Computing Visibility on Large Rasters: A new GRASS module r.viewshed

Laura Toma Will Richard

Bowdoin College USA

FOSS4G 2008
Cape Town, South Africa

Visibility: the Basic Problem

- 9 Input
 - T: an elevation model of a terrain
 - v: a viewpoint (location, height)
- Compute the viewshed of v
 - the set of points of T visible from v

viewpoint

Visibility: the Basic Problem

9 Input

- T: an elevation model of a terrain
- v: a viewpoint (location, height)
- Compute the viewshed of v
 - the set of points of T visible from v

Applications

- path planning and navigation
 - find a scenic path with overall maximum visibility
 - find location for a pipe/construction with least visibility
 - find location with minimum visibility in the terrain
 - find best hide place
- guarding:
 - placement of fire towers, radar sites, cell phone towers

Visibility on Rasters

- Line-of-sight model
 - a, b visible if the line segment ab does not intersect the terrain

interpolate to find out height of T along the line

Visibility on Rasters

- Line-of-sight model
 - a, b visible if the line segment ab does not intersect the terrain

interpolate to find out height of T along the line

20	23	25	26	32	46
21	20	24	28	32	46
24	21	23	31	32	46
23	22	24	27	33	34
32	22	29	30	35	34
29	30	33	34	36	37

20	23	25	26	32	46
21	20	24	28	32	/ 46
24	21	23	31	32	46
23	22	24	27	33	34
32	22	29	30	35	34
29	30	33	34	36	37

20	23	25	26	32	46
21	20	24	28	32	/ 46
24	21	23	31	32	46
23	22	24	27	33	34
32	22	29	30	35	34
29	30	33	34	36	37

Visibility with Nearest-Neighbor Interpolation

20	23	25	26	32	46
21	20	24	28	32	46
24	21	23	31	32	46
23	22	24	27	33	34
32	22	29	30	35	34
29	30	33	34	36	37

Visibility: Related Work

```
Theoretical
   computational geometry/graphics
       9
   9 GIS

 direct algorithm: O(n<sup>3/2</sup>)

       ∘in-memory: O(n lg n) [van Kreveld]
       • disk: O (sort(n)) [HTZ07]
GIS
   Fisher, Franklin et al, Izraelevitz
   Wang et al
   9 ...
surveys:
   • de Floriani & Magillo [FM94]
```

Cole & Sharir [CS89]

Computing on Very Large Terrains

- Why?
 - Large amounts of data are becoming available
 - SRTM: 30/90m resolution of entire globe (~10TB)
 - LIDAR: sub-meter resolution
- Traditional algorithms designed assuming
 - data fits in memory
 - has uniform access cost
-don't scale
- Buy more RAM?
 - Data grows faster than memory
- Data does not fit in memory, sits on disk
- Disks are MUCH slower than memory
- ⇒ => disk I/O bottleneck

Large Data: What To Do?

- Very large data => needs efficient algorithms
 - ⊕ small data: 1 sec vs 3 sec
 - large data: 1 hour vs 1 day (or worse)
- Massive data: bottleneck is disk I/O
 - □ ==> Design algorithms that specifically minimize disk I/O

 - ♀ Idea:
 - Do not rely on virtual memory!
 - Instead, change the data access pattern of the algorithm to increase spatial locality and minimize the number of blocks transfered between main memory and disk

This project: r.viewshed

9 r.viewshed

- Efficient visibility computation on very large grids
 - uses improved algorithm (both I/O− and CPU-efficient)
- Can process very large grids fast
- Available in GRASS add-ons

Outline

- Visibility, model and related work
- gr.viewshed
 - Overview
 - Efficiency and experimental results
 - Algorithm
- Related and future work

GRASS 6.4.> r.viewshed -help

Description:

IO-efficient viewshed algorithm

Keywords:

raster, viewshed, line of sight

Usage:

```
r.viewshed [-rcbe] input=name output=name viewpoint_location=lat,long [observer_elevation=value] [max_dist=value] [memory_usage=value] [--overwrite] [--verbose] [--quiet]
```

Flags:

- -r Use row-column location rather than latitude-longitude location
- -c Consider the curvature of the earth (current ellipsoid)
- -b Output format is {O (invisible) 1 (visible)}
- -e Output format is {NODATA, -1 (invisible), elev-viewpoint_elev (visible)}
- -- Allow output files to overwrite existing files
- --v Verbose module output
- -- q Quiet module output

Parameters:

input Name of elevation raster map

output Name of output viewshed raster map

default format:

{NODATA, -1 (invisible), vertical angle wrt viewpoint_location (visible)}

viewpoint_location Coordinates of viewing position in latitude-longitude (if -r flag is

present then coordinates are row-column)

observer_elevation Viewing elevation above the ground

default: 0.0

max_dist Maximum visibility radius. By default infinity (-1).

default: -1

memory_usage The amount of main memory in MB to be used

default: 500

Sierra Nevada, 30m resolution (10 million elements)

r.viewshed Efficiency

r.viewshed Efficiency

- Experimental Platform
 - Apple Power Mac G5
 - Dual 2.5 GHz processors
 - 91 GB RAM

- Run analysis on various terrains
- Compare with current visibility module in GRASS
- Other (open-source) modules??

Gris Terrains	Grid Size (million points)	
Kaweah	2	
Sierra Nevada	10	
Cumberlands	67	
Lower New England	78	
East Coast USA	246	
Midwest USA	280	
Washington	1,066	

r.los in GRASS

- current visibility module in GRASS: r.los
- ∘ r.los -help

Description:

Line-of-sight raster analysis program.

Usage:

```
r.los input=name output=name coordinate=x,y [patt_map=name] [obs_elev=value] [max dist=value]
```

Parameters:

input Raster map containing elevation data output Raster map name for storing results

coordinate Coordinate identifying the viewing location

patt_map Binary (1/0) raster map

obs_elev Height of the viewing location

default: 1.75

max_dist Max distance from the viewing point (meters)

options: 0-99999

default: 1000

r.viewshed Efficiency

Gris Terrains	Grid Size (million points)	r.los	r.viewshed
Kaweah	2	30 minutes	5 sec
Sierra Nevada	10	4 hours	1 min
Cumberlands	67	> 40 hours	3.3 min
Lower New England	78		4.8 min
East Coast USA	246		16 min
Midwest USA	280		45 min
Washington	1,066		4.5 hours

- When terrain fits in memory ==> line sweeping [vK 2001]
- Efficiency:
 - ⊕ 3n events, O(lg n) per event --> O(n lg n) CPU time

- When input does not fit in memory [HTZ'07]
 - divide terrain into equal-sized sectors
 - compute visibility in each sector recursively
 - handle sector interactions
- Efficiency: O(sort(n)) disk block transfers

Next?

- Visibility grid: compute size of viewshed for each point in a terrain
- Efficiency: for a grid of n points: $n \times O(n \lg n) = O(n^2 \lg n)$ CPU time

Visibility Grid

Dataset : 472 x 391 = 184,552 points

one viewshed: 1.2 secondsvisibility grid: 45 hours !!!

Visibility Grid

- Future work : approximation
 - compute approximate viewshed of each point?
 - ecompute exact viewshed in a small neighborhood
 - sample terrain to compute what points are visible
 - compute exact viewshed of a sample of points?
- Future work: find point of largest/smallest visibility
 - without computing entire visibility grid
- Future work: guarding
 - find the locations of a minimal number of observers so that together they cover/see the entire terrain
 - even slower: need to compute visibility grid repeatedly

Scalable modules for processing massive terrain data

```
r.terraflow [2000]
flow modeling
r.refine [2005]
terrain simplification
r.terracost [2006]
least-cost surface
r.viewshed [2008]
visibility
```

Scalable modules for processing massive terrain data

- r. terraflow [2000] : flow modeling
 - e compute multiple flow directions, flooding and flow accumulation
 - ∘ input: DEM
 - output: FD grid, FA grid, filled DEM
 - see GRASS r.terraflow

DEM

flow accumulation

Scalable modules for processing massive terrain data

- r.refine [2005] : terrain simplification
 - simplify a grid into a TIN within a desired accuracy e such that distance(simplified TIN, grid) < e
 - input: grid terrain + error threshold
 - output: a Delaunay-triangulated TIN

Scalable modules for processing massive terrain data

- r.terracost [2006]: least-cost surface
 - input: cost surface + set of source points
 - output: a least-cost surface, where each point represents the shortest path to a source
 - similar to r.cost

Sierra Nevada

sources=flow

Least-cost path

Thank you.

GRASS-addons/raster/r.viewshed/

Laura Toma

Bowdoin College Maine, USA

ltoma@bowdoin.edu

http://www.bowdoin.edu/~ltoma/