Laura Toma W.ill Richard

Bowdoin College
USA

FOSS4G 2008
Cape Town, South Africa

¢ Input
¢T: an elevation model of a terrain
©v: a viewpoint (location, height)

¢ Compute the viewshed of v
© the set of points of T visible from v

viewpoint

¢ Input
T: an elevation model of a terrain
©v: a viewpoint (location, height)

¢ Compute the viewshed of v
¢ the set of points of T visible from v

* Applications

- path planning and navigation
- find a scenic path with overall maximum visibility
< find location for a pipe/construction with least visibility
< find location with minimum visibility in the terrain
- find best hide place

- guarding:
- placement of fire tfowers, radar sites, cell phone towers

along the line

interpolate fo find out height of T

=
S
o
Q
-t
Q
-
-t
-
O
Q
(7p]
—
Q
—d—
=
-+
o
=
(7p]
Q
o
d
e
O
-t
-
Q
e
o
Q
(V5]
Q
=
Q
-
-
=
9
=
)
>
e
o
D

¢ Line-of-sight model

along the line

interpolate fo find out height of T

i=
S
—
Q
-+—
Q
i -
-+
-+~
O
Q
w
—
Q
-+—
IS
=
o
c
(7]
Q
o
n)
e
O
-+~
c
Q
S
(@)
Q
w
Q
S
Q
i -
-+—
=
i
==
2D
>
O
o
@

¢ Line-of-sight model

Nearest-Neighbor Interpolation

Nearest-Neighbor Interpolation

Nearest-Neighbor Interpolation

Visibility with Nearest-Neighbor Interpolation

* Theoretical
© computational geometry/graphics

@

: GIS
¢ direct algorithm: O(n%?)
<in-memory: O(n Ilg n) [van Kreveld]

=

¢ GIS
- Fisher, Franklin et al, Izraelevitz
Wang et al

~

s surveys:
- de Floriani & Magillo [FM94]
- Cole & Sharir [CS89]

°* Why?
* Large amounts of data are becoming available
¢ SRTM: 30/90m resolution of entire globe (T10TB)
°LIDAR: sub-meter resolution

¢ Traditional algorithms designed assuming
©data fits in memory
< has uniform access cost
dont scale

© Buy more RAM?
- Data grows faster than memory

- Data does not fit in memory, sits on disk
- Disks are MUCH slower than memory

- => disk I/0O bottleneck

* Very large data => needs efficient algorithms
¢ small data: 1 sec vs 3 sec
s large data: 1 hour vs 1 day (or worse)

> Massive data: bottleneck is disk 1/0
< ==> Design algorithms that specifically minimize disk I/0

« I/0O-efficient algorithms
- Idea:
- Do not rely on virtual memory!

- Instead, change the data access pattern of the algorithm fo
increase spatial locality and minimize the number of blocks
transfered between main memory and disk

“r.viewshed
< Efficient visibility computation on very large grids
2 uses improved algorithm (both I/0- and CPU-efficient)
< Can process very large grids fast
¢ Available in GRASS add-ons

¢ OQutline

“ rviewshed
- Overview
- Efficiency and experimental results
- Algorithm

- Related and future work

GRASS 6.4.> rviewshed -help

Description:
IO-efficient viewshed algorithm

Keywords:
raster, viewshed, line of sight

Usage:
rviewshed [-rcbe] input=name output=name viewpoint_location=lat,long
[observer_elevation=value] [max_dist=value] [memory_usage=value]

[--overwrite] [--verbose] [--quiet]

Flags:
Use row-column location rather than latitude-longitude location
Consider the curvature of the earth (current ellipsoid)
Output format is {O (invisible) 1 (visible)}
Output format is {NODATA, -1 (invisible), elev-viewpoint_elev (visible)}
Allow output files to overwrite existing files
Verbose module output
Quiet module output

Parameters:

input Name of elevation raster map

output ~ Name of output viewshed raster map
default format:

{NODATA, -1 (invisible), vertical angle wrt viewpoint_location (visible)}

viewpoint_location Coordinates of viewing position in latitude-longitude (if -r flag is

present then coordinates are row-column)

observer_elevation Viewing elevation above the ground
default: 0.0

max_dist ~ Maximum visibility radius. By default infinity (-1).

default: -1

memory_usage The amount of main memory in MB to be used

default: 500

obs=0

rviewshed -c viewpoint=1000, 1000

obs=100

obs=1000

obs=5000

30,000

max=

max=20,000

max=10,000

5000

=1000, 1000 obs=

lew

hed -c vi

r.views

riviewshed -c viewpoint=1000, 3000

rviewshed Efficiency

¢ Experimental Platform
* Apple Power Mac G5
“Dual 2.5 GHz processors
©1 GB RAM

< Run analysis on various terrains

¢ Compare with current visibility
module in GRASS
- GRASS r.los

Gris Terrains

Kaweah

Sierra Nevada

Cumberlands

Lower New England

East Coast USA

Midwest USA

Washington

Grid Size
(million points)

2

10

67

78

¢ current visibility module in GRASS: r.los
 r.los -help

Description:
Line-of-sight raster analysis program.

Usage:
r.los input=name output=name coordinate=x,y [patt_map=name] [obs_elev=value]
[max_dist=value]

Parameters:
input Raster map containing elevation data
output Raster map name for storing results
coordinate Coordinate identifying the viewing location
patt_map Binary (1/0) raster map

obs_elev Height of the viewing location
default: 1.75

max_dist Max distance from the viewing point (meters)
options: 0-99999
default: 1000

Gris Terrains

Kaweah

Sierra Nevada

Cumberlands

Lower New England

East Coast USA

Midwest USA

Washington

Grid Size
(million points)

2

10

67

78

r.los

30 minutes

4 hours

> 40 hours

r.viewshed

5 sec

1 min

3.3 min

4.8 min

16 min

45 min

4.5 hours

The Underlying Algorithm

¢ When terrain fits in memory

The Underlying Algorithm

¢ When terrain fits in memory

The Underlying Algorithm

¢ When terrain fits in memory

=

The Underlying Algorithm

¢ When terrain fits in memory

=

S

The Underlying Algorithm

¢ When terrain fits in memory

¢ When terrain fits in memory

The Underlying Algorithm

¢ When fterrain fits in memory ==> line sweeping [vK 2001]
¢ Efficiency:
¢ 3n events, O(lg n) per event --> O(n Ilg n) CPU time

\\

. ﬁ\\

¢ When input does not fit in memory [HTZ'07]
¢ divide terrain into equal-sized sectors
¢ compute visibility in each sector recursively
¢ handle sector interactions

¢ Efficiency: O(sort(n)) disk block transfers

Next?

¢ Visibility grid: compute size of viewshed for each point in a terrain

e

Visibility Grid

¢ Dataset : 472 x 391 = 184,552 points
< one viewshed: 1.2 seconds
¢ visibility grid: 45 hours !!!

* Future work : approximation
< compute approximate viewshed of each point?
< compute exact viewshed in a small neighborhood
- sample terrain to compute what points are visible

- compute exact viewshed of a sample of points?

¢ Future work: find point of largest/smallest visibility
© without computing entire visibility grid

* Future work: guarding
- find the locations of a minimal number of observers
so that together they cover/see the entire terrain
< even slower: need fto compute visibility grid
repeatedly

Related Projects

Scalable modules for processing massive terrain data

¢r.terraflow [2000]
¢ flow modeling

¢r.refine [2005]
¢ terrain simplification

¢r.terracost [2006]

2
S 1ea51=-C0S!1 SUuUl

Related Projects

Scalable modules for processing massive terrain data

er.terraflow [2000] : flow modeling
¢ compute multiple flow directions, flooding and flow accumulation
¢input: DEM

<output: FD grid, FA grid, filled DEM
¢ see GRASS r.terraflow

A4 \N

flow accumulation

¢ r.refine [2005] : terrain simplification
¢ simplify a grid into a TIN within a desired accuracy e such that
distance(simplified TIN, grid) < e
“input: grid terrain + error threshold
©output: a Delaunay-triangulated TIN

Related Projects

Scalable modules for processing massive terrain data

¢r.terracost [2006]: least-cost surface
¢input: cost surface + set of source points
coutput: a least-cost surface, where each point represents the
shortest path to a source
¢ similar to r.cost

SOUTr.Ces=riow. JeasT-cost, parh

Laura Toma

Bowdoin College
Maine, USA

ltoma@bowdoin.edu

http://www.bowdoin.edu/~Itoma/

mailto:ltoma@bowdoin.edu
mailto:ltoma@bowdoin.edu

