]
L]
L]
"y
L]
]

ot
ot
R
vt
vt

Y
~ avt
~ Wt

W
v
i
W

ot
Wt

.
ey,
.

Using external memory

main memory
of size M

(too small for
all data)

read /write head

my triangle

Using external memory

main memory
of size M

(too small for
all data)

my triangle

Using external memory

main memory
of size M

(too small for
all data)

my triangle

Using external memory

main memory
of size M

(too small for
all data)

my triangle

Using external memory

main memory
of size M

(too small for
all data)

my triangle

Using external memory

main memory
of size M

(too small for
all data)

my triangle

Using external memory

main memory
of size M

(too small for
all data)

my triangle

Using external memory

main memory
of size M

(too small for
all data)

my triangle

Using external memory

main memory
of size M

(too small for
all data)

my triangle

Using external memory

main memory
of size M

(too small for
all data)

Using external memory

main memory
of size M

(too small for
all data)

Using external memory

main memory
of size M

(too small for
all data)

Using external memory

main memory
of size M

(too small for
all data)

Using external memory

main memory
of size M

(too small for
all data)

Using external memory

main memory
of size M

(too small for
all data)

Using external memory

main memory
of size M

(too small for
all data)

Using external memory

main memory
of size M

(too small for
all data)

Using external memory

Waiting for one triangle takes ~ 1000000 CPU cycles

main memory
of size M my triangle

(too small for
all data)

Using external memory

Waiting for one triangle takes ~ 1000000 CPU cycles

main memory
of size M

(too small for
all data)

B triangles

Solution: once in correct position, read B items at once.

(hope you can keep them in memory until you need them)

Using external memory

Waiting for one triangle takes ~ 1000000 CPU cycles

main memory
of size M

(too small for
all data)

B triangles

Solution: once in correct position, read B items at once.

(hope you can keep them in memory until you need them)

Analysing algorithms that work on data on disk: number of I/O’s dominate.
scan(n) = % < sort(n) = %logM/B% << n 1/0's

Overlaying triangulations on disk?

Maps: ..., triangulations

N\

DFS in one triangulation, traverse triangles in the other:
e O(1) operations per edge
e O(1) operations per crossing

Total: ©(n + k) CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks.

Overlaying triangulations on disk?

Maps: ..., triangulations

N\

DFS in one triangulation, traverse triangles in the other:
e O(1) operations per edge
e O(1) operations per crossing

Total: ©(n + k) CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks. 1 1/0 =~ 1,000,000 CPU-ops. ©(n+ k) 1/0’s?

Our results

N = Input size;
n n

M = main memory size; scan(n) = < sort(n) = 5 IOgM/BE <<

n
. . B
B = disk block size

Previously:

e Arge et al.: map overlay in O(sort(n)+ k/B) 1/O's (complicated, super-linear space)

e Crauser et al.: randomized, linear space

Our results: in O(sort(n)) |/O’s we can build a data structure that supports:
e map overlay in O(scan(n)) 1/O’s;

e point location in O(loggn) 1/0’s;

e range queries in O(%(logB n) + scan(ks)) 1/0's;

e for triangulations: basic updates in O(loggn) 1/0O's.

Condition: input must be fat triangulation (all angles > positive constant), or a

low-density set of segments (for any circle C, #intersecting segments > diam(C') is O(1))

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)

Ingredients: ... and Z-order

/-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: ... and Z-order

/-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: ... and Z-order

/-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: ... and Z-order

/-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

) /
= =
- -
/
/
= =
- -
/

Ingredients: ... and Z-order

/-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: quadtrees and Z-order

Quadtree cell = interval on Z-order curve

subdivision of Z-order curve

Quadtree subdivision

(\]

o

[\

Ingredients: quadtrees and Z-order

Quadtree cell = interval on Z-order curve

Quadtree subdivision = subdivision of Z-order curve

0.25

Ingredients: quadtrees and Z-order

Quadtree cell = interval on Z-order curve

Quadtree subdivision = subdivision of Z-order curve

o—‘\\’
0 0.25 0375 5% .
0.75

Ingredients: quadtrees and Z-order

Quadtree cell = interval on Z-order curve

Quadtree subdivision = subdivision of Z-order curve

|+ 1

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

SN

M-
\/
\

N/

N

~

/N

>
[/ N\

Sk

>

_—

Map overlay with quadtrees in Z-order

SN

M-
\/
\

N/

N

~

Sk

>

_—

/N

>
[/ N\

Map overlay with quadtrees in Z-order

\i\)/ /m\\&\)/\/
N

Wi

| AT N
i

Map overlay with quadtrees in Z-order

) Nrese
Daler

K| N TN
SN

Map overlay with quadtrees in Z-order

R Sy
Dalyr

K| N TN
i

rder

AN e
/

rlay with quadtrees in Z-o

Map ove

DN
>

rder

SN
/

rlay with quadtrees in Z-o

Map ove

N
>

rder

AN T e

rlay with quadtrees in Z-o

Map ove

\.

AN
>

rder

AN T e

rlay with quadtrees in Z-o

Map ove

P

AN
>

Map overlay with quadtrees in Z-order

USRI R

7/ 4

> P4 oo
e

Map overlay with quadtrees in Z-order

S S
i \
RPN
EEN

Map overlay with quadtrees in Z-order

NI e A
> 7 el
LSSy

Map overlay with quadtrees in Z-order

D ‘li!,‘ Z

N
V4

N/
-

each block is needed only once

/

V‘

\

VA N

[
[/ I\
/ [\

Map overlay with quadtrees in Z-order

N/

[T

L/ I\

n: number of triangles; B: disk block size
Ideally: O(n) quadtree cells, O(1) edges each

— Overlay in O(scan(n)) = O(n/B) |/O's.

Map overlay with quadtrees in Z-order

SmE

N
\

~

e

AN
|

\

—
>~

n: number of triangles; B: disk block size
Ideally: O(n) quadtree cells, O(1) edges each

— Overlay in O(scan(n)) = O(n/B) 1/0's.

— Point location with B-tree in O(loggn) 1/O's.

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:
e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

2. Sort cells into Z-order (removing duplicates)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

\

Stop splitting when all edges incident to same vertex Z

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

e load adjacency list in memory;

1. For each vertex v: Q\
— 1

U

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

T

N

éV

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

AN\

1. For each vertex v:
\ U
e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex Z/ \

é’/

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm: ﬂ
) \ /
1. For each vertex v: A)
e load adjacency list in memory; \
e build quadtree on star(v) with splitting criterion: //
Stop splitting when all edges incident to same vertex X\

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

e

U

Stop splitting when all edges incident to same vertex

N

é’/

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

e

AN

U

N\

N
N
_—

Stop splitting when all edges incident to same vertex

N

éV

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

e

U

Stop splitting when all edges incident to same vertex

N

é’/

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

AN

U

N\

Stop splitting when all edges incident to same vertex

N

éV

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

AN

N\

Stop splitting when all edges incident to same vertex

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

AN

N\

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory; \K
e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory; §

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory; \K
e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to samefertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

2. Sort cells into Z-order (removing duplicates)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion: V

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

2. Sort cells into Z-order (removing duplicates)

To prove for input of n triangles:

e together cells form subdivision of unit square;
e O(1) triangles per cell;

e O(n) cells in total;

e algorithm runs in O(sort(n)) 1/0's

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

2. Sort cells into Z-order (removing duplicates)

To prove for input of n triangles:

e together cells form subdivision of unit square;

e O(1) triangles per cell; <

e O(n) cells in total;

e algorithm runs in O(sort(n)) 1/0's

N

Works if triangles are fat:
minimum angle >

positive constant independent of n

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L ={Ly,..., Ly} in Z-order

2.For 1 «— 1 to m:

e find smallest cell () that contains L; and L;.;

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L ={Ly,..., Ly} in Z-order

_

.

N

\

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm: I/i'/T\[
.

1. Sort bounding box vertices of line segments ISI

into list L ={Ly,..., Ly} in Z-order N

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm: ’ *
1. Sort bounding box vertices of line segments Ce . .]
into list L ={Ly,..., Ly} in Z-order .

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints. . .

Algorithm: 7 °

1. Sort bounding box vertices of line segments Te . 71247 Ve
into list L ={Ly,..., Ly} in Z-order J .

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L ={Ly,..., Ly} in Z-order

2.For 1 «— 1 to m:

e find smallest cell () that contains L; and L, 1;

e e @

‘M

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints. | .
Algorithm: 7 ° /
1. Sort bounding box vertices of line segments Ve . Z 7.
into list L ={Ly,..., Ly} in Z-order .
2. For 1 +— 1 to m: 2/ 2
e find smallest cell) that contains ; and L;, i; y " .
e output cell boundaries of () and its subquadrants N

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L ={Ly,..., Ly} in Z-order
2. For i «+— 1 to m:

e find smallest cell () that contains L; and L;.;

e output cell boundaries of () and its subquadrants

3. Sort cell boundaries in Z-order (removing duplicates)

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm: /\

1. Sort bounding box vertices of line segments \
into list L ={Ly,..., Ly} in Z-order

N
2.For 1 «— 1 to m: \

e find smallest cell () that contains L; and L;.; \ \

e output cell boundaries of () and its subquadrants \

!
2 Bl

3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L ={Ly,..., Ly} in Z-order
2. For i «+— 1 to m:

e find smallest cell () that contains L; and L;.;

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

e together cell boundaries form quadtree subdivision of unit square;

e O(1) line segments per cell;
e O(n) cells in total;

e algorithm runs in O(sort(n)) 1/0's

T~

N

AN

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L ={Ly,..., Ly} in Z-order
2. For i «+— 1 to m:

e find smallest cell () that contains L; and L;.;

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

T~

N

AN

o (compressed)

e together cell boundaries form’quadtree subdivision of unit square;

e O(1) line segments per cell;
e O(n) cells in total;

e algorithm runs in O(sort(n)) 1/0's

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L ={Ly,..., Ly} in Z-order

2.For 1 «— 1 to m:

e find smallest cell () that contains L; and L;.; \

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

o (compressed)

e together cell boundaries form’quadtree subdivision of unit square;

e O(1) line segments per cell; Works if line segments have low density:
e O(n) cells in total; for every circle C' of diam d,

_ _ , #line segments longer than d that intersect C
e algorithm runs in O(sort(n)) 1/0's

Is at most a constant independent of n

Range queries

Report all line segments intersecting

a query range () of constant complexity

Range queries

Report all line segments intersecting

a query range () of constant complexity

w = diameter of ()
k- = number of segments at distance < cw from ()

Range queries

Report all line segments intersecting

a query range () of constant complexity

w = diameter of ()

k- = number of segments at distance < cw from ()

Results:

e for fat triangulations:

range queries in O(%(logB n) + scan(ke)) 1/O's

e for low-density line segments:

(after refining the data structure in O(sort(n)) 1/O's)

same bound.

| /O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

NNy e
S /Vﬁc |

O(n) quadtree cells f

O(1) edges each /
, A o [%
/ N~

n = input size; M = main memory size; B = disk block size; scan(n) < sort(n) <<n

\//

NV

X\

[
|

[/

/

For low-density triangulations / sets of line segments™, there is a data structure that supports:

e map overlay in O(scan(n)) 1/O’s; e range queries in O(%(logB n) + scan(ks)) 1/O’s.

e point location in O(loggn) 1/0’s; e (triangulations only) updates in O(loggn) 1/0'’s;

The data structures are built with O(sort(n)) |/Os.

*) for any circle C, number of intersecting segments bigger than diam(C') is at most a constant

| /O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

NNy e
\/& /V& |

—
/ O(n) quadtree cells f >
O(1) edges each /

\ - N ‘f_g’\/ :
/)
—

\//

X\

pd

[/

/

n = input size; M = main memory size; B = disk block size; scan(n) < sort(n) <<n

For low-density triangulations / sets of line segments™, there is a data structure that supports:

e map overlay in O(scan(n)) 1/O’s; e range queries in O(%(logB n) + scan(ks)) 1/O’s.

e point location in O(loggn) 1/0’s; e (triangulations only) updates in O(loggn) 1/0'’s;

The data structures are built with O(sort(n)) |/Os.
That's all folks

*) for any circle C, number of intersecting segments bigger than diam(C') is at most a constant

