I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma

I/O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma

Maps: planar subdivisions, sets of (non-intersecting) line segments,

I/O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other:

- \bullet $\Theta(1)$ operations per edge
- \bullet $\Theta(1)$ operations per crossing

Total: $\Theta(n+k)$ CPU-operations (for n triangles, k intersections)

Waiting for one triangle takes $\approx 1\,000\,000$ CPU cycles

Waiting for one triangle takes $\approx 1000\,000$ CPU cycles

main memory of size M (too small for all data)

Solution: once in correct position, read B items at once. (hope you can keep them in memory until you need them)

Waiting for one triangle takes $\approx 1000\,000$ CPU cycles

main memory of size M (too small for all data)

Solution: once in correct position, read B items at once. (hope you can keep them in memory until you need them)

Analysing algorithms that work on data on disk: number of I/O's dominate.

$$scan(n) = \frac{n}{B} \qquad < \qquad sort(n) = \frac{n}{B} \log_{M/B} \frac{n}{B} \qquad << \qquad n \quad \text{I/O's}$$

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other:

- \bullet $\Theta(1)$ operations per edge
- \bullet $\Theta(1)$ operations per crossing

Total: $\Theta(n+k)$ CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks.

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other:

- \bullet $\Theta(1)$ operations per edge
- \bullet $\Theta(1)$ operations per crossing

Total: $\Theta(n+k)$ CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks. 1 I/O \approx 1,000,000 CPU-ops. $\Theta(n+k)$ I/O's?

Our results

n = input size;

$$M = \text{main memory size};$$

$$scan(n) = \frac{n}{B}$$
 $<$ $sort(n) = \frac{n}{B} \log_{M/B} \frac{n}{B}$ $<<$ n

 $B=\operatorname{disk}\,\operatorname{block}\,\operatorname{size}$

Previously:

- Arge et al.: map overlay in O(sort(n) + k/B) I/O's (complicated, super-linear space)
- Crauser et al.: randomized, linear space

Our results: in O(sort(n)) I/O's we can build a data structure that supports:

- map overlay in O(scan(n)) I/O's;
- \bullet point location in $O(\log_B n)$ I/O's;
- ullet range queries in $O(\frac{1}{\varepsilon}(\log_B n) + scan(k_{\varepsilon}))$ I/O's;
- ullet for triangulations: basic updates in $O(\log_B n)$ I/O's.

Condition: input must be *fat* triangulation (all angles > positive constant), or a *low-density* set of segments (for any circle C, #intersecting segments $> \operatorname{diam}(C)$ is O(1))

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

Quadtree cell \equiv interval on Z-order curve

each block is needed only once

each block is needed only once

n: number of triangles; B: disk block size Ideally: O(n) quadtree cells, O(1) edges each

 \rightarrow Overlay in O(scan(n)) = O(n/B) I/O's.

n: number of triangles; B: disk block size Ideally: O(n) quadtree cells, O(1) edges each

- \rightarrow Overlay in O(scan(n)) = O(n/B) I/O's.
- ightarrow Point location with B-tree in $O(\log_B n)$ I/O's.

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort cells into Z-order (removing duplicates)

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - \bullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - \bullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort cells into Z-order (removing duplicates)

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

- ullet output each cell that is completely inside star(v)
- 2. Sort cells into Z-order (removing duplicates)

To prove for input of n triangles:

- together cells form subdivision of unit square;
- \bullet O(1) triangles per cell;
- \bullet O(n) cells in total;
- ullet algorithm runs in O(sort(n)) I/O's

Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

- ullet output each cell that is completely inside star(v)
- 2. Sort cells into Z-order (removing duplicates)

To prove for input of n triangles:

- together cells form subdivision of unit square;
- \bullet O(1) triangles per cell;
- \bullet O(n) cells in total;
- ullet algorithm runs in O(sort(n)) I/O's

Works if triangles are fat:

minimum angle >

positive constant independent of n

Input: file with for each line segment its endpoints.

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - ullet find smallest cell Q that contains L_i and L_{i+1} ;
 - ullet output cell boundaries of Q and its subquadrants
- 3. Sort cell boundaries in Z-order (removing duplicates)
- 4. Put line segments in cells

Input: file with for each line segment its endpoints.

Algorithm:

Input: file with for each line segment its endpoints.

Algorithm:

Input: file with for each line segment its endpoints.

Algorithm:

Input: file with for each line segment its endpoints.

Algorithm:

Input: file with for each line segment its endpoints.

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - find smallest cell Q that contains L_i and L_{i+1} ;

Input: file with for each line segment its endpoints.

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - ullet find smallest cell Q that contains L_i and L_{i+1} ;
 - ullet output cell boundaries of Q and its subquadrants

Input: file with for each line segment its endpoints.

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - ullet find smallest cell Q that contains L_i and L_{i+1} ;
 - ullet output cell boundaries of Q and its subquadrants
- 3. Sort cell boundaries in Z-order (removing duplicates)

Input: file with for each line segment its endpoints.

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - ullet find smallest cell Q that contains L_i and L_{i+1} ;
 - ullet output cell boundaries of Q and its subquadrants
- 3. Sort cell boundaries in Z-order (removing duplicates)
- 4. Put line segments in cells

Input: file with for each line segment its endpoints.

Algorithm:

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - ullet find smallest cell Q that contains L_i and L_{i+1} ;
 - ullet output cell boundaries of Q and its subquadrants
- 3. Sort cell boundaries in Z-order (removing duplicates)
- 4. Put line segments in cells

To prove for input of n line segments:

- together cell boundaries form quadtree subdivision of unit square;
- O(1) line segments per cell;
- \bullet O(n) cells in total;
- ullet algorithm runs in O(sort(n)) I/O's

Input: file with for each line segment its endpoints.

Algorithm:

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - ullet find smallest cell Q that contains L_i and L_{i+1} ;
 - ullet output cell boundaries of Q and its subquadrants
- 3. Sort cell boundaries in Z-order (removing duplicates)
- 4. Put line segments in cells

To prove for input of n line segments: (compressed)

- together cell boundaries form quadtree subdivision of unit square;
- O(1) line segments per cell;
- \bullet O(n) cells in total;
- ullet algorithm runs in O(sort(n)) I/O's

Input: file with for each line segment its endpoints.

Algorithm:

- 1. Sort bounding box vertices of line segments into list $L = \{L_1, ..., L_m\}$ in Z-order
- 2. For $i \leftarrow 1$ to m:
 - ullet find smallest cell Q that contains L_i and L_{i+1} ;
 - ullet output cell boundaries of Q and its subquadrants
- 3. Sort cell boundaries in Z-order (removing duplicates)
- 4. Put line segments in cells

To prove for input of n line segments:

(compressed)

- together cell boundaries form quadtree subdivision of unit square;
- O(1) line segments per cell;
- O(n) cells in total;
- ullet algorithm runs in O(sort(n)) I/O's

Works if line segments have *low density*: for every circle C of diam d,

#line segments longer than d that intersect C

is at most a constant independent of \boldsymbol{n}

Range queries

Report all line segments intersecting a query range Q of constant complexity

Range queries

Report all line segments intersecting a query range Q of constant complexity

 $w = {\sf diameter} \; {\sf of} \; Q$

 $k_{\varepsilon}=$ number of segments at distance $<\varepsilon w$ from Q

Range queries

Report all line segments intersecting a query range Q of constant complexity

w = diameter of Q

 $k_{\varepsilon} = \text{number of segments at distance} < \varepsilon w \text{ from } Q$

Results:

- \bullet for fat triangulations: range queries in $O(\frac{1}{\varepsilon}(\log_B n) + scan(k_{\varepsilon}))$ I/O's
- for low-density line segments:
 (after refining the data structure in O(sort(n)) I/O's)
 same bound.

I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma

 $n = {\sf input\ size}; \quad M = {\sf main\ memory\ size}; \quad B = {\sf disk\ block\ size}; \quad scan(n) < sort(n) << n$

For low-density triangulations / sets of line segments*, there is a data structure that supports:

- map overlay in O(scan(n)) I/O's;
- ullet range queries in $O(\frac{1}{\varepsilon}(\log_B n) + scan(k_{\varepsilon}))$ I/O's.
- ullet point location in $O(\log_B n)$ I/O's;
- ullet (triangulations only) updates in $O(\log_B n)$ I/O's;

The data structures are built with O(sort(n)) I/Os.

*) for any circle C, number of intersecting segments bigger than diam(C) is at most a constant

I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma

 $n = {\sf input\ size}; \quad M = {\sf main\ memory\ size}; \quad B = {\sf disk\ block\ size}; \quad scan(n) < sort(n) << n$

For low-density triangulations / sets of line segments*, there is a data structure that supports:

- ullet map overlay in O(scan(n)) I/O's;
- ullet range queries in $O(\frac{1}{\varepsilon}(\log_B n) + scan(k_{\varepsilon}))$ I/O's.
- point location in $O(\log_B n)$ I/O's;
- (triangulations only) updates in $O(\log_B n)$ I/O's;

The data structures are built with O(sort(n)) I/Os.

That's all folks

*) for any circle C, number of intersecting segments bigger than diam(C) is at most a constant