
Computing Visibility on Large Rasters:
A new GRASS module r.viewshed

 Laura Toma Will Richard

FOSS4G 2008
Cape Town, South Africa

Bowdoin College
USA

Input
T: an elevation model of a terrain
v: a viewpoint (location, height)

Compute the viewshed of v
the set of points of T visible from v

Visibility: the Basic Problem

viewpoint

Input
T: an elevation model of a terrain
v: a viewpoint (location, height)

Compute the viewshed of v
the set of points of T visible from v

Applications
path planning and navigation

find a scenic path with overall maximum visibility
find location for a pipe/construction with least visibility
find location with minimum visibility in the terrain
find best hide place

guarding:
placement of fire towers, radar sites, cell phone towers

Visibility: the Basic Problem

Visibility on Rasters

Line-of-sight model
a, b visible if the line segment ab does not intersect the terrain

interpolate to find out height of T
along the line

20 23 25 26 32 46

21 20 24 28 32 46

24 21 23 31 32 46

23 22 24 27 33 34

32 22 29 30 35 34

29 30 33 34 36 37

a

b

Visibility on Rasters

Line-of-sight model
a, b visible if the line segment ab does not intersect the terrain

interpolate to find out height of T
along the line

20 23 25 26 32 46

21 20 24 28 32 46

24 21 23 31 32 46

23 22 24 27 33 34

32 22 29 30 35 34

29 30 33 34 36 37

a

b
20 23 25 26 32 46

21 20 24 28 32 46

24 21 23 31 32 46

23 22 24 27 33 34

32 22 29 30 35 34

29 30 33 34 36 37

20 23 25 26 32 46

21 20 24 28 32 46

24 21 23 31 32 46

23 22 24 27 33 34

32 22 29 30 35 34

29 30 33 34 36 37

Nearest-Neighbor Interpolation

Nearest-Neighbor Interpolation

20 23 25 26 32 46

21 20 24 28 32 46

24 21 23 31 32 46

23 22 24 27 33 34

32 22 29 30 35 34

29 30 33 34 36 37

Nearest-Neighbor Interpolation

20 23 25 26 32 46

21 20 24 28 32 46

24 21 23 31 32 46

23 22 24 27 33 34

32 22 29 30 35 34

29 30 33 34 36 37

Nearest-Neighbor Interpolation

20 23 25 26 32 46

21 20 24 28 32 46

24 21 23 31 32 46

23 22 24 27 33 34

32 22 29 30 35 34

29 30 33 34 36 37

Nearest-Neighbor Interpolation

20 23 25 26 32 46

21 20 24 28 32 46

24 21 23 31 32 46

23 22 24 27 33 34

32 22 29 30 35 34

29 30 33 34 36 37

Nearest-Neighbor Interpolation

Visibility with Nearest-Neighbor Interpolation

a

b

a

b

Visibility: Related Work

Theoretical
computational geometry/graphics

...
GIS

direct algorithm: O(n3/2)
in-memory: O(n lg n) [van Kreveld]
disk: O (sort(n)) [HTZ07]

GIS
Fisher, Franklin et al, Izraelevitz
Wang et al
...

surveys:
de Floriani & Magillo [FM94]
Cole & Sharir [CS89]

Computing on Very Large Terrains

Why?
Large amounts of data are becoming available

SRTM: 30/90m resolution of entire globe (~10TB)
LIDAR: sub-meter resolution

Traditional algorithms designed assuming
data fits in memory
has uniform access cost

.....don’t scale

Buy more RAM?
Data grows faster than memory

Data does not fit in memory, sits on disk
Disks are MUCH slower than memory

=> disk I/O bottleneck

Large Data: What To Do?

Very large data => needs efficient algorithms
small data: 1 sec vs 3 sec
large data: 1 hour vs 1 day (or worse)

Massive data: bottleneck is disk I/O
==> Design algorithms that specifically minimize disk I/O

I/O-efficient algorithms
Idea:

Do not rely on virtual memory!

Instead, change the data access pattern of the algorithm to
increase spatial locality and minimize the number of blocks
transfered between main memory and disk

This project: r.viewshed

r.viewshed
Efficient visibility computation on very large grids

uses improved algorithm (both I/O- and CPU-efficient)
Can process very large grids fast
Available in GRASS add-ons

Outline
Visibility, model and related work

r.viewshed
Overview
Efficiency and experimental results
Algorithm

Related and future work

GRASS 6.4.> r.viewshed -help

Description:
 IO-efficient viewshed algorithm

Keywords:
 raster, viewshed, line of sight

Usage:
r.viewshed [-rcbe] input=name output=name viewpoint_location=lat,long

 [observer_elevation=value] [max_dist=value] [memory_usage=value]
 [--overwrite] [--verbose] [--quiet]

Flags:
 -r Use row-column location rather than latitude-longitude location
 -c Consider the curvature of the earth (current ellipsoid)
 -b Output format is {0 (invisible) 1 (visible)}
 -e Output format is {NODATA, -1 (invisible), elev-viewpoint_elev (visible)}
 --o Allow output files to overwrite existing files
 --v Verbose module output
 --q Quiet module output

 Parameters:
 input Name of elevation raster map

 output Name of output viewshed raster map
 default format:
 {NODATA, -1 (invisible), vertical angle wrt viewpoint_location (visible)}

viewpoint_location Coordinates of viewing position in latitude-longitude (if -r flag is
 present then coordinates are row-column)

observer_elevation Viewing elevation above the ground
 default: 0.0

max_dist Maximum visibility radius. By default infinity (-1).
 default: -1

 memory_usage The amount of main memory in MB to be used
 default: 500

Sierra Nevada, 30m resolution (10 million elements)

r.viewshed -c viewpoint=1000, 1000

obs=0

obs=100

obs=1000

obs=5000

r.viewshed -c view=1000, 1000 obs=5000

max=30,000

max=20,000

max=10,000

r.viewshed -c viewpoint=1000, 3000

obs=100

obs=500

obs=0

r.viewshed Efficiency

r.viewshed Efficiency

Gris Terrains Grid Size
(million points)

Kaweah 2

Sierra Nevada 10

Cumberlands 67

Lower New England 78

East Coast USA 246

Midwest USA 280

Washington 1,066

Experimental Platform
Apple Power Mac G5
Dual 2.5 GHz processors
1 GB RAM

Run analysis on various terrains

Compare with current visibility
module in GRASS

GRASS r.los

Other (open-source) modules??

r.los in GRASS

current visibility module in GRASS: r.los
r.los -help

Description:
 Line-of-sight raster analysis program.

Usage:
 r.los input=name output=name coordinate=x,y [patt_map=name] [obs_elev=value]
[max_dist=value]

Parameters:
 input Raster map containing elevation data
 output Raster map name for storing results
 coordinate Coordinate identifying the viewing location
 patt_map Binary (1/0) raster map
 obs_elev Height of the viewing location
 default: 1.75
 max_dist Max distance from the viewing point (meters)
 options: 0-99999
 default: 1000

r.viewshed Efficiency

Gris Terrains Grid Size
(million points) r.los r.viewshed

Kaweah 2 30 minutes 5 sec

Sierra Nevada 10 4 hours 1 min

Cumberlands 67 > 40 hours 3.3 min

Lower New England 78 4.8 min

East Coast USA 246 16 min

Midwest USA 280 45 min

Washington 1,066 4.5 hours

The Underlying Algorithm
When terrain fits in memory

The Underlying Algorithm
When terrain fits in memory

The Underlying Algorithm
When terrain fits in memory

The Underlying Algorithm
When terrain fits in memory

The Underlying Algorithm
When terrain fits in memory

The Underlying Algorithm
When terrain fits in memory

The Underlying Algorithm
When terrain fits in memory ==> line sweeping [vK 2001]
Efficiency:

3n events, O(lg n) per event --> O(n lg n) CPU time

key=
dista

nce

The Underlying Algorithm
When input does not fit in memory [HTZ’07]

divide terrain into equal-sized sectors
compute visibility in each sector recursively
handle sector interactions

Efficiency: O(sort(n)) disk block transfers

Next?
Visibility grid: compute size of viewshed for each point in a terrain

Efficiency: for a grid of n points: n x O(n lg n) = O (n2 lg n) CPU time

Visibility Grid
Dataset : 472 x 391 = 184,552 points
one viewshed: 1.2 seconds
visibility grid: 45 hours !!!

Visibility Grid

Future work : approximation
compute approximate viewshed of each point?

compute exact viewshed in a small neighborhood
sample terrain to compute what points are visible

compute exact viewshed of a sample of points?

Future work: find point of largest/smallest visibility
without computing entire visibility grid

Future work: guarding
find the locations of a minimal number of observers
so that together they cover/see the entire terrain
even slower: need to compute visibility grid
repeatedly

Related Projects
Scalable modules for processing massive terrain data

r.terraflow [2000]
flow modeling

r.refine [2005]
terrain simplification

r.terracost [2006]
least-cost surface

r.viewshed [2008]
visibility

r.terraflow [2000] : flow modeling
compute multiple flow directions, flooding and flow accumulation
input: DEM
output: FD grid, FA grid, filled DEM
see GRASS r.terraflow

DEM flow accumulation

Related Projects
Scalable modules for processing massive terrain data

r.refine [2005] : terrain simplification
simplify a grid into a TIN within a desired accuracy e such that
distance(simplified TIN, grid) < e
input: grid terrain + error threshold
output: a Delaunay-triangulated TIN

Related Projects
Scalable modules for processing massive terrain data

r.terracost [2006]: least-cost surface
input: cost surface + set of source points
output: a least-cost surface, where each point represents the
shortest path to a source
similar to r.cost

Related Projects
Scalable modules for processing massive terrain data

Sierra Nevada sources=flow Least-cost path

Thank you.

GRASS-addons/raster/r.viewshed/

Laura Toma

Bowdoin College
Maine, USA

ltoma@bowdoin.edu

http://www.bowdoin.edu/~ltoma/

mailto:ltoma@bowdoin.edu
mailto:ltoma@bowdoin.edu

