
I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

I/O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

Maps: planar subdivisions, sets of (non-intersecting) line segments,

I/O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

Maps: ..., triangulations

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other

Overlaying triangulations CPU-efficiently

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other:

•Θ(1) operations per edge

•Θ(1) operations per crossing

Total: Θ(n + k) CPU-operations (for n triangles, k intersections)

Using external memory

my triangle

read/write head

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

disk

main memory

of size M

(too small for

all data)

Using external memory

disk

main memory

of size M

(too small for

all data)

Using external memory

disk

main memory

of size M

(too small for

all data)

Using external memory

disk

main memory

of size M

(too small for

all data)

Using external memory

disk

main memory

of size M

(too small for

all data)

Using external memory

disk

main memory

of size M

(too small for

all data)

Using external memory

disk

main memory

of size M

(too small for

all data)

Using external memory

disk

main memory

of size M

(too small for

all data)

Using external memory

disk

main memory

of size M

(too small for

all data)

Using external memory

my triangle

Waiting for one triangle takes ≈ 1 000 000 CPU cycles

disk

main memory

of size M

(too small for

all data)

Using external memory

main memory

of size M

(too small for

all data)

B triangles

Waiting for one triangle takes ≈ 1 000 000 CPU cycles

disk

Solution: once in correct position, read B items at once.

(hope you can keep them in memory until you need them)

(one I/O)

Using external memory

main memory

of size M

(too small for

all data)

B triangles

Waiting for one triangle takes ≈ 1 000 000 CPU cycles

disk

Solution: once in correct position, read B items at once.

(hope you can keep them in memory until you need them)

(one I/O)

Analysing algorithms that work on data on disk: number of I/O’s dominate.

scan(n) =
n

B
< sort(n) =

n

B
logM/B

n

B
<< n I/O’s

Overlaying triangulations on disk?

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other:

•Θ(1) operations per edge

•Θ(1) operations per crossing

Total: Θ(n + k) CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks.

Overlaying triangulations on disk?

Maps: ..., triangulations

DFS in one triangulation, traverse triangles in the other:

•Θ(1) operations per edge

•Θ(1) operations per crossing

Total: Θ(n + k) CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks. 1 I/O ≈ 1,000,000 CPU-ops. Θ(n + k) I/O’s?

Our results

n = input size;

M = main memory size;

B = disk block size

Previously:

• Arge et al.: map overlay in O(sort(n) + k/B) I/O’s (complicated, super-linear space)

• Crauser et al.: randomized, linear space

Our results: in O(sort(n)) I/O’s we can build a data structure that supports:

•map overlay in O(scan(n)) I/O’s;

• point location in O(logB n) I/O’s;

• range queries in O(1
ε(logB n) + scan(kε)) I/O’s;

• for triangulations: basic updates in O(logB n) I/O’s.

Condition: input must be fat triangulation (all angles > positive constant), or a

low-density set of segments (for any circle C, #intersecting segments > diam(C) is O(1))

scan(n) =
n

B
< sort(n) =

n

B
logM/B

n

B
<< n

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)

Ingredients: quadtrees ...

Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

(for example: until every cell has at most one vertex)

Ingredients: quadtrees ...

Z-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: ... and Z-order

Ingredients: ... and Z-order

1 2

3 4

Z-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: ... and Z-order

Z-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: ... and Z-order

Z-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Ingredients: ... and Z-order

0
1

Z-order space-filling curve: visit quadrants recursively in order NW, NE, SW, SE

Quadtree cell ≡ interval on Z-order curve

Quadtree subdivision ≡ subdivision of Z-order curve

Ingredients: quadtrees and Z-order

0
1

Quadtree cell ≡ interval on Z-order curve

Quadtree subdivision ≡ subdivision of Z-order curve

Ingredients: quadtrees and Z-order

0
10.25

0.5
0.75

Quadtree cell ≡ interval on Z-order curve

Quadtree subdivision ≡ subdivision of Z-order curve

Ingredients: quadtrees and Z-order

0
10.25

0.5
0.75

0.375

Quadtree cell ≡ interval on Z-order curve

Quadtree subdivision ≡ subdivision of Z-order curve

Ingredients: quadtrees and Z-order

0
1

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

Map overlay with quadtrees in Z-order

each block is needed only once

Map overlay with quadtrees in Z-order

n: number of triangles; B: disk block size

Ideally: O(n) quadtree cells, O(1) edges each

→ Overlay in O(scan(n)) = O(n/B) I/O’s.

each block is needed only once

Map overlay with quadtrees in Z-order

n: number of triangles; B: disk block size

Ideally: O(n) quadtree cells, O(1) edges each

→ Point location with B-tree in O(logB n) I/O’s.

→ Overlay in O(scan(n)) = O(n/B) I/O’s.

How to get that quadtree in Z-order (for triangulations of unit square)

v

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

2. Sort cells into Z-order (removing duplicates)

v

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

How to get that quadtree in Z-order (for triangulations of unit square)

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

v

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

2. Sort cells into Z-order (removing duplicates)

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

2. Sort cells into Z-order (removing duplicates)

To prove for input of n triangles:

• together cells form subdivision of unit square;

•O(1) triangles per cell;

•O(n) cells in total;

• algorithm runs in O(sort(n)) I/O’s

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:

1. For each vertex v:

• load adjacency list in memory;

• build quadtree on star (v) with splitting criterion:

Stop splitting when all edges incident to same vertex

• output each cell that is completely inside star (v)

2. Sort cells into Z-order (removing duplicates)

To prove for input of n triangles:

• together cells form subdivision of unit square;

•O(1) triangles per cell;

•O(n) cells in total;

• algorithm runs in O(sort(n)) I/O’s

Works if triangles are fat:

minimum angle >

positive constant independent of n

How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

2. For i← 1 to m:

• find smallest cell Q that contains Li and Li+1;

• output cell boundaries of Q and its subquadrants

3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

How to get that quadtree in Z-order (for line segments in unit square)

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

2. For i← 1 to m:

• find smallest cell Q that contains Li and Li+1;

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

2. For i← 1 to m:

• find smallest cell Q that contains Li and Li+1;

• output cell boundaries of Q and its subquadrants

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

2. For i← 1 to m:

• find smallest cell Q that contains Li and Li+1;

• output cell boundaries of Q and its subquadrants

3. Sort cell boundaries in Z-order (removing duplicates)

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

2. For i← 1 to m:

• find smallest cell Q that contains Li and Li+1;

• output cell boundaries of Q and its subquadrants

3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

2. For i← 1 to m:

• find smallest cell Q that contains Li and Li+1;

• output cell boundaries of Q and its subquadrants

3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

• together cell boundaries form quadtree subdivision of unit square;

•O(1) line segments per cell;

•O(n) cells in total;

• algorithm runs in O(sort(n)) I/O’s

How to get that quadtree in Z-order (for line segments in unit square)

(compressed)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

2. For i← 1 to m:

• find smallest cell Q that contains Li and Li+1;

• output cell boundaries of Q and its subquadrants

3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

• together cell boundaries form quadtree subdivision of unit square;

•O(1) line segments per cell;

•O(n) cells in total;

• algorithm runs in O(sort(n)) I/O’s

How to get that quadtree in Z-order (for line segments in unit square)

Works if line segments have low density :

for every circle C of diam d,

#line segments longer than d that intersect C

is at most a constant independent of n

C

(compressed)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments

into list L = {L1, ..., Lm} in Z-order

2. For i← 1 to m:

• find smallest cell Q that contains Li and Li+1;

• output cell boundaries of Q and its subquadrants

3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

• together cell boundaries form quadtree subdivision of unit square;

•O(1) line segments per cell;

•O(n) cells in total;

• algorithm runs in O(sort(n)) I/O’s

Range queries

Report all line segments intersecting

a query range Q of constant complexity

Q

Range queries

εw

w

Report all line segments intersecting

a query range Q of constant complexity

w = diameter of Q

kε = number of segments at distance < εw from Q

Q

Range queries

Report all line segments intersecting

a query range Q of constant complexity

w = diameter of Q

kε = number of segments at distance < εw from Q

Results:

• for fat triangulations:

range queries in O(1
ε(logB n) + scan(kε)) I/O’s

• for low-density line segments:

(after refining the data structure in O(sort(n)) I/O’s)

same bound.

εw

w

Q

n = input size; M = main memory size; B = disk block size; scan(n) < sort(n) << n

For low-density triangulations / sets of line segments*, there is a data structure that supports:

I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

O(n) quadtree cells

O(1) edges each

• range queries in O(1
ε(logB n) + scan(kε)) I/O’s.

• (triangulations only) updates in O(logB n) I/O’s;

The data structures are built with O(sort(n)) I/Os.

•map overlay in O(scan(n)) I/O’s;

• point location in O(logB n) I/O’s;

*) for any circle C, number of intersecting segments bigger than diam(C) is at most a constant

n = input size; M = main memory size; B = disk block size; scan(n) < sort(n) << n

For low-density triangulations / sets of line segments*, there is a data structure that supports:

• range queries in O(1
ε(logB n) + scan(kε)) I/O’s.

• (triangulations only) updates in O(logB n) I/O’s;

The data structures are built with O(sort(n)) I/Os.

•map overlay in O(scan(n)) I/O’s;

• point location in O(logB n) I/O’s;

That’s all folks

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

O(n) quadtree cells

O(1) edges each

*) for any circle C, number of intersecting segments bigger than diam(C) is at most a constant

I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions

