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Map Overlay

 Maps: planar subdivisions, sets of non-intersecting line segments,..
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 If main memory is too small to hold all data

 Once in correct position, read B items at once. 

(hope you can keep them in memory until you need them)

• When working with large data, I/Os dominate. 

In External Memory

main memory 
of size M

Read/Write head

disk

     B triangles

one I/O



 one I/O = 1,000,000 CPU-ops
 I/O-complexity: the number of IOs 
 Goal: minimize I/O-complexity

 Basic building blocks and bounds: 

• scanning : 

• sorting: 

I/O-Model
[AV’88]

main memory 
of size M B

one IO

input of size n sits on disk
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Overlaying Triangulations I/O-Efficiently?

 On disk data is arranged in blocks.

 DFS in one triangulation, traverse triangles in the other: 

• O(1) IOs per edge

• O(1) IOs per triangle

• Total:                                                        



CPU-ops      (for n triangles, k intersections)

Not efficient

















































































































 Theorem: Let F be a   -fat triangulation with n edges.  We can construct, in                    

                IOs a quadtree for F that stores          cells and          edge-cell 
intersections. 

 Given two   -fat triangulations stored as above, we can find all pairs of intersections 
in                  IOs.

Quadtrees for Fat Triangulations



























Quadtrees for Low-Density Subdivisions

 Theorem:  Let F be a subdivision of the unit square with n edges and density   . 

A quadtree constructed on the bounding-box vertices of the edges with the following 
stopping rule:  

Stop splitting when the cell contains at most one vertex.

 has O(n) cells.
 each cell is intersected by       edges.  
 the total number of intersections is 
 can be constructed in               IOs.
 all pairs of intersections can be found in 



I/O-Efficient Indices for Fat Triangulations and Low-Density Subdivisions



Discussion

 d-fat triangulations 
• O(n/d) cells

• each cell intersects O(1/d) edges

• total O(n/d2) edge-cell intersections

• construction: O(sort(n/d2)) IOs

 set of edges of density 
• O(n) cells 

• each cell intersects O(  ) edges

• total O(  n) edge-cell intersections

• construction: O(sort(  n)) IOs

 A d-fat triangulation has density O(1/d)
• can use both approaches 

• More efficient? 

O(n/d) ? 

Much simpler

Better dependency on 
parameters



Thank you


