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Map Overlay

Maps: planar subdivisions, sets of non-intersecting line segments,..
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In External Memory

If main memory is too small to hold all data

-

o

~

main memory

of size M

J

one I/O

Once in correct position, read B items at once.

(hope you can keep them in memory until you need them)

When working with large data, I/0s dominate.

Read/Write head




/0-Model

[AV’88]

4 )

main memory
of size M

\ J

one I/0 = 1,000,000 CPU-ops
I/0-complexity: the number of IOs

Goal: minimize I/O-complexity

Basic building blocks and bounds:

o scanning: scan(n)= I0s

* sorting: snrt(n}z@(%lﬂgmm %) I0s [AV’88]

scan(n) < sort(n) <« n I0s
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Overlaying Triangulations 1/O-Efficiently?

On disk data is arranged in blocks.

DFS in one triangulation, traverse triangles in the other:

O(n+ k) CPU-ops (for n triangles, k intersections)
e O(l1) IOs per edge

e O(1) IOs per triangle
e Total: O(n+ k) IOs Not efficient

= scan(n) < sort(n) <« n I0s




Our results

n = Input size;

: : n n n
M = main memory size; B < sort(n) = ElOgM/BE <<
B = disk block size

Previously:
e Arge et al.: map overlay in O(sort(n) + k/B) 1/O's (complicated, super-linear space)

e Crauser et al.: randomized, linear space

Our results: in O(sort(n)) 1/O’s we can build a data structure that supports:
e map overlay in O(scan(n)) 1/O's;

e point location in O(loggn) 1/0's;

e range queries in O(%(logB n) + scan(ke)) 1/O's;

e for triangulations: basic updates in O(loggn) 1/O's.

Condition: input must be fat triangulation (all angles > positive constant), or a

low-density set of segments (for any circle C', #intersecting segments > diam(C') is O(1))
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Map overlay with quadtrees in Z-order

each block is needed only once
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Map overlay with quadtrees in Z-order

NNV

each block is needed only once

Al

A Z
/

n: number of triangles; B: disk block size
Ideally: O(n) quadtree cells, O(1) edges each

— Overlay in O(scan(n)) = O(n/B) 1/0O's.




Map overlay with quadtrees in Z-order
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n: number of triangles; B: disk block size
Ideally: O(n) quadtree cells, O(1) edges each

— Overlay in O(scan(n)) = O(n/B) 1/0O's.

— Point location with B-tree in O(loggn) |/O's.




How to get that quadtree in Z-order (for triangulations of unit square)

Input: file with for each vertex its adjacency list.

Algorithm:
1. For each vertex v:
e |oad adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)

2. Sort cells into Z-order (removing duplicates)
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Algorithm:
1. For each vertex v:

e [oad adjacency list in memory;

e build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

e output each cell that is completely inside star(v)
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To prove for input of n triangles:

e together cells form subdivision of unit square;
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e O(n) cells in total;

e algorithm runs in O(sort(n)) 1/O's

N

N

Works if triangles are fat:
minimum angle >

positive constant independent of n




Quadtrees for Fat Triangulations

Theorem: Let F be a j-fat friangulation with n edges. We can construct, in

(M sort [n..-"r’.if_‘.-_‘.- I0s a quadtree for F that stores (){n/d) cells and r:;'{n..-"r:'-f}edge-cell
intersections.

Given two d#-fat triangulations stored as above, we can find all pairs of intersections
in U{e[-nu{nl.-"rﬁj_‘.-_‘.- 10s.




How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L = {Lq,..., L} in Z-order

2. Fori < 1tom:

e find smallest cell () that contains L; and L; {;

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells
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How to get that quadtree in Z-order (for line segments in unit square)

Input: file with for each line segment its endpoints.

Algorithm:

1. Sort bounding box vertices of line segments
into list L = {Lq,..., L} in Z-order

2. Fori < 1tom:

e find smallest cell () that contains L; and L; {;

e output cell boundaries of () and its subquadrants
3. Sort cell boundaries in Z-order (removing duplicates)

4. Put line segments in cells

To prove for input of n line segments:

o (compressed)

e together cell boundaries form’quadtree subdivision of unit square;

e O(1) line segments per cell; Works if line segments have low density:

e O(n) cells in total; for every circle C of diam d,

_ | , #line segments longer than d that intersect C
e algorithm runs in O(sort(n)) 1/O's

is at most a constant independent of n




Quadtrees for Low-Density Subdivisions

Theorem: Let F be a subdivision of the unit square with n edges and density A.
A quadfree constructed on the bounding-box vertices of the edges with the following

stopping rule:

Stop splitting when the cell contains at most one vertex.

has O(n) cells.

each cell is intersected by (J{\A) edges.
the total number of intersections is (}{nA)
can be constructed in (J{sort{nA)) IOs.

all pairs of intersections can be found in O{scan(nAi))
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NG

//
/ O(n) quadtree cells

O(1) edges each

+ nA4

N pd

n = input size; M = main memory size; B = disk block size; scan(n) < sort(n) << n

For low-density triangulations / sets of line segments*, there is a data structure that supports:

e map overlay in O(scan(n)) 1/0's; e range queries in O(%(logB n) + scan(ks)) 1/O's.

e point location in O(loggn) 1/0’s; e (triangulations only) updates in O(loggn) 1/O’s;

The data structures are built with O(sort(n)) 1/0Os.

*) for any circle C', number of intersecting segments bigger than diam(C') is at most a constant




d-fat triangulations <

set of edges of density A

Discussion

O(n/d) cells
each cell intersects O(1/d) edges

total O(n/d?) edge-cell intersections <
construction: O(sort(n/d?)) IOs

O(n/d) ?

O(n) cells
each cell intersects O(\) edges
total O(.An) edge-cell intersections

construction: O(sort(.An)) IOs

A d-fat triangulation has density O(1/d)

can use both approaches

More efficient?

Much simpler

Better dependency on
parameters




Thank you



