
Laura Toma
Bowdoin College

2009

I/O-Efficient Indexes for Fat Triangulations and Low-Density Subdivisions

Mark de Berg Herman Haverkort Shripad Thite Laura Toma

Map Overlay

 Maps: planar subdivisions, sets of non-intersecting line segments,..

Map Overlay

 Maps: ..., triangulations

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other

Overlaying Triangulations CPU-Efficiently

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other
• O(1) operations per edge

• O(1) operations per crossing

 Total: O(n+k) CPU-operations (for n triangles, k crossings)

Overlaying Triangulations CPU-Efficiently

 Maps: ..., triangulations

 DFS in one triangulation, traverse triangles in the other
• O(1) operations per edge

• O(1) operations per crossing

 Total: O(n+k) CPU-operations (for n triangles, k crossings)

 If main memory is too small to hold all data

In External Memory

main memory
of size M

Read/Write head

my triangle

disk

 If main memory is too small to hold all data

In External Memory

main memory
of size M

Read/Write head

my triangle

disk

 If main memory is too small to hold all data

In External Memory

main memory
of size M

Read/Write head

my triangle

disk

 If main memory is too small to hold all data

In External Memory

main memory
of size M

Read/Write head

my triangle

disk

 If main memory is too small to hold all data

In External Memory

main memory
of size M

Read/Write head

disk

 If main memory is too small to hold all data

In External Memory

main memory
of size M

Read/Write head

disk

 If main memory is too small to hold all data

In External Memory

main memory
of size M

Read/Write head

disk

 If main memory is too small to hold all data

In External Memory

main memory
of size M

Read/Write head

disk

my triangle

 If main memory is too small to hold all data

 Once in correct position, read B items at once.

(hope you can keep them in memory until you need them)

• When working with large data, I/Os dominate.

In External Memory

main memory
of size M

Read/Write head

disk

 B triangles

one I/O

 one I/O = 1,000,000 CPU-ops
 I/O-complexity: the number of IOs
 Goal: minimize I/O-complexity

 Basic building blocks and bounds:

• scanning :

• sorting:

I/O-Model
[AV’88]

main memory
of size M B

one IO

input of size n sits on disk

Overlaying Triangulations I/O-Efficiently?

 Imagine data is on disk.

Overlaying Triangulations I/O-Efficiently?

 Imagine data is on disk.

Overlaying Triangulations I/O-Efficiently?

 On disk data is arranged in blocks.

 DFS in one triangulation, traverse triangles in the other:

• O(1) IOs per edge

• O(1) IOs per triangle

• Total:



CPU-ops (for n triangles, k intersections)

Not efficient

 Theorem: Let F be a -fat triangulation with n edges. We can construct, in

 IOs a quadtree for F that stores cells and edge-cell
intersections.

 Given two -fat triangulations stored as above, we can find all pairs of intersections
in IOs.

Quadtrees for Fat Triangulations

Quadtrees for Low-Density Subdivisions

 Theorem: Let F be a subdivision of the unit square with n edges and density .

A quadtree constructed on the bounding-box vertices of the edges with the following
stopping rule:

Stop splitting when the cell contains at most one vertex.

 has O(n) cells.
 each cell is intersected by edges.
 the total number of intersections is
 can be constructed in IOs.
 all pairs of intersections can be found in

I/O-Efficient Indices for Fat Triangulations and Low-Density Subdivisions

Discussion

 d-fat triangulations
• O(n/d) cells

• each cell intersects O(1/d) edges

• total O(n/d2) edge-cell intersections

• construction: O(sort(n/d2)) IOs

 set of edges of density
• O(n) cells

• each cell intersects O() edges

• total O(n) edge-cell intersections

• construction: O(sort(n)) IOs

 A d-fat triangulation has density O(1/d)
• can use both approaches

• More efficient?

O(n/d) ?

Much simpler

Better dependency on
parameters

Thank you

