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Maps: planar subdivisions, sets of (non-intersecting) line segments, ....
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Overlaying triangulations CPU-efficiently

Maps: ..., triangulations
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DFS in one triangulation, traverse triangles in the other:
e O(1) operations per edge
e O(1) operations per crossing

Total: ©(n + k) CPU-operations (for n triangles, k intersections)
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Using external memory
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of size M
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all data)

B triangles

Solution: once in correct position, read B items at once.

(hope you can keep them in memory until you need them)




Using external memory

Waiting for one triangle takes ~ 1000000 CPU cycles

main memory
of size M

(too small for
all data)

B triangles

Solution: once in correct position, read B items at once.

(hope you can keep them in memory until you need them)

Analysing algorithms that work on data on disk: number of I/O’s dominate.
scan(n) = % < sort(n) = %logM/B% << n 1/0's




Overlaying triangulations on disk?

Maps: ..., triangulations

N\

DFS in one triangulation, traverse triangles in the other:
e O(1) operations per edge
e O(1) operations per crossing

Total: ©(n + k) CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks.




Overlaying triangulations on disk?

Maps: ..., triangulations

N\

DFS in one triangulation, traverse triangles in the other:
e O(1) operations per edge
e O(1) operations per crossing

Total: ©(n + k) CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks. 1 1/0 =~ 1,000,000 CPU-ops. ©(n+ k) 1/0’s?




Our results

N = Input size;
n n

M = main memory size; scan(n) = < sort(n) = 5 IOgM/BE <<

n
. . B
B = disk block size

Previously:

e Arge et al.: map overlay in O(sort(n)+ k/B) 1/O's (complicated, super-linear space)

e Crauser et al.: randomized, linear space

Our results: in O(sort(n)) |/O’s we can build a data structure that supports:
e map overlay in O(scan(n)) 1/O’s;

e point location in O(loggn) 1/0’s;

e range queries in O(%(logB n) + scan(ks)) 1/0's;

e for triangulations: basic updates in O(loggn) 1/0O's.

Condition: input must be fat triangulation (all angles > positive constant), or a

low-density set of segments (for any circle C, #intersecting segments > diam(C') is O(1))
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Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)
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/-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE
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Ingredients: ... and Z-order

/-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE




Ingredients: quadtrees and Z-order

Quadtree cell = interval on Z-order curve

subdivision of Z-order curve

Quadtree subdivision
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Ingredients: quadtrees and Z-order

Quadtree cell = interval on Z-order curve

Quadtree subdivision = subdivision of Z-order curve
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Map overlay with quadtrees in Z-order
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Map overlay with quadtrees in Z-order
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Map overlay with quadtrees in Z-order
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Map overlay with quadtrees in Z-order
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n: number of triangles; B: disk block size
Ideally: O(n) quadtree cells, O(1) edges each

— Overlay in O(scan(n)) = O(n/B) |/O's.




Map overlay with quadtrees in Z-order
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n: number of triangles; B: disk block size
Ideally: O(n) quadtree cells, O(1) edges each

— Overlay in O(scan(n)) = O(n/B) 1/0's.

— Point location with B-tree in O(loggn) 1/O's.




How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:
e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

2. Sort cells into Z-order (removing duplicates)
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Algorithm:

1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion: V

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

2. Sort cells into Z-order (removing duplicates)

To prove for input of n triangles:

e together cells form subdivision of unit square;
e O(1) triangles per cell;

e O(n) cells in total;

e algorithm runs in O(sort(n)) 1/0's




How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:

e load adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

2. Sort cells into Z-order (removing duplicates)

To prove for input of n triangles:

e together cells form subdivision of unit square;

e O(1) triangles per cell; <

e O(n) cells in total;

e algorithm runs in O(sort(n)) 1/0's

N

Works if triangles are fat:
minimum angle >

positive constant independent of n




How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L ={Ly,..., Ly} in Z-order

2.For 1 «— 1 to m:

e find smallest cell () that contains L; and L;.;

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells
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Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L ={Ly,..., Ly} in Z-order
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How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm: I/i'/T\[
.

1. Sort bounding box vertices of line segments ISI

into list L ={Ly,..., Ly} in Z-order N
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Algorithm: ’ *
1. Sort bounding box vertices of line segments Ce . . ]
into list L ={Ly,..., Ly} in Z-order .
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1. Sort bounding box vertices of line segments Te . 71247 Ve
into list L ={Ly,..., Ly} in Z-order J .
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Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L ={Ly,..., Ly} in Z-order

2.For 1 «— 1 to m:

e find smallest cell () that contains L; and L, 1;

e e @

‘M




How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints. | .
Algorithm: 7 ° /
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1. Sort bounding box vertices of line segments \
into list L ={Ly,..., Ly} in Z-order

N
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e output cell boundaries of () and its subquadrants \
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3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells
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Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L ={Ly,..., Ly} in Z-order
2. For i «+— 1 to m:

e find smallest cell () that contains L; and L;.;

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

e together cell boundaries form quadtree subdivision of unit square;

e O(1) line segments per cell;
e O(n) cells in total;

e algorithm runs in O(sort(n)) 1/0's
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Input: file with for each line segment its endpoints.
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2. For i «+— 1 to m:

e find smallest cell () that contains L; and L;.;

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)
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e together cell boundaries form’quadtree subdivision of unit square;

e O(1) line segments per cell;
e O(n) cells in total;
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Algorithm:

1. Sort bounding box vertices of line segments
into list L ={Ly,..., Ly} in Z-order

2.For 1 «— 1 to m:

e find smallest cell () that contains L; and L;.; \

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

o (compressed)

e together cell boundaries form’quadtree subdivision of unit square;

e O(1) line segments per cell; Works if line segments have low density:
e O(n) cells in total; for every circle C' of diam d,

_ _ , #line segments longer than d that intersect C
e algorithm runs in O(sort(n)) 1/0's

Is at most a constant independent of n




Range queries

Report all line segments intersecting

a query range () of constant complexity




Range queries

Report all line segments intersecting

a query range () of constant complexity

w = diameter of ()
k- = number of segments at distance < cw from ()




Range queries

Report all line segments intersecting

a query range () of constant complexity

w = diameter of ()

k- = number of segments at distance < cw from ()

Results:

e for fat triangulations:

range queries in O(%(logB n) + scan(ke)) 1/O's

e for low-density line segments:

(after refining the data structure in O(sort(n)) 1/O's)

same bound.
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For low-density triangulations / sets of line segments™, there is a data structure that supports:

e map overlay in O(scan(n)) 1/O’s; e range queries in O(%(logB n) + scan(ks)) 1/O’s.

e point location in O(loggn) 1/0’s; e (triangulations only) updates in O(loggn) 1/0'’s;

The data structures are built with O(sort(n)) |/Os.

*) for any circle C, number of intersecting segments bigger than diam(C') is at most a constant
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n = input size; M = main memory size; B = disk block size; scan(n) < sort(n) <<n

For low-density triangulations / sets of line segments™, there is a data structure that supports:

e map overlay in O(scan(n)) 1/O’s; e range queries in O(%(logB n) + scan(ks)) 1/O’s.

e point location in O(loggn) 1/0’s; e (triangulations only) updates in O(loggn) 1/0'’s;

The data structures are built with O(sort(n)) |/Os.
That's all folks

*) for any circle C, number of intersecting segments bigger than diam(C') is at most a constant




