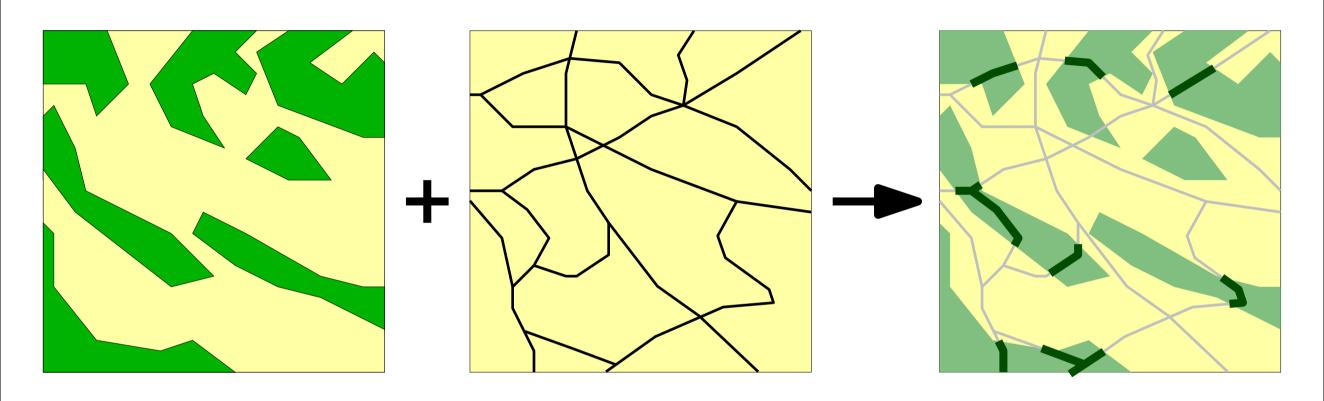
I/O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma



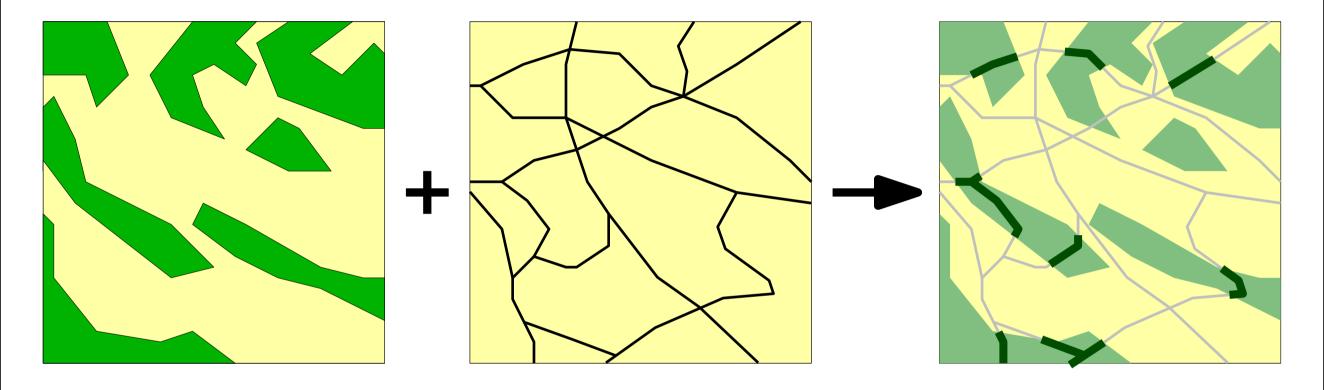
I/O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg Herman Haverkort

Shripad Thite

Laura Toma

Maps: planar subdivisions, sets of (non-intersecting) line segments,

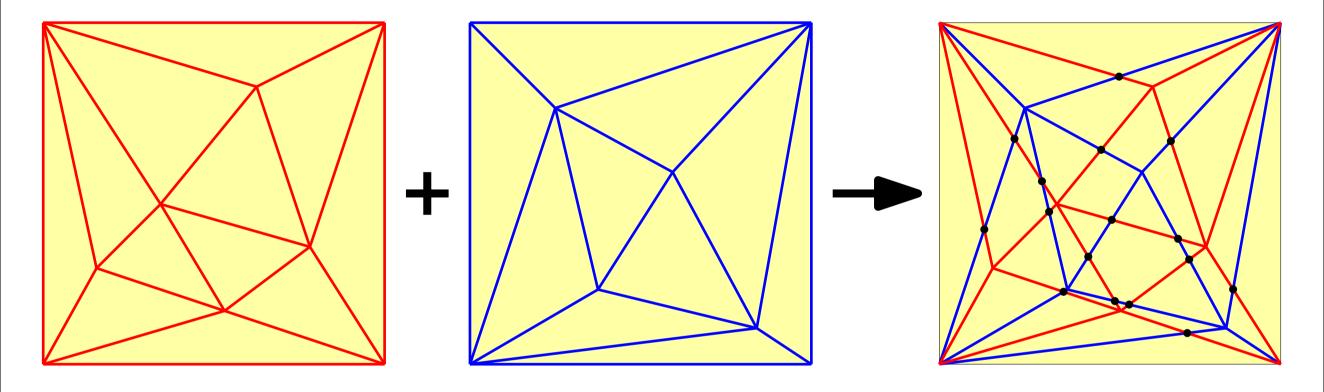


Mark de Berg Herman Haverkort

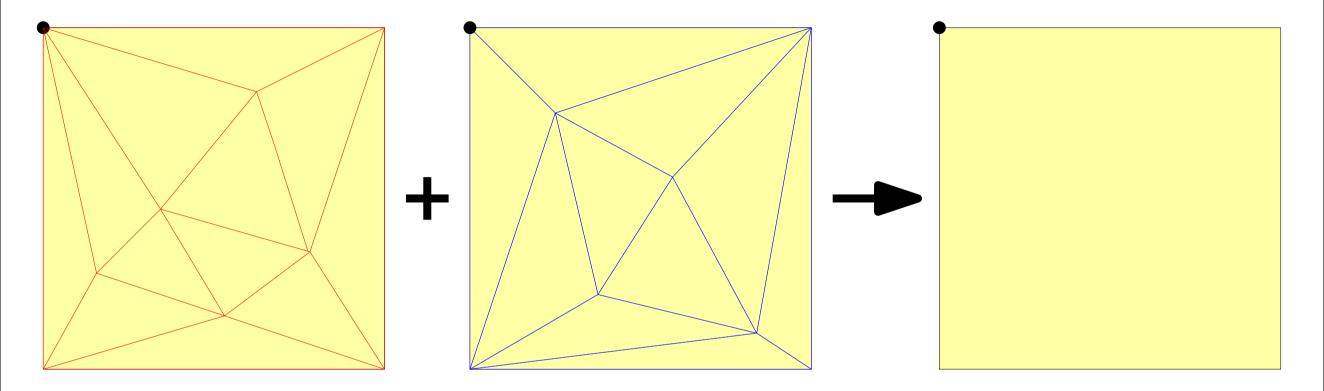
Shripad Thite

Laura Toma

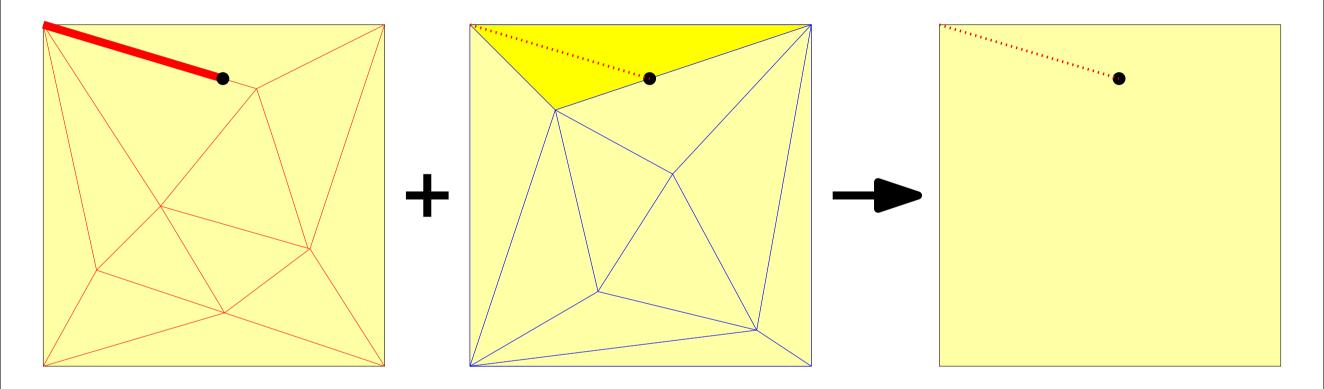
Maps: ..., triangulations



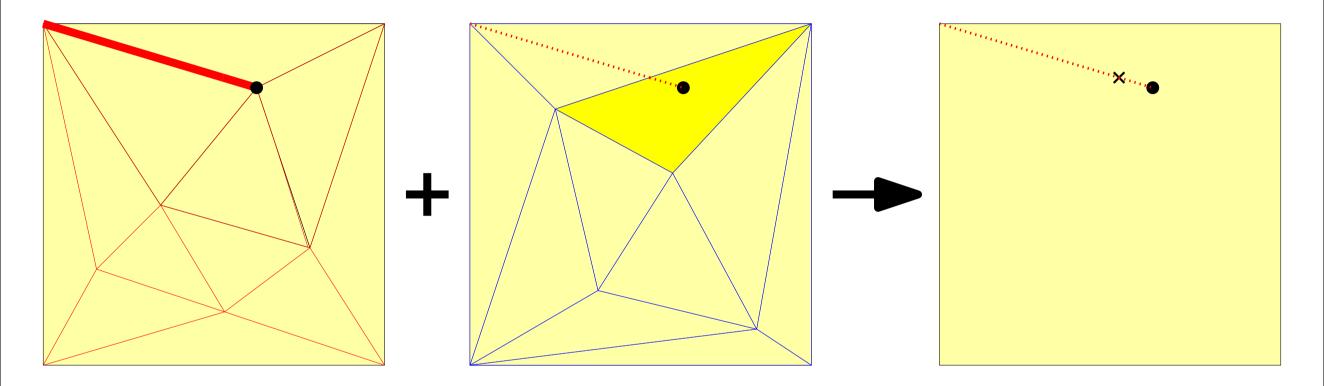
Maps: ..., triangulations



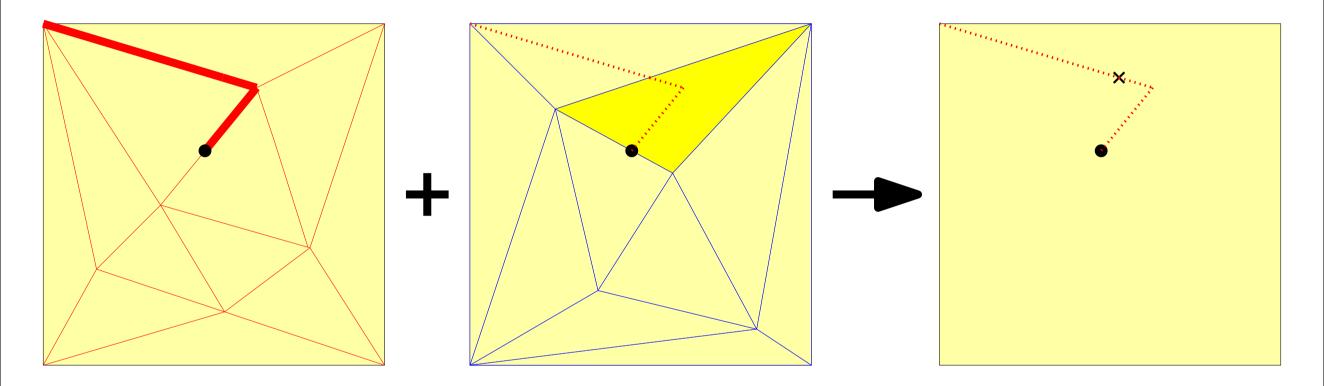
Maps: ..., triangulations



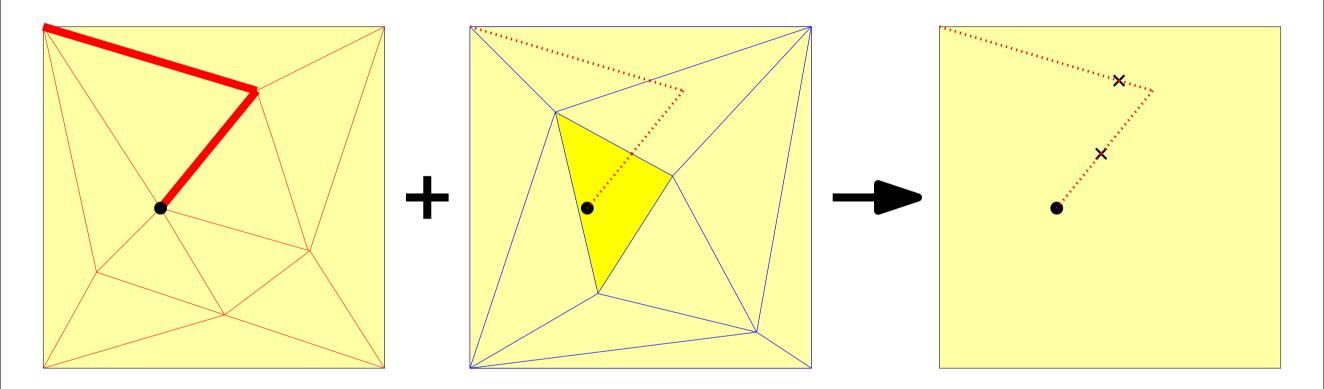
Maps: ..., triangulations



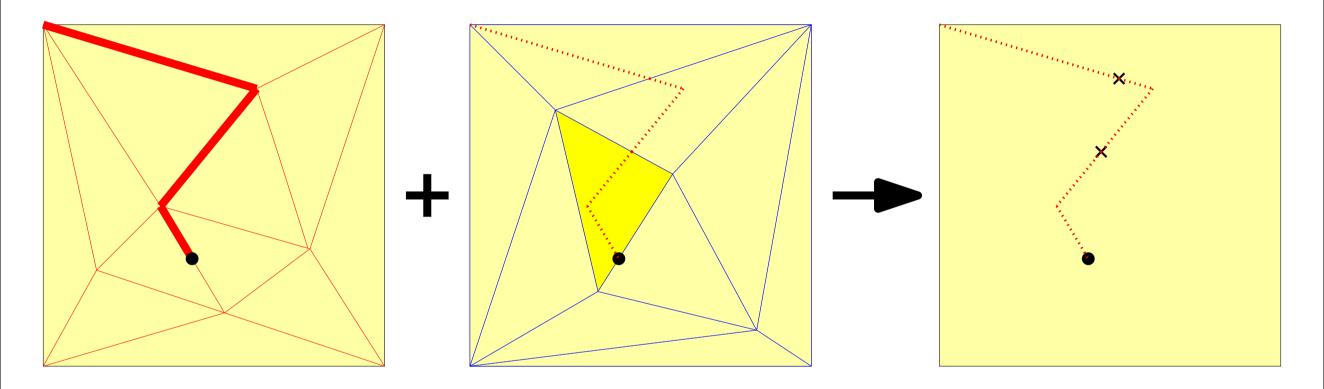
Maps: ..., triangulations



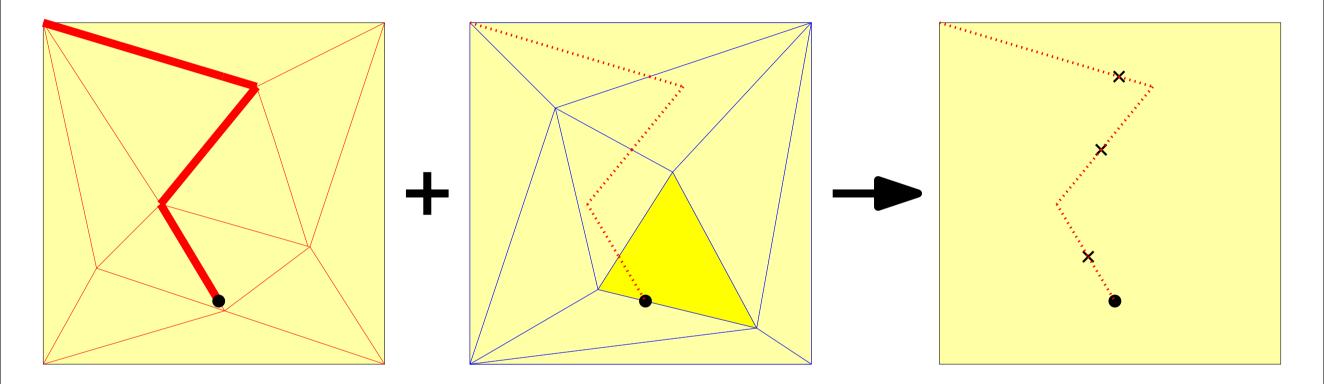
Maps: ..., triangulations



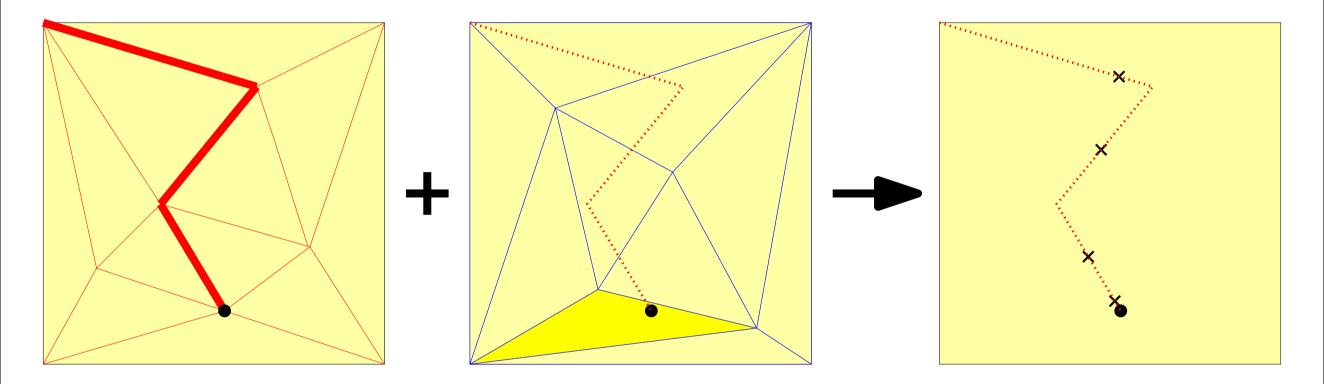
Maps: ..., triangulations



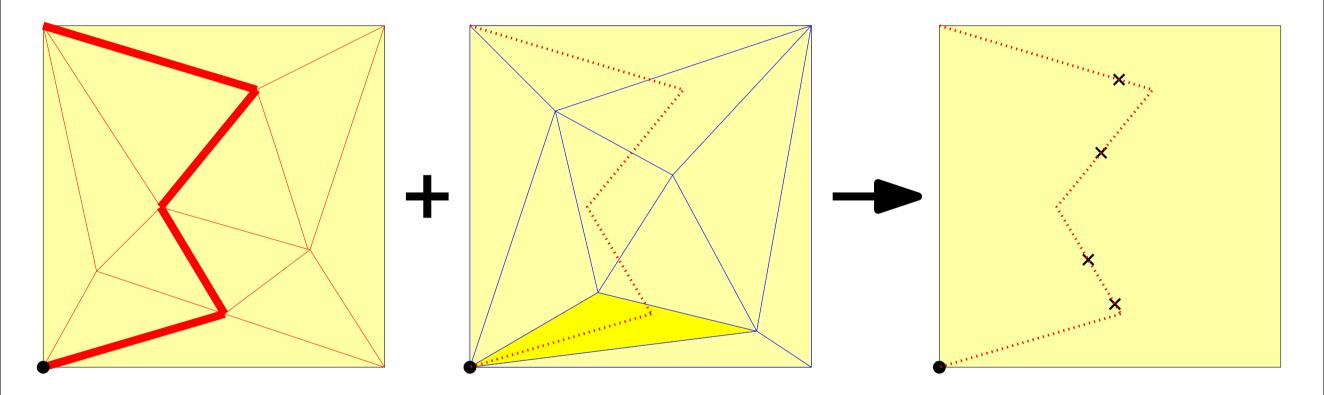
Maps: ..., triangulations



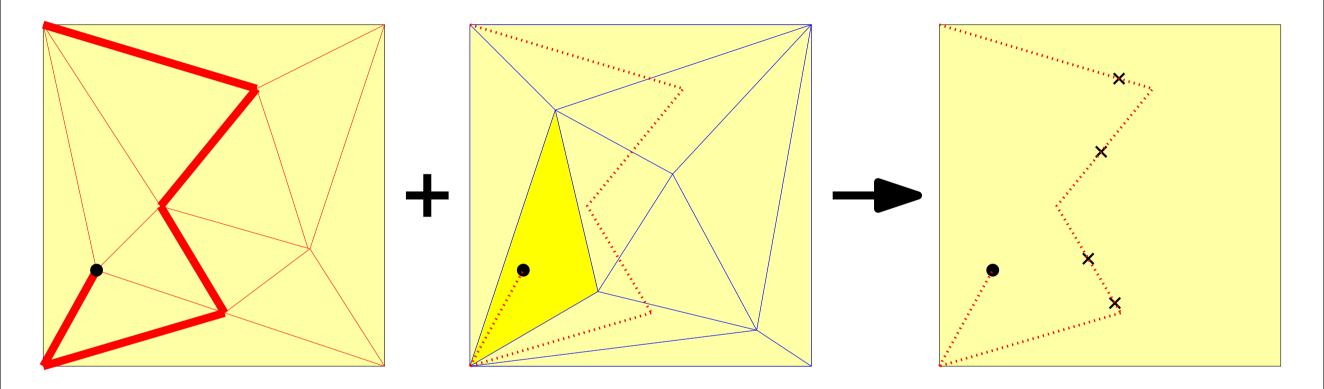
Maps: ..., triangulations



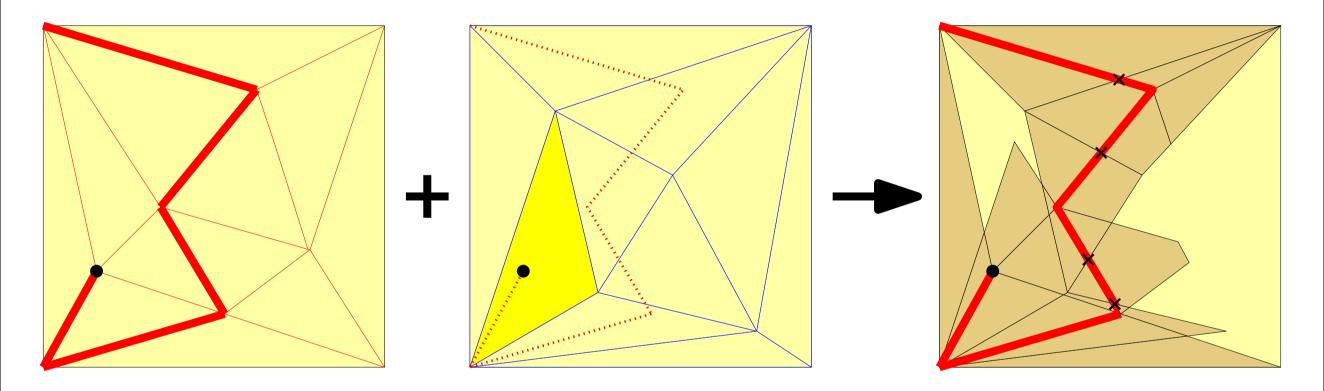
Maps: ..., triangulations



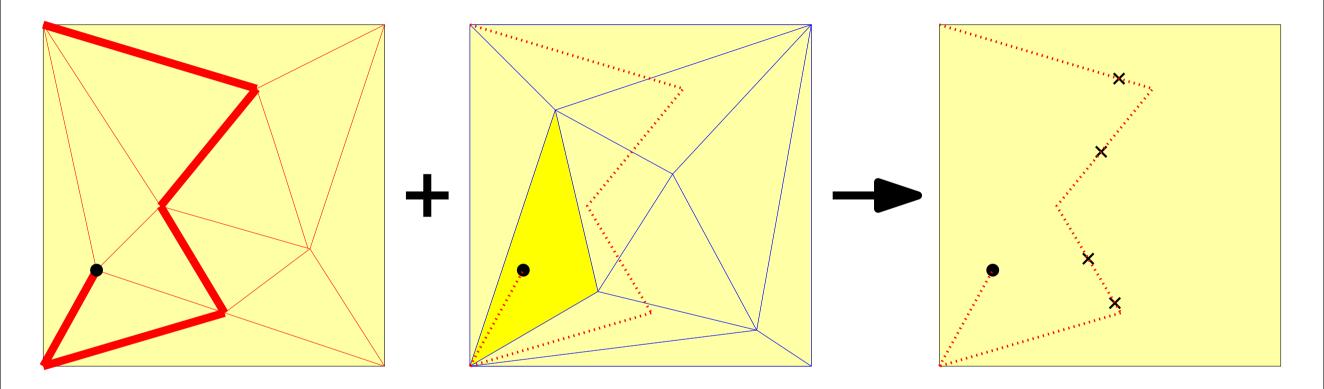
Maps: ..., triangulations



Maps: ..., triangulations



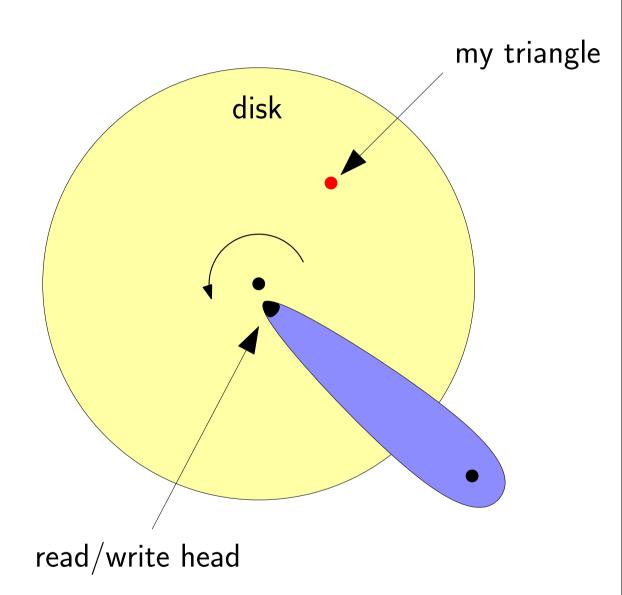
Maps: ..., triangulations

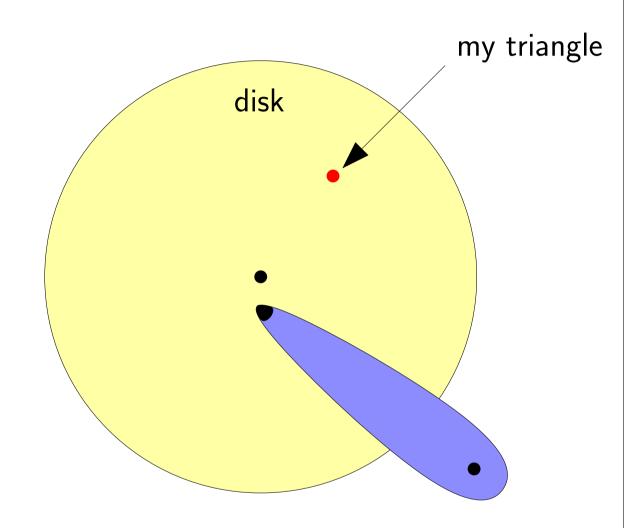


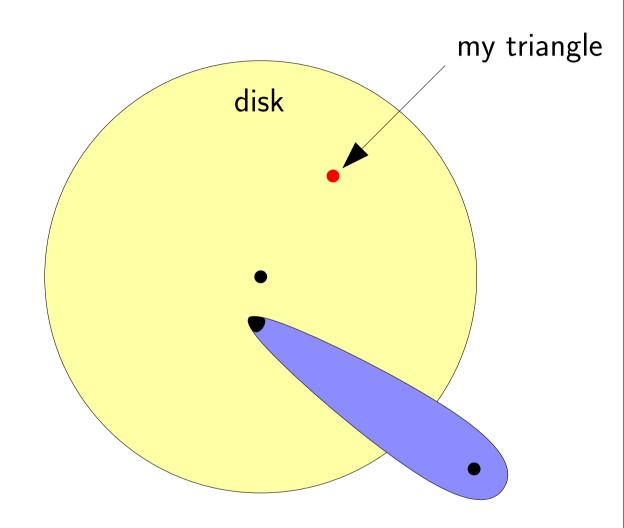
DFS in one triangulation, traverse triangles in the other:

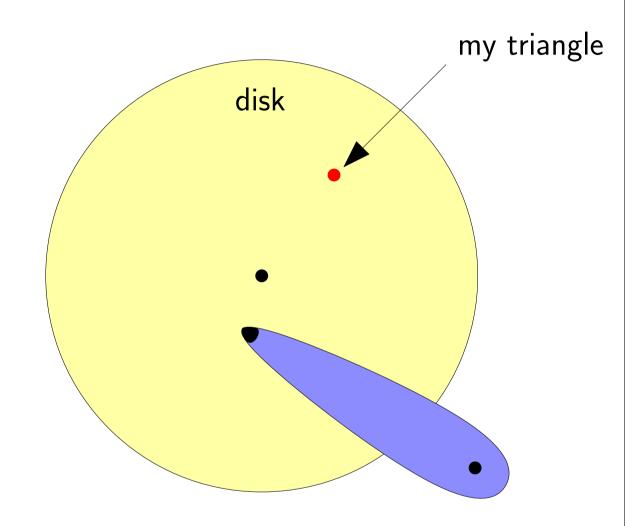
- \bullet $\Theta(1)$ operations per edge
- \bullet $\Theta(1)$ operations per crossing

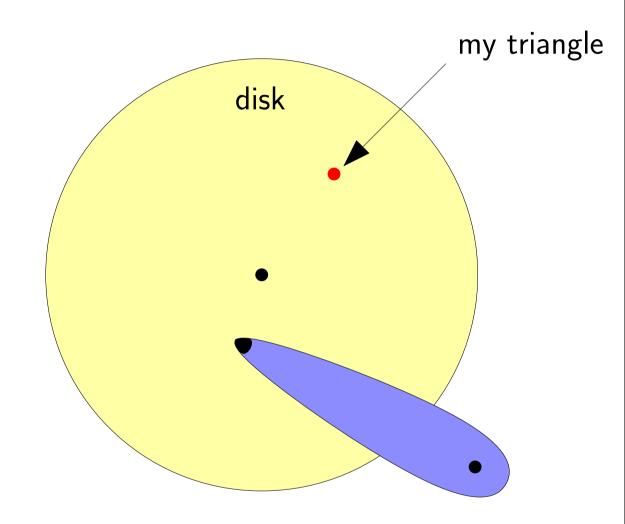
Total: $\Theta(n+k)$ CPU-operations (for n triangles, k intersections)

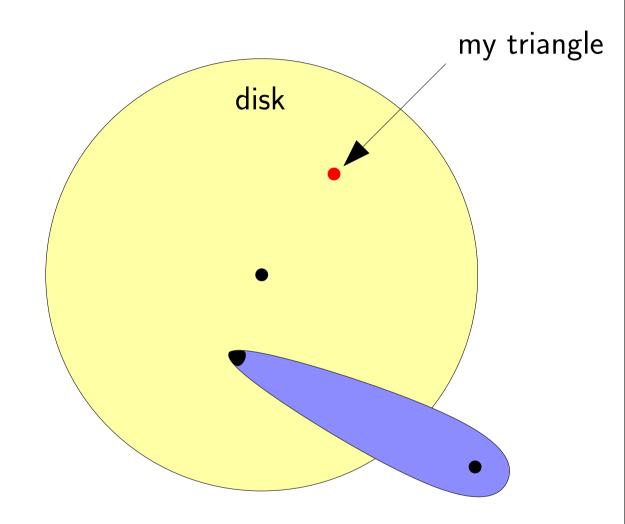


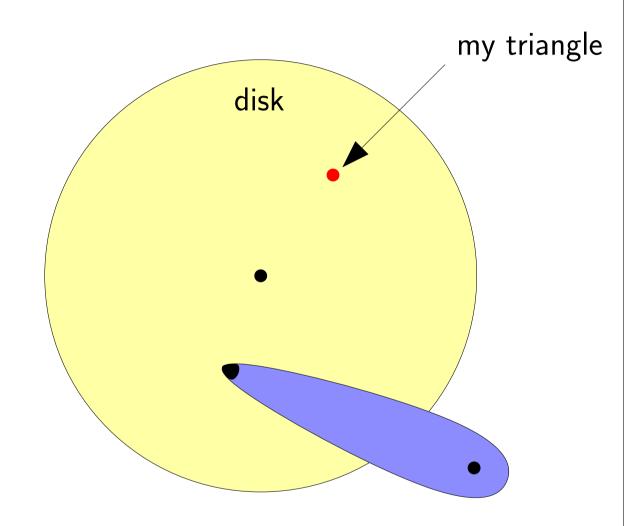


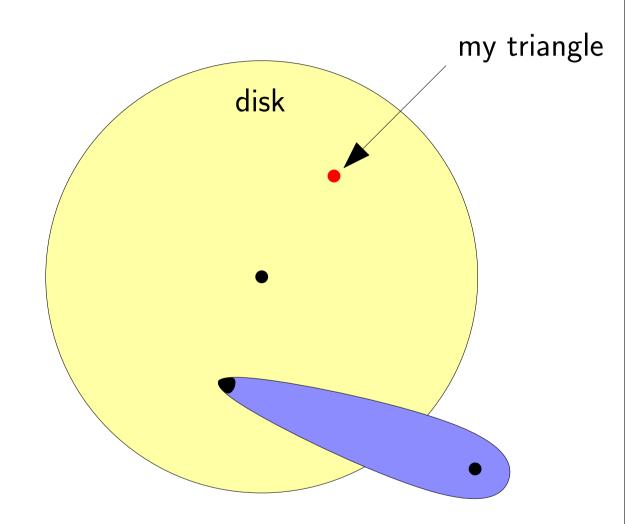


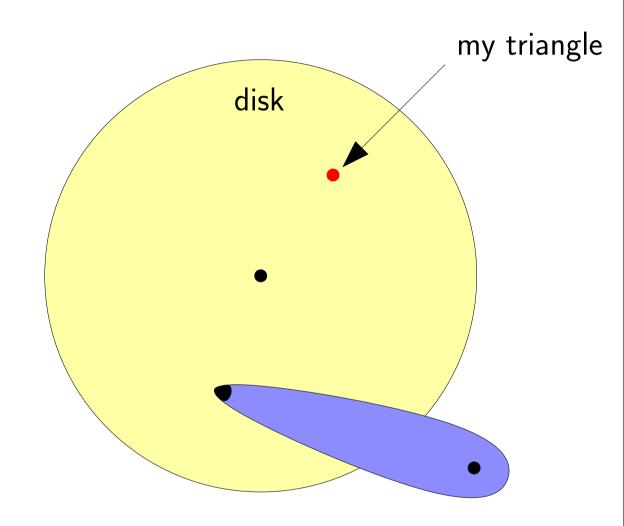


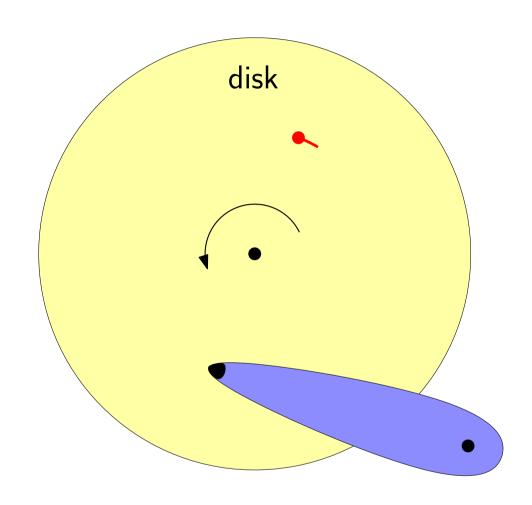


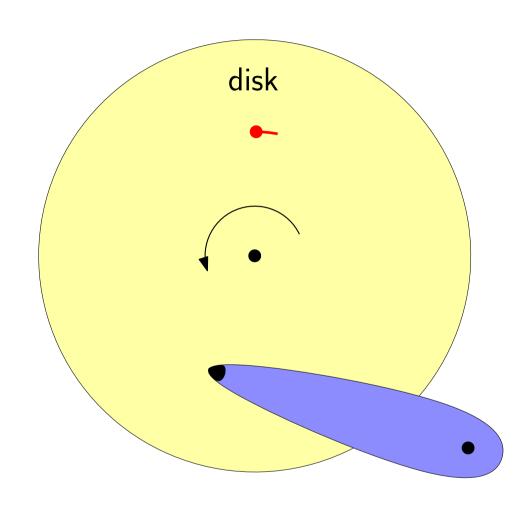


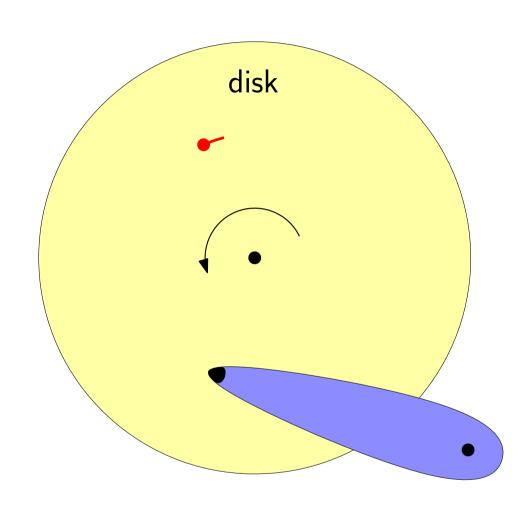


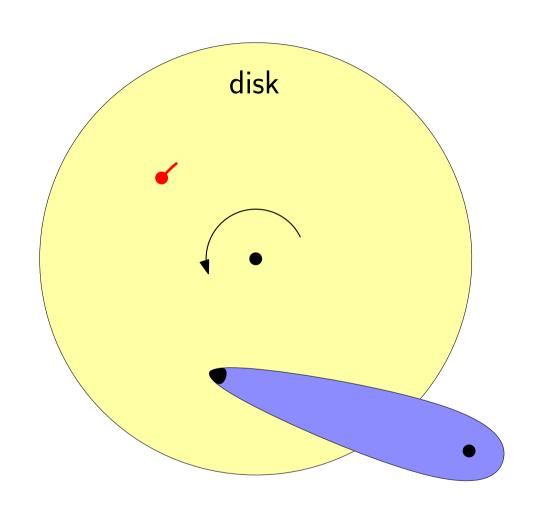


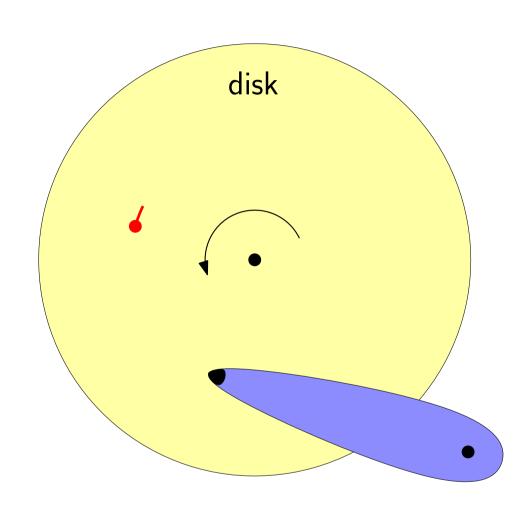


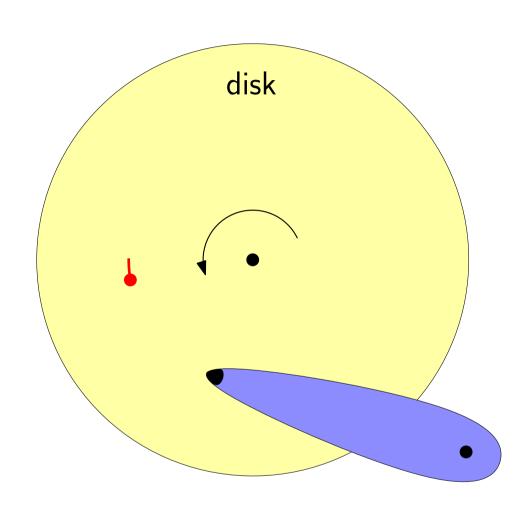


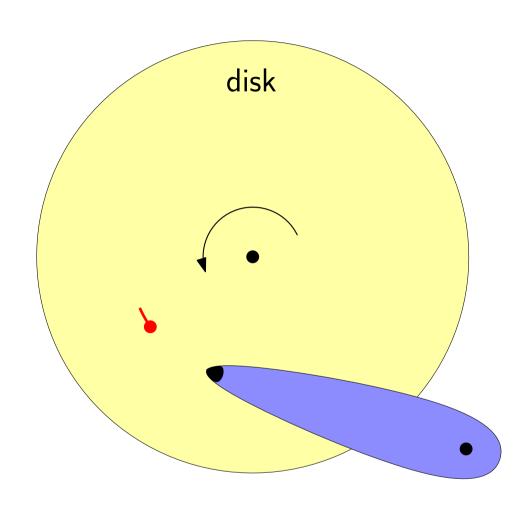


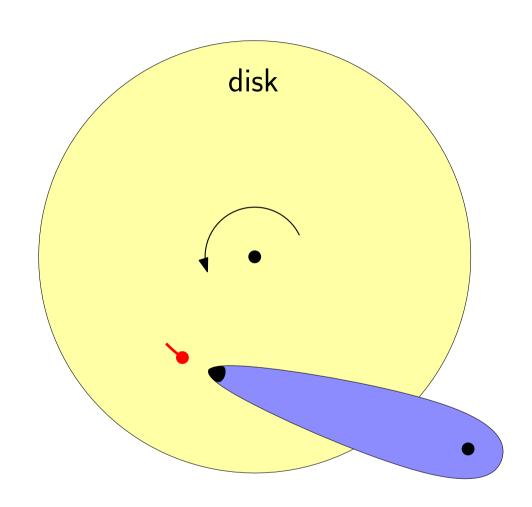




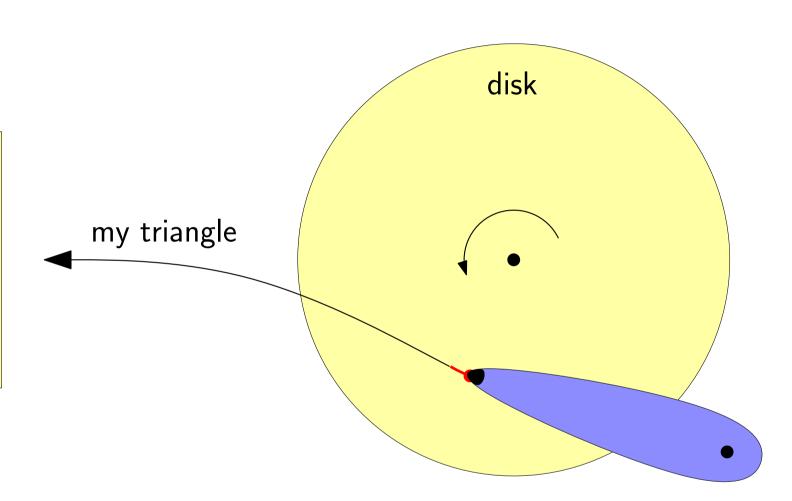






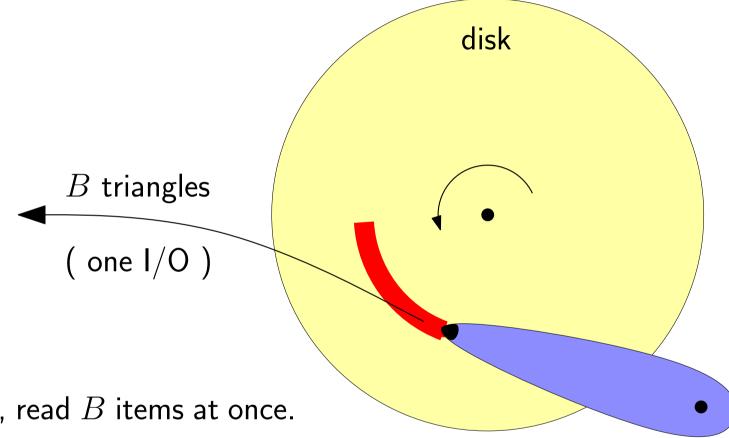


Waiting for one triangle takes $\approx 1000\,000$ CPU cycles



Waiting for one triangle takes $\approx 1000\,000$ CPU cycles

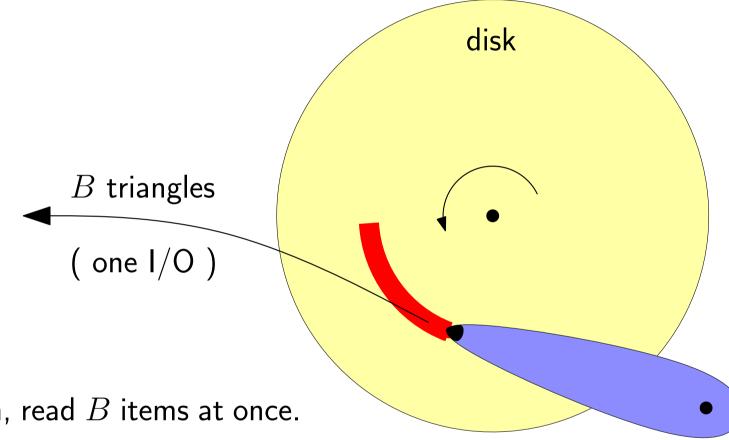
main memory of size M (too small for all data)



Solution: once in correct position, read B items at once. (hope you can keep them in memory until you need them)

Waiting for one triangle takes $\approx 1000\,000$ CPU cycles

main memory of size ${\cal M}$ (too small for all data)

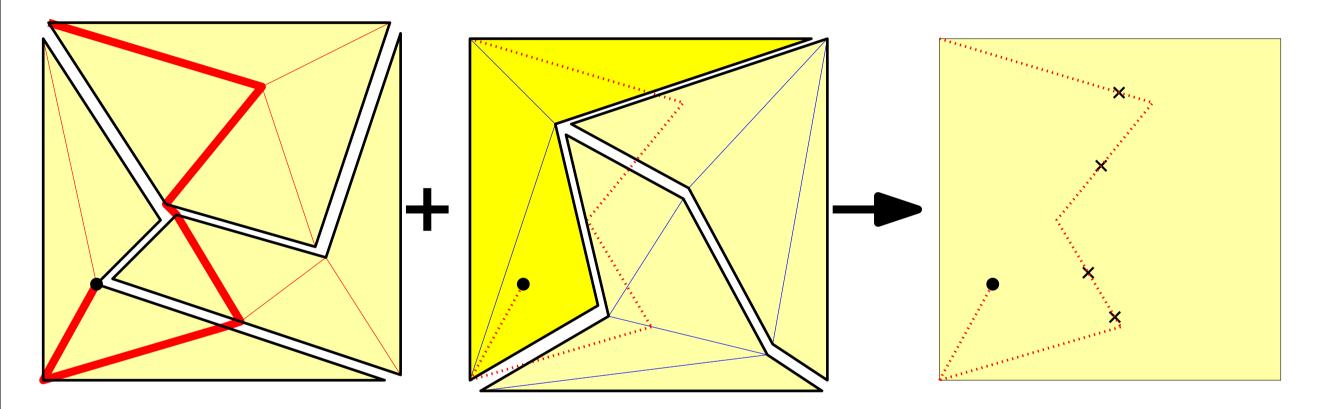


Solution: once in correct position, read B items at once. (hope you can keep them in memory until you need them)

Analysing algorithms that work on data on disk: number of I/O's dominate.

$$scan(n) = \frac{n}{B} \qquad < \qquad sort(n) = \frac{n}{B} \log_{M/B} \frac{n}{B} \qquad << \qquad n \quad \text{I/O's}$$

Maps: ..., triangulations



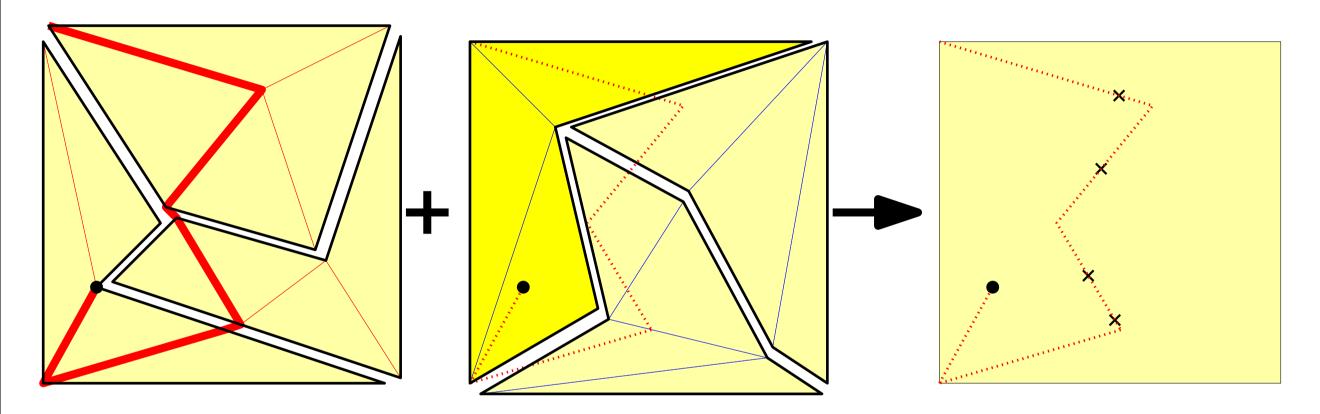
DFS in one triangulation, traverse triangles in the other:

- \bullet $\Theta(1)$ operations per edge
- \bullet $\Theta(1)$ operations per crossing

Total: $\Theta(n+k)$ CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks.

Maps: ..., triangulations



DFS in one triangulation, traverse triangles in the other:

- \bullet $\Theta(1)$ operations per edge
- \bullet $\Theta(1)$ operations per crossing

Total: $\Theta(n+k)$ CPU-operations (for n triangles, k intersections)

On disk, data arranged in blocks. 1 I/O \approx 1,000,000 CPU-ops. $\Theta(n+k)$ I/O's?

Our results

n = input size;

$$M = \text{main memory size};$$

$$scan(n) = \frac{1}{2}$$

$$scan(n) = \frac{n}{B}$$
 $<$ $sort(n) = \frac{n}{B} \log_{M/B} \frac{n}{B}$ $<<$

 $B = \operatorname{disk} \operatorname{block} \operatorname{size}$

Previously:

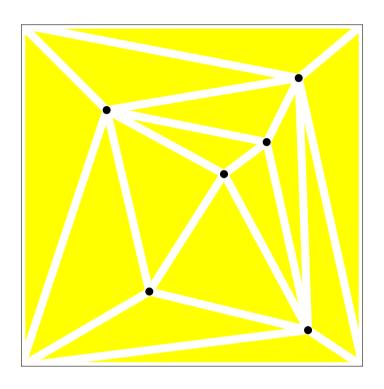
- ullet Arge et al.: map overlay in O(sort(n) + k/B) I/O's (complicated, super-linear space)
- Crauser et al.: randomized, linear space

Our results: in O(sort(n)) I/O's we can build a data structure that supports:

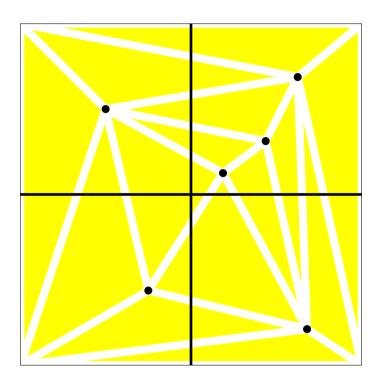
- map overlay in O(scan(n)) I/O's;
- point location in $O(\log_B n)$ I/O's;
- for triangulations: basic updates in $O(\log_B n)$ I/O's.

Condition: input must be fat triangulation (all angles > positive constant), or a *low-density* set of segments (for any \square , number of intersecting segments bigger than \square is O(1))

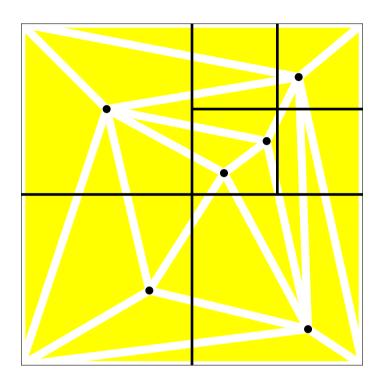
Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.



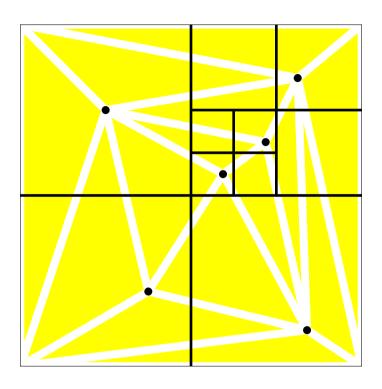
Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

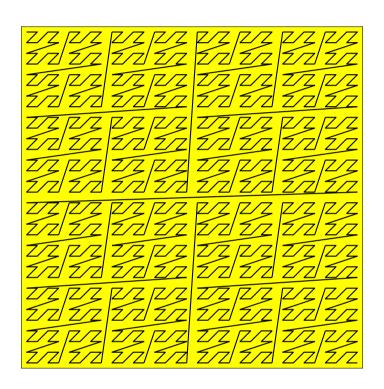


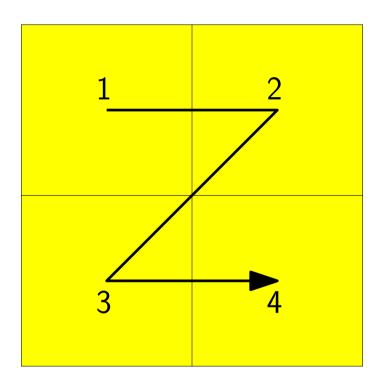
Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

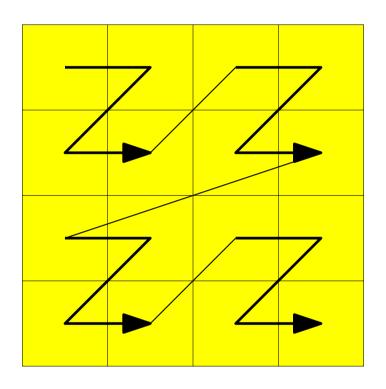


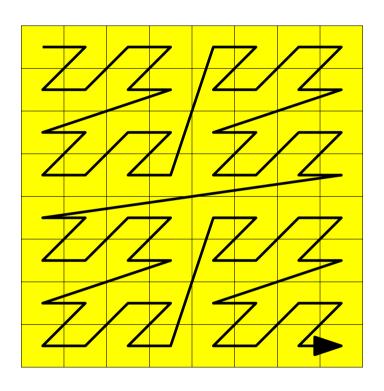
Quadtree: divide unit square into quadrants, refine until amount of data per cell is small.

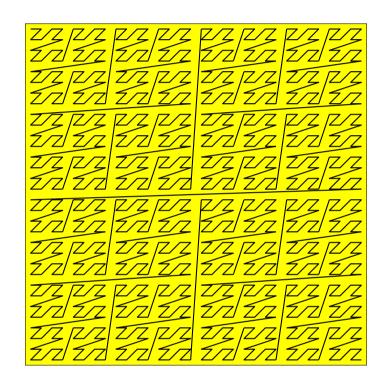


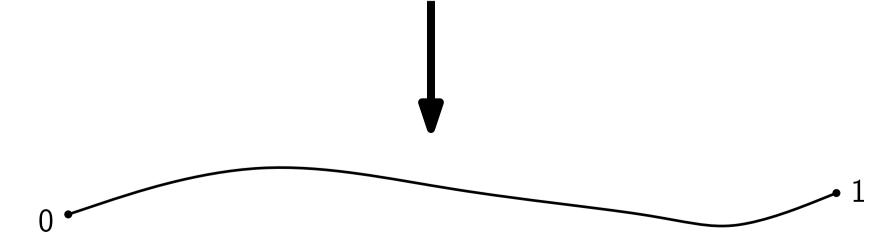






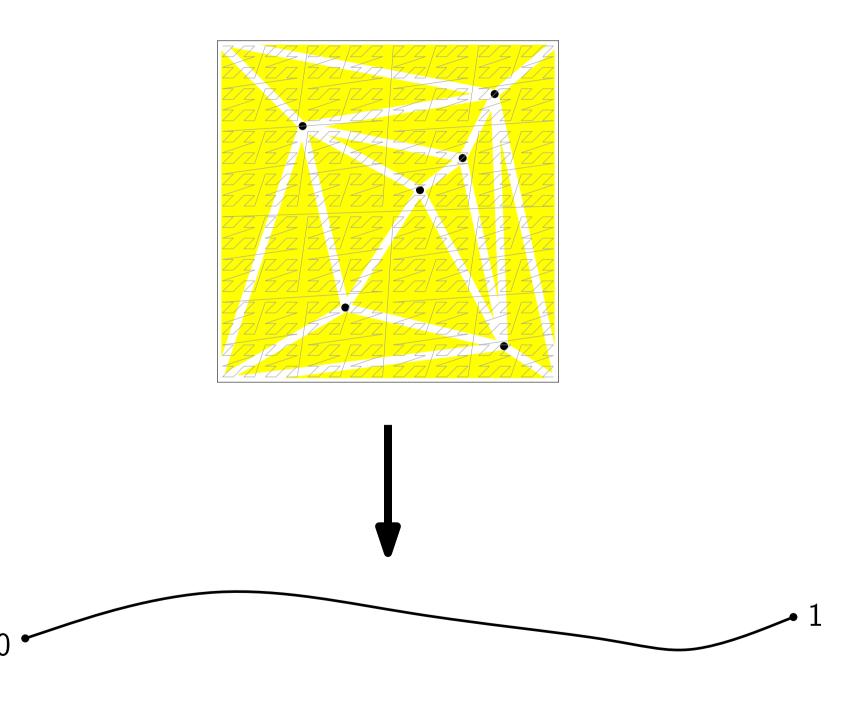




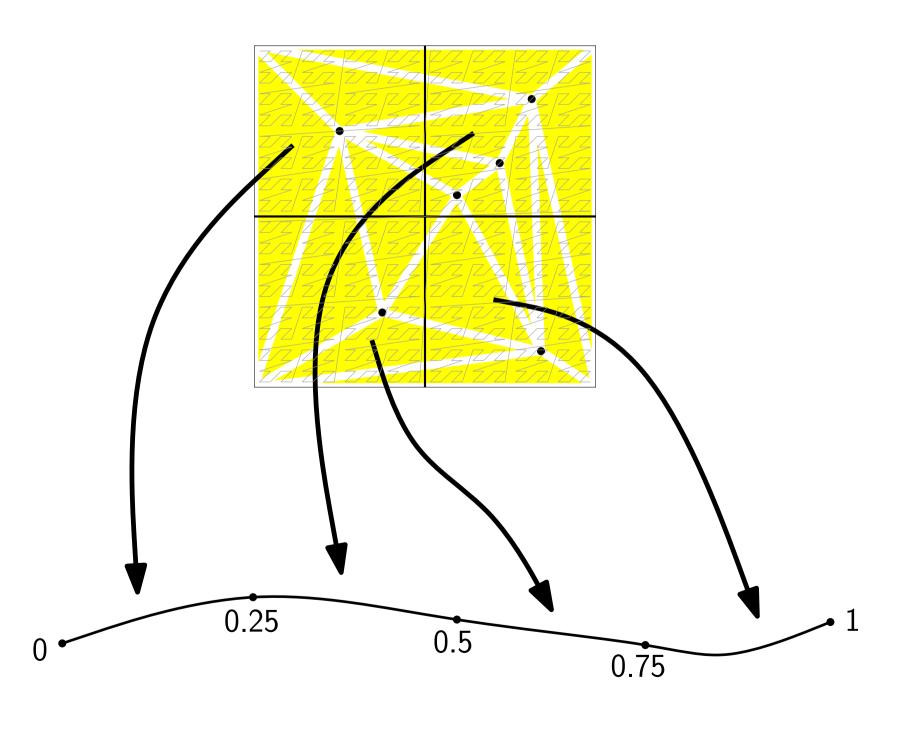


Ingredients: quadtrees and Z-order

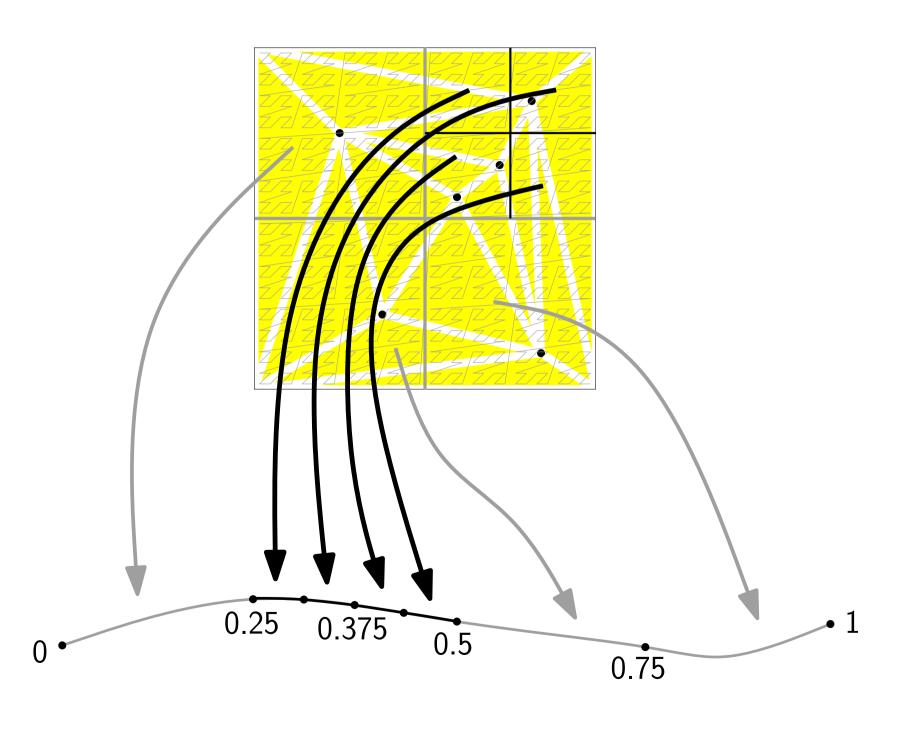
Quadtree cell \equiv interval on Z-order curve



Quadtree cell \equiv interval on Z-order curve

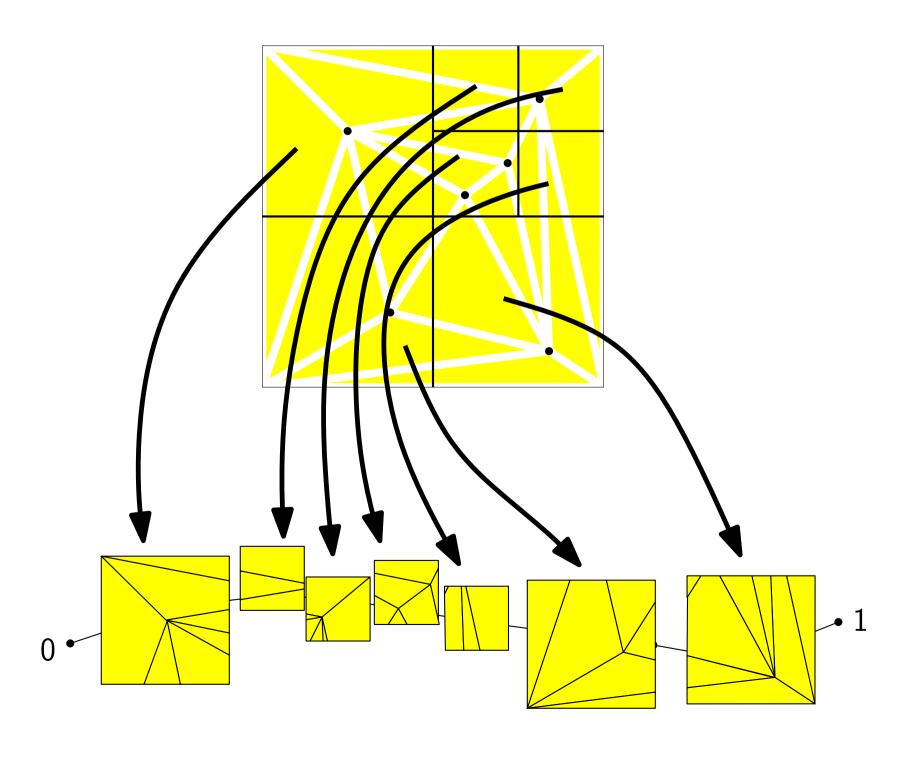


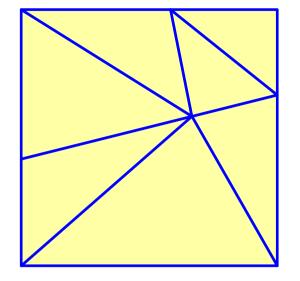
Quadtree cell \equiv interval on Z-order curve

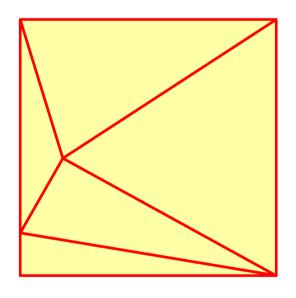


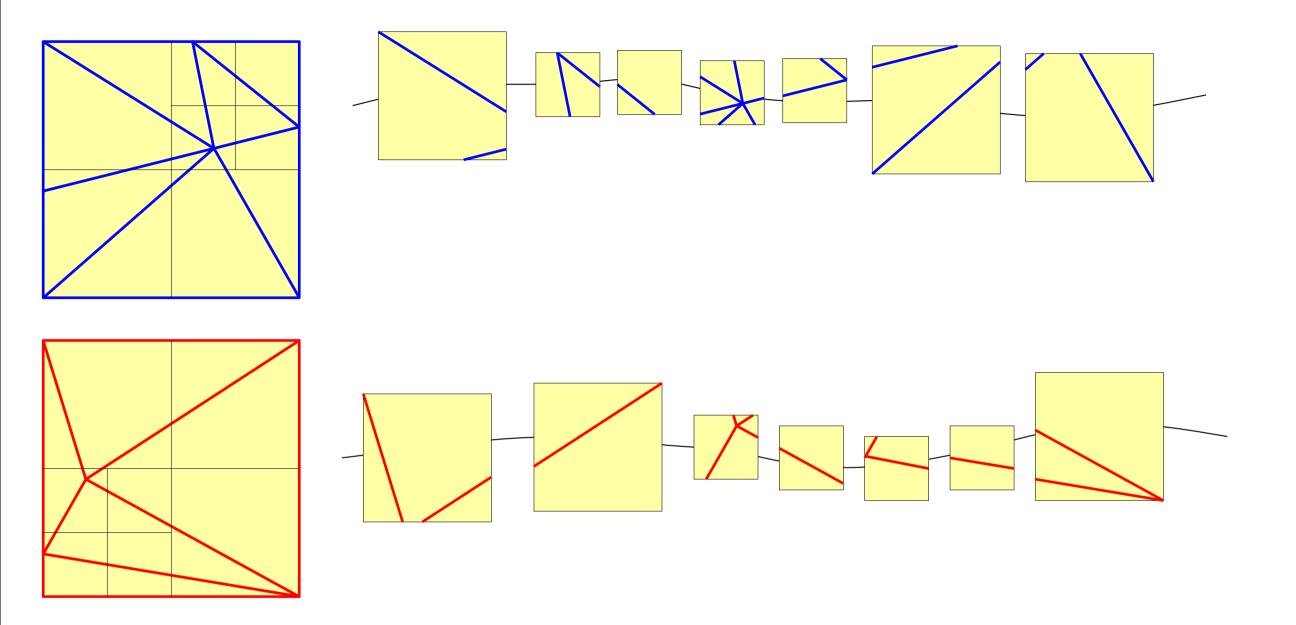
Ingredients: quadtrees and Z-order

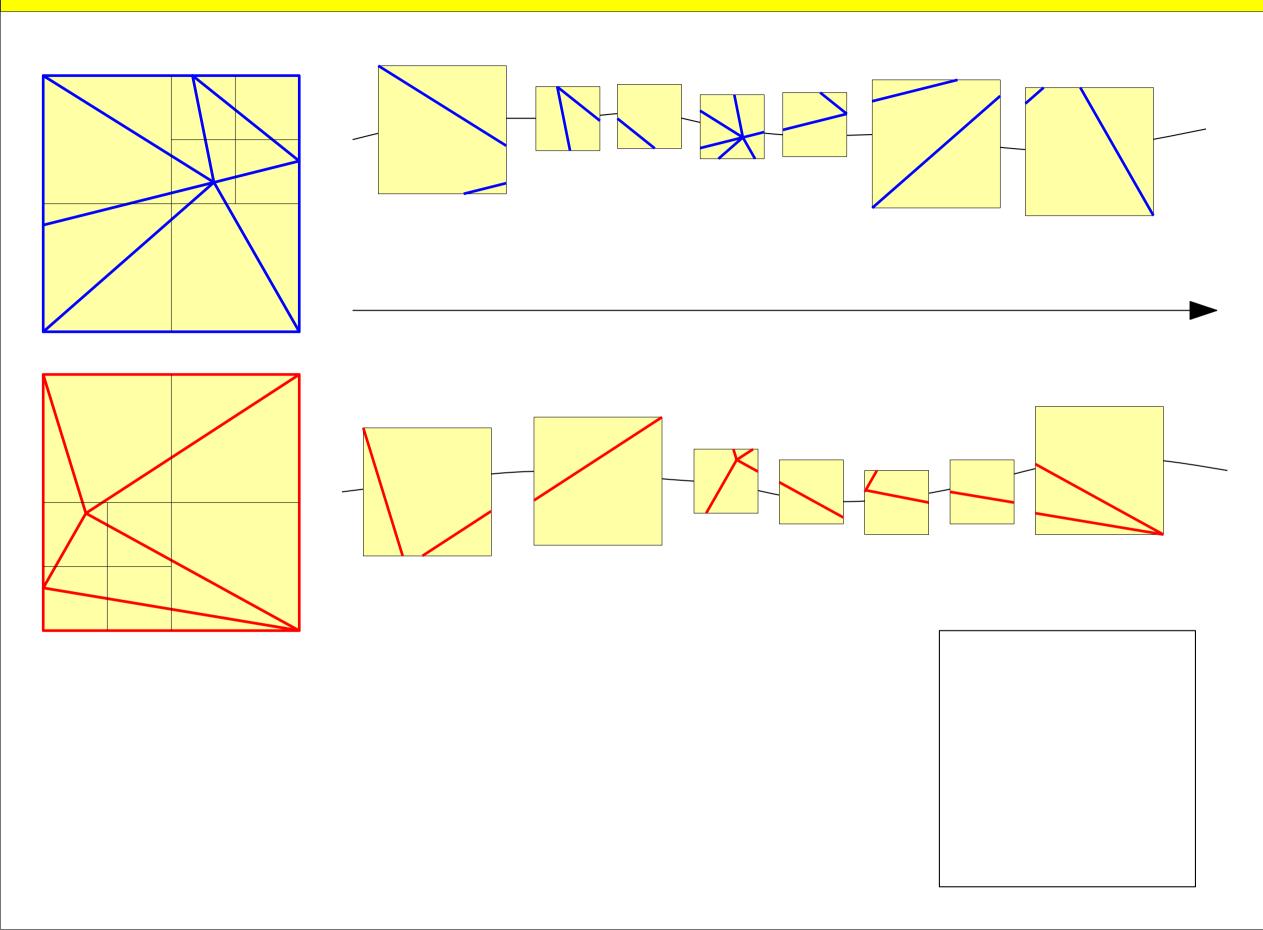
Quadtree cell \equiv interval on Z-order curve

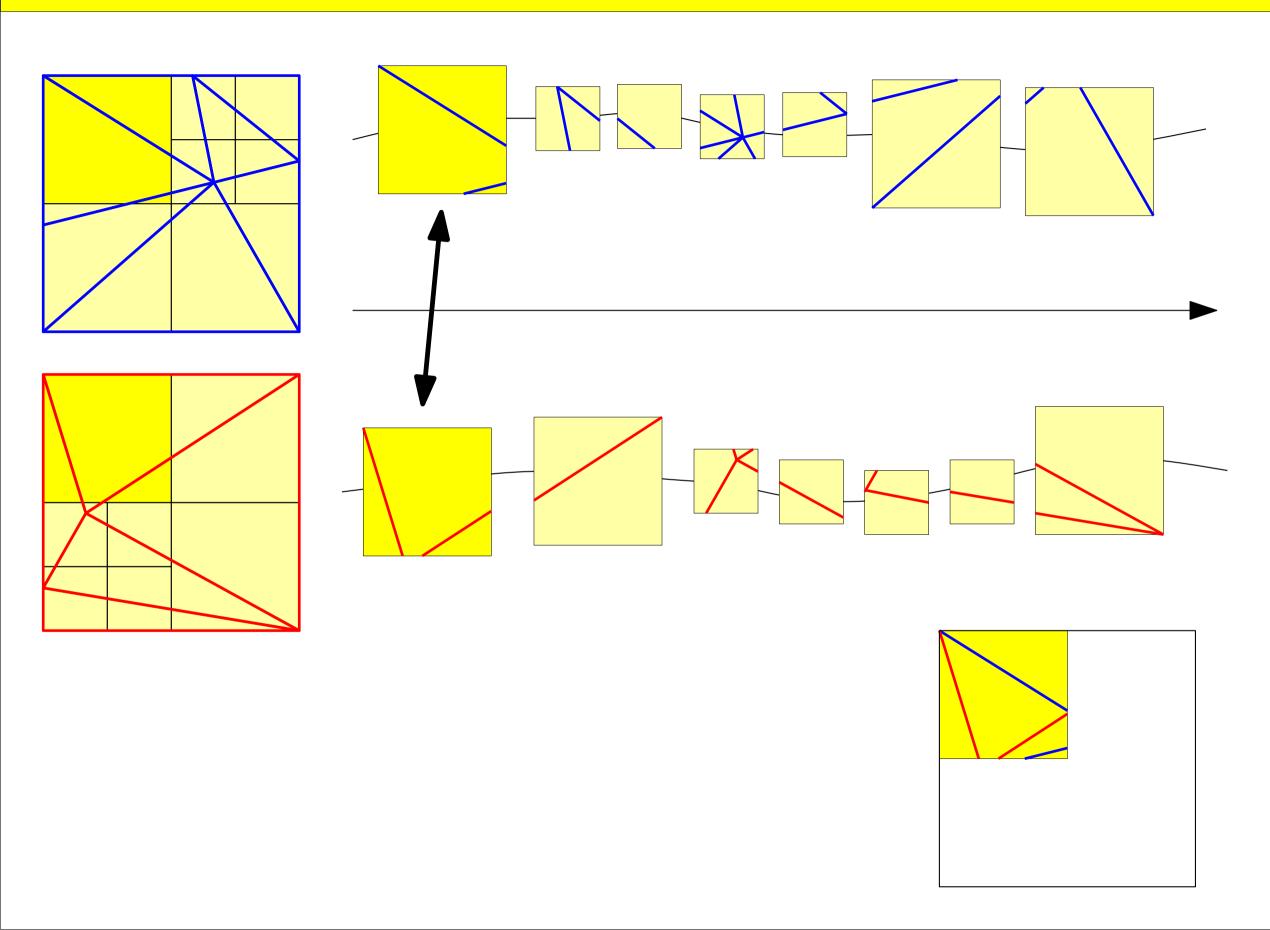


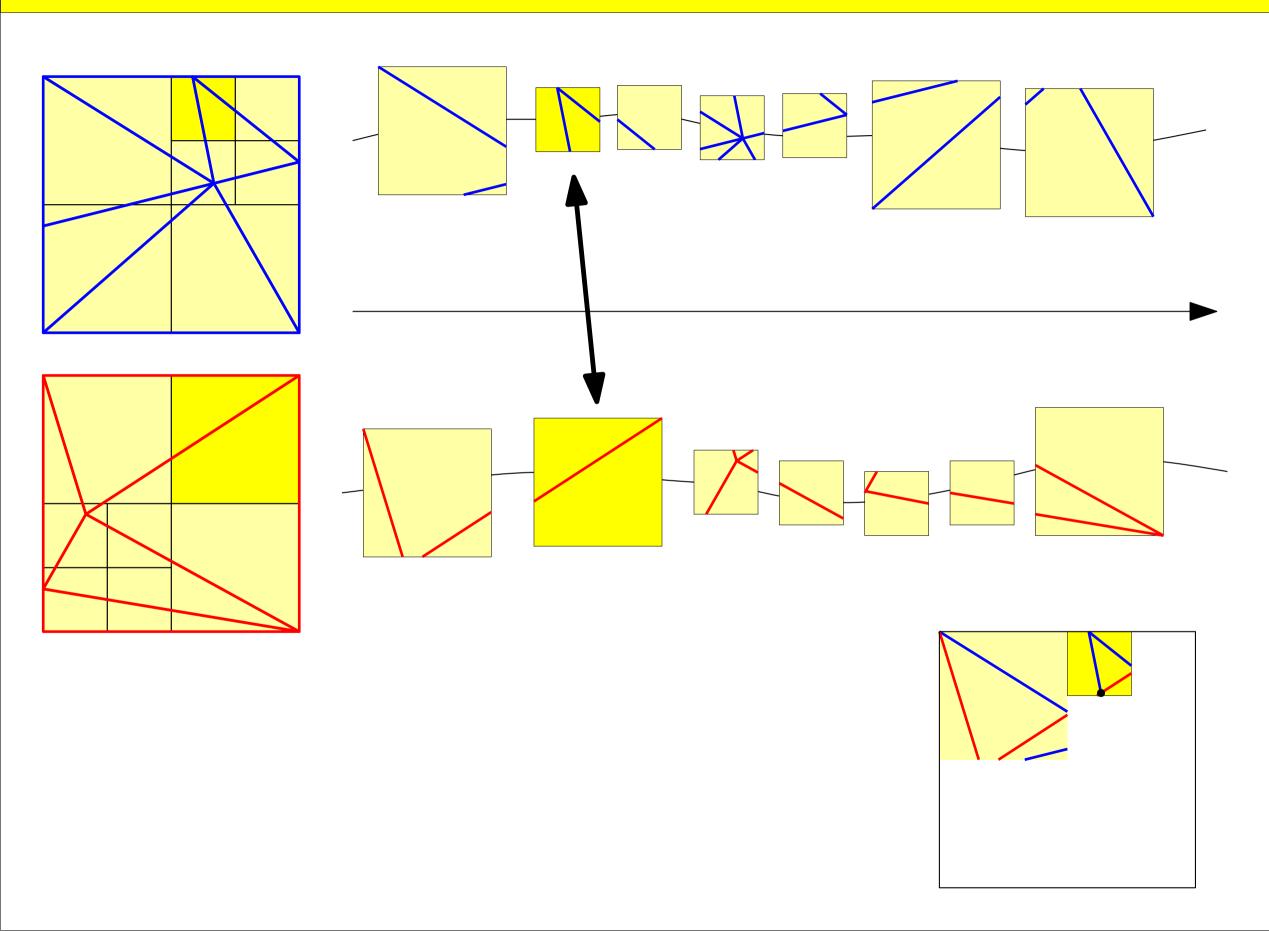


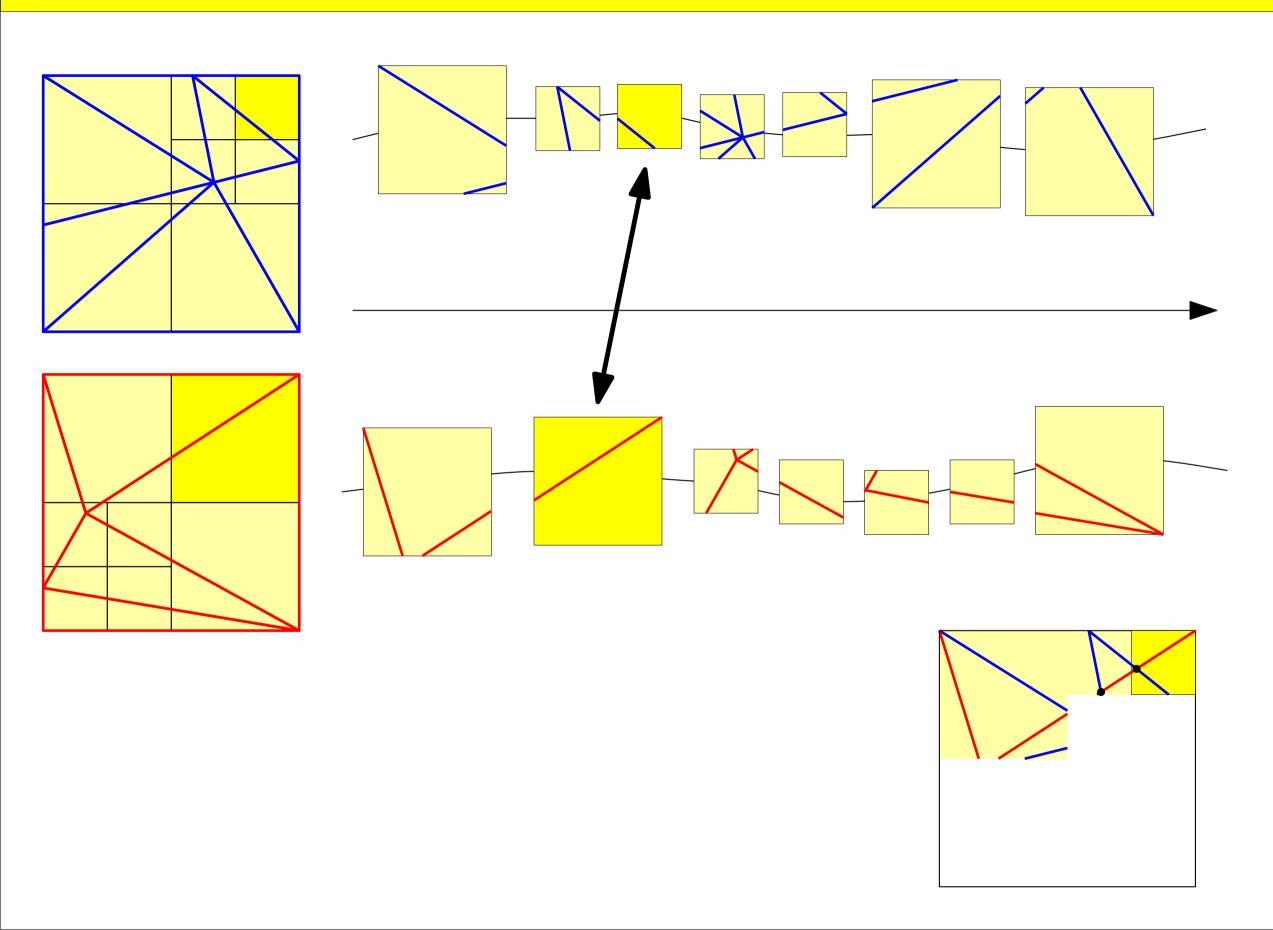


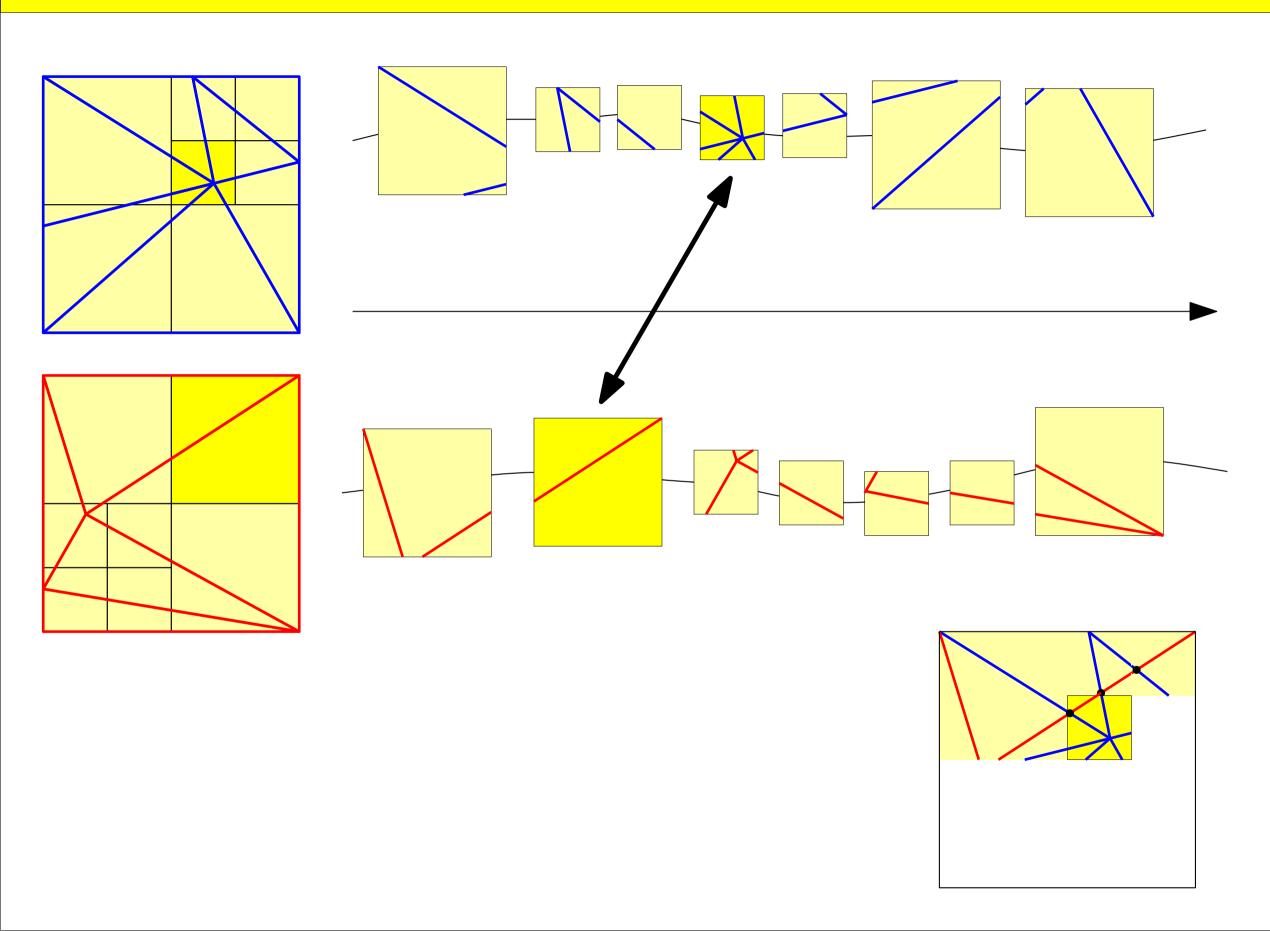


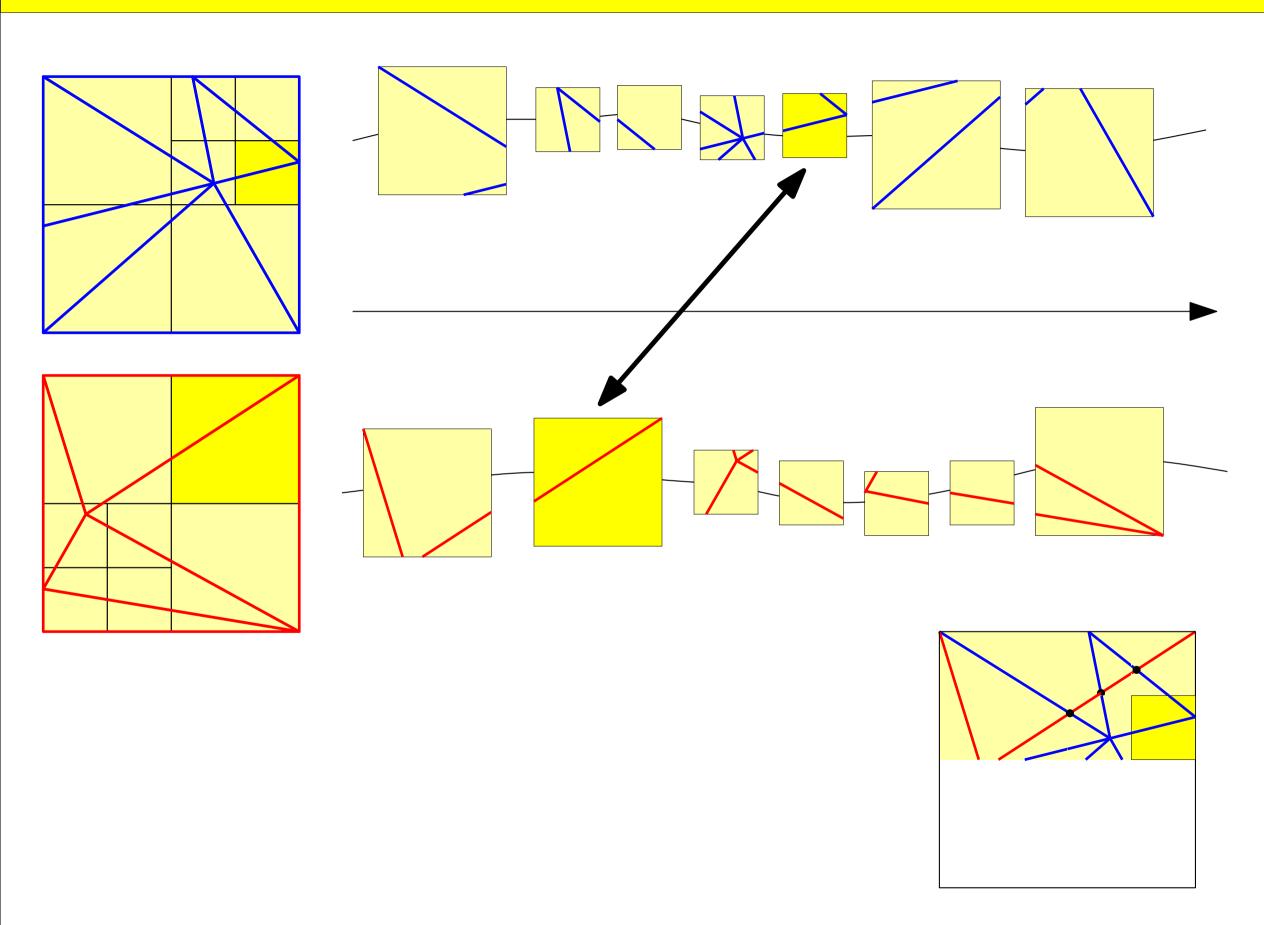


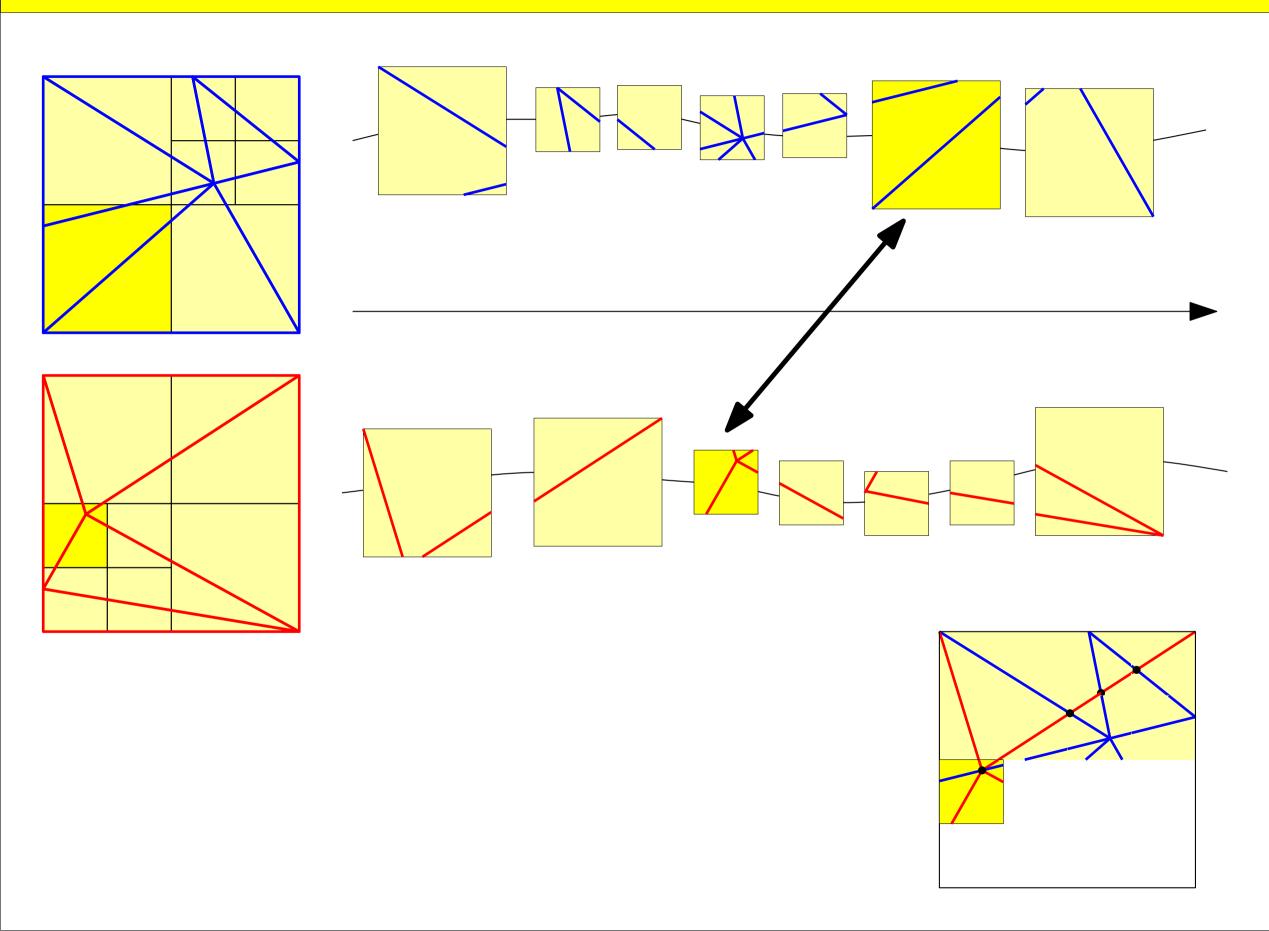


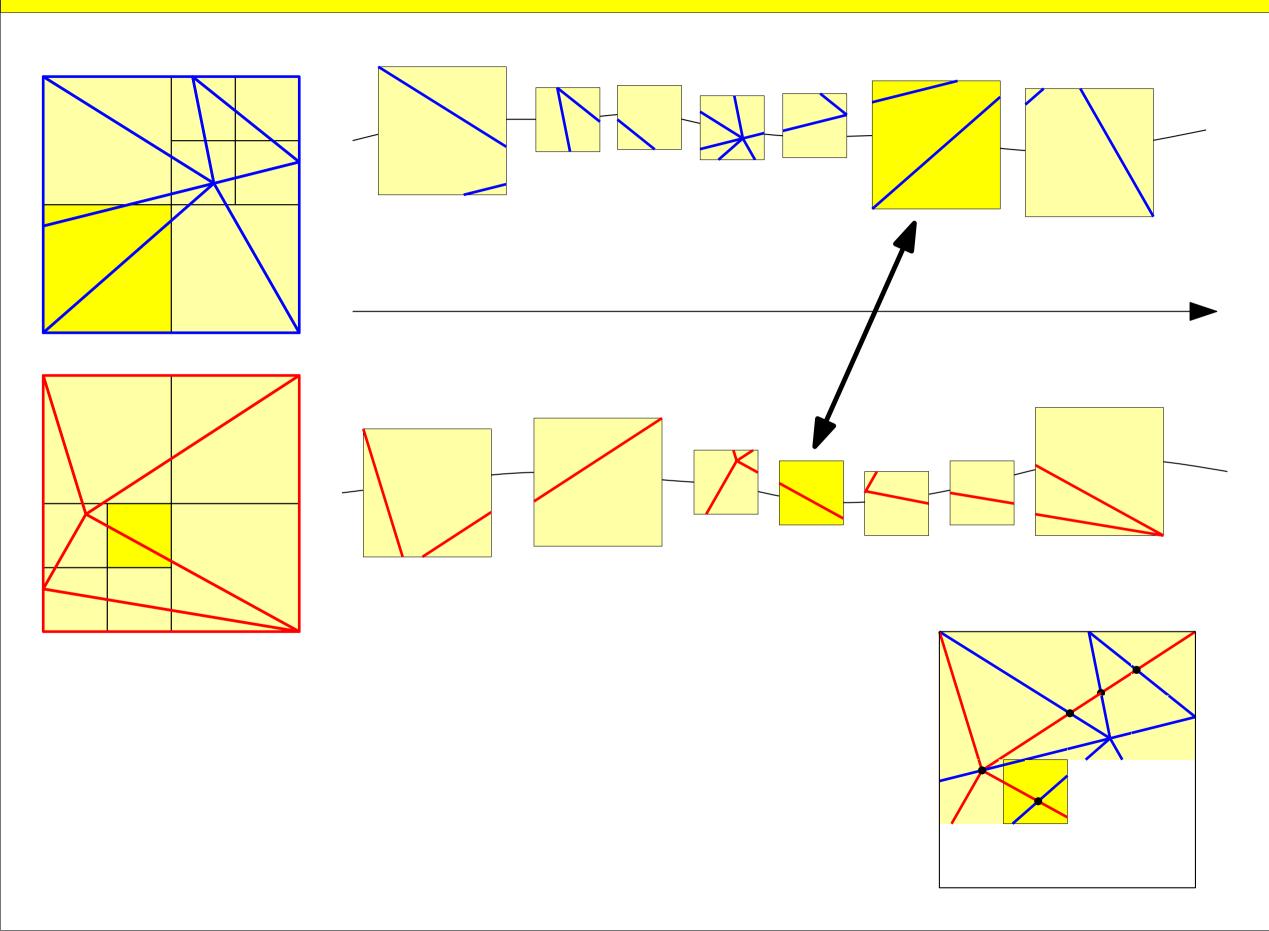


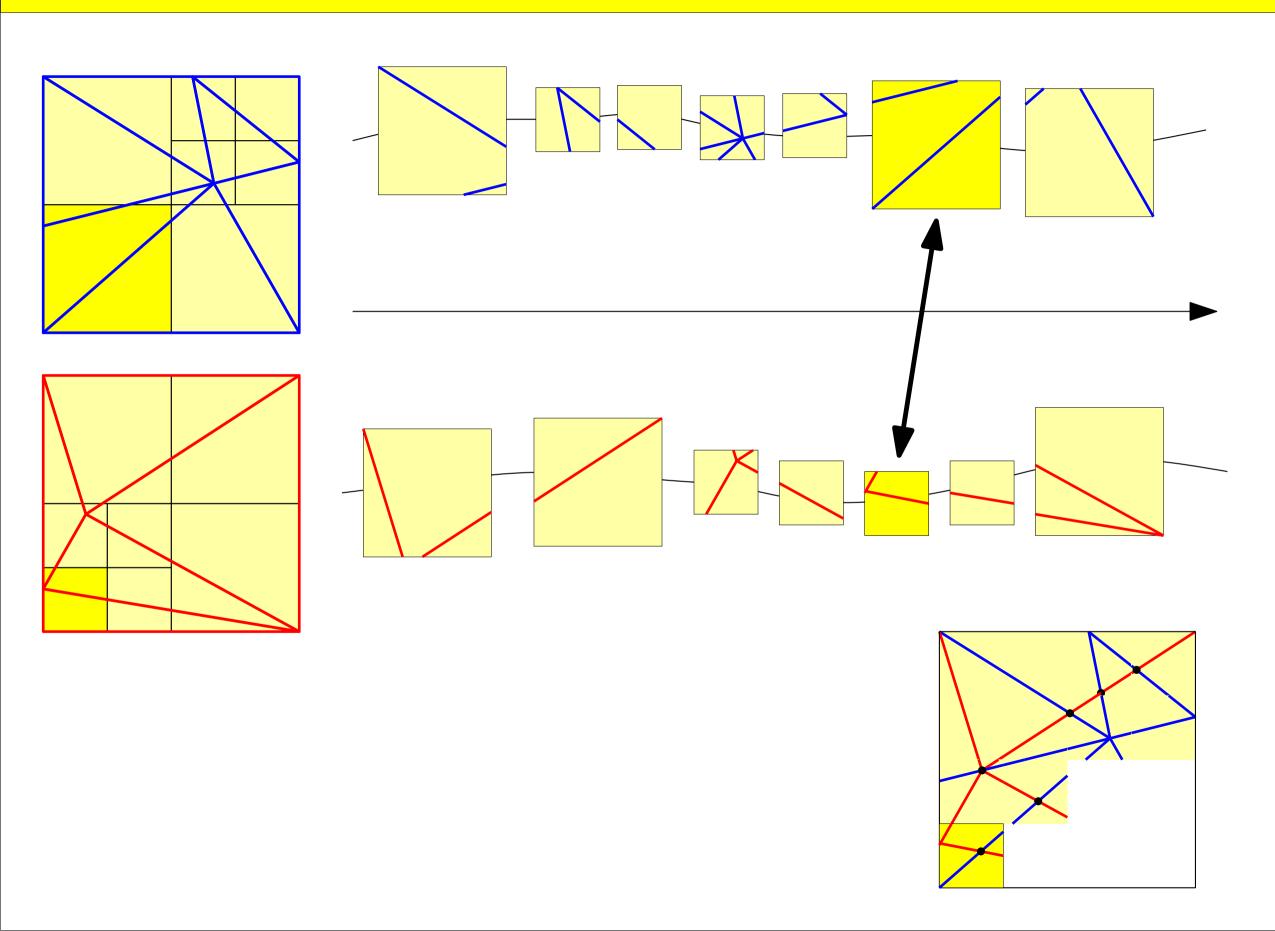


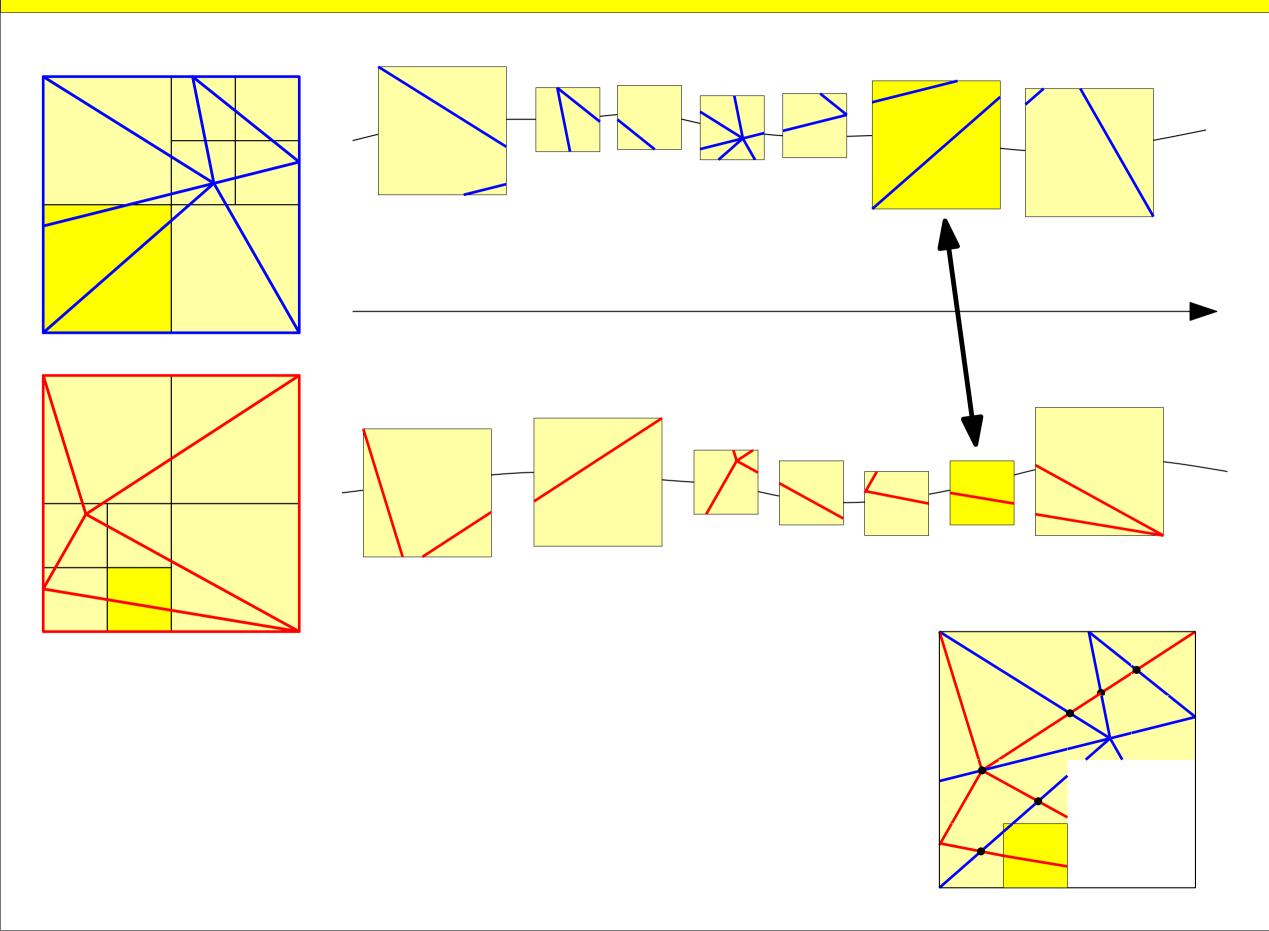


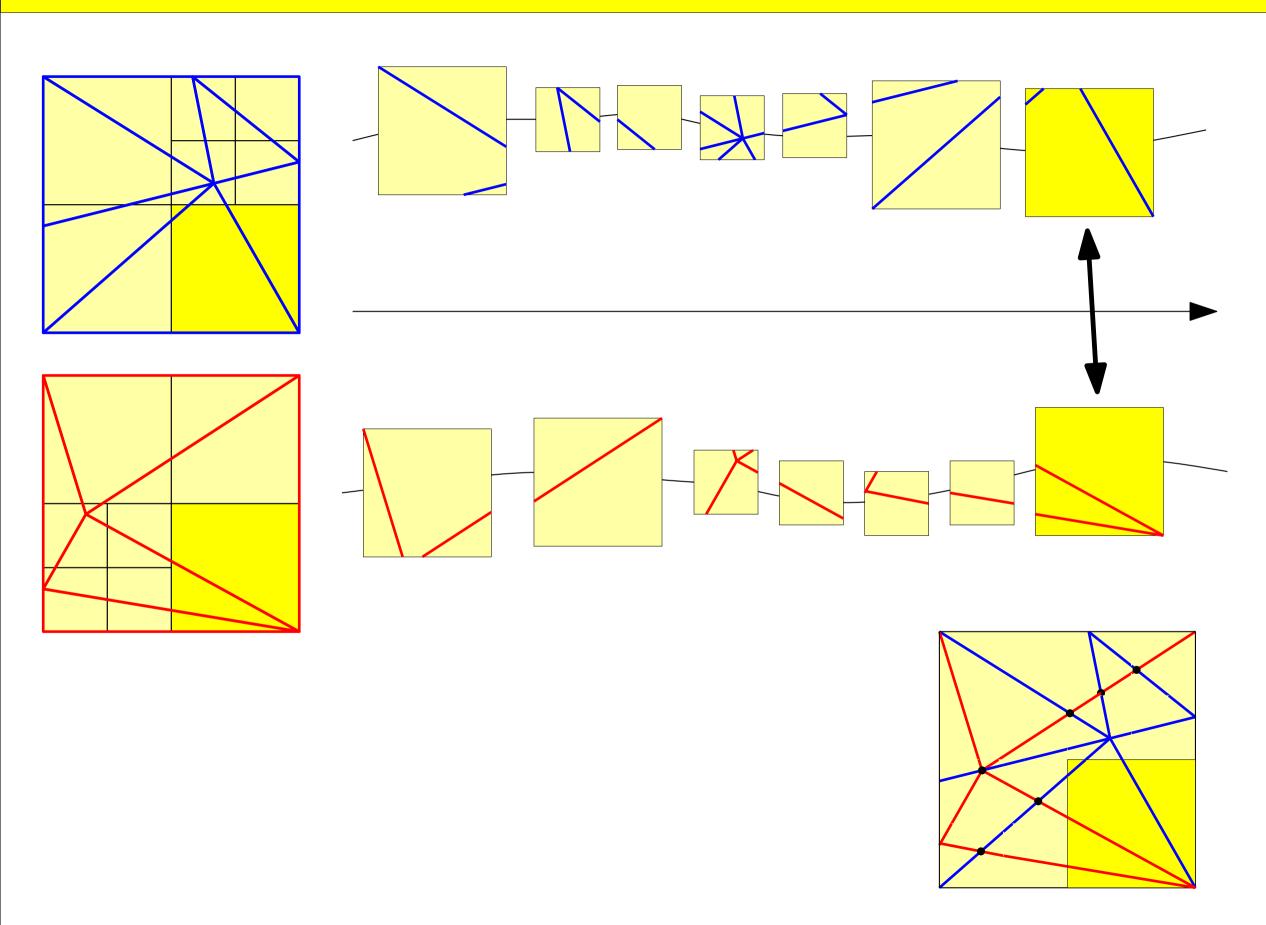


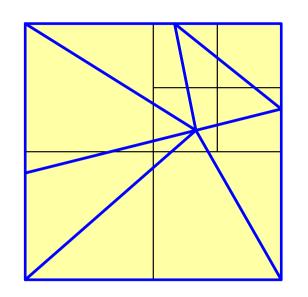


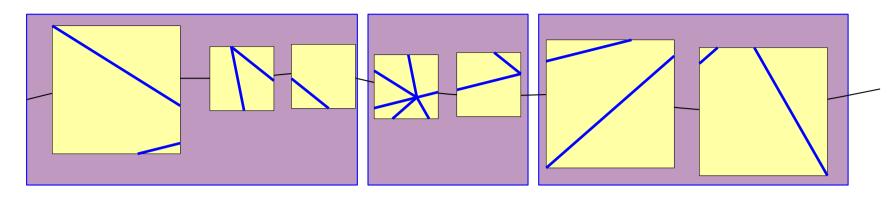




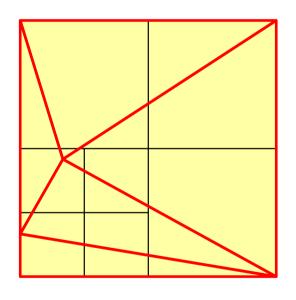


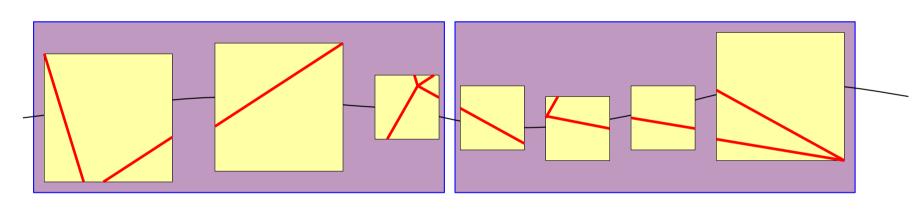


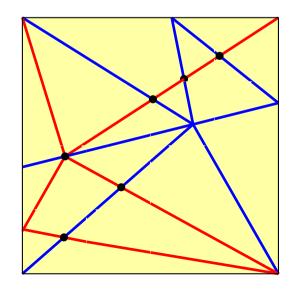


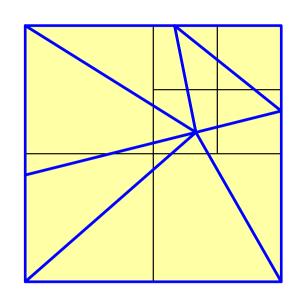


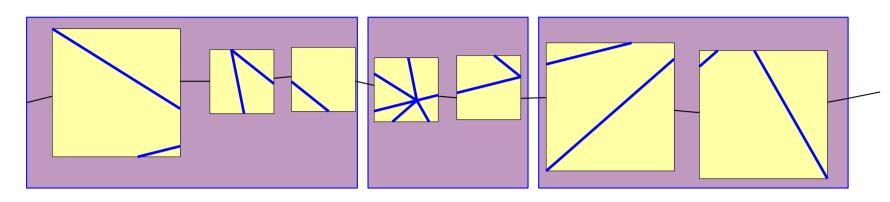
each block is needed only once



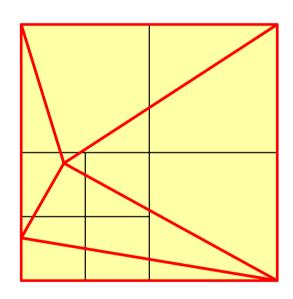


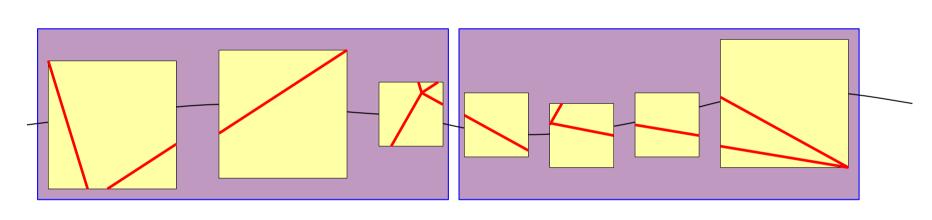






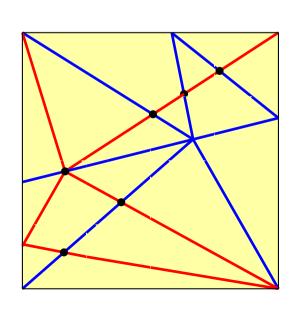
each block is needed only once

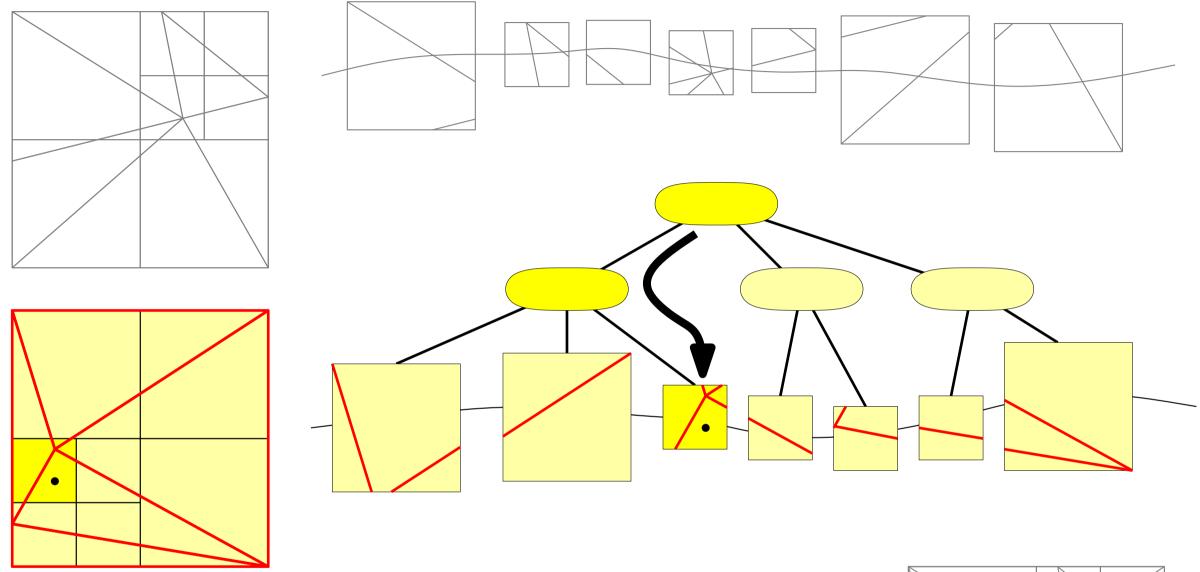




n: number of triangles; B: disk block size Ideally: O(n) quadtree cells, O(1) edges each

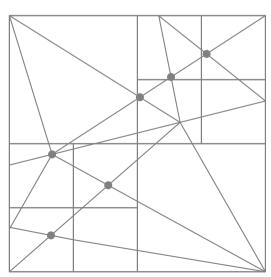
 \rightarrow Overlay in O(scan(n)) = O(n/B) I/O's.





n: number of triangles; B: disk block size Ideally: O(n) quadtree cells, O(1) edges each

- \rightarrow Overlay in O(scan(n)) = O(n/B) I/O's.
- \rightarrow Point location with B-tree in $O(\log_B n)$ I/O's.

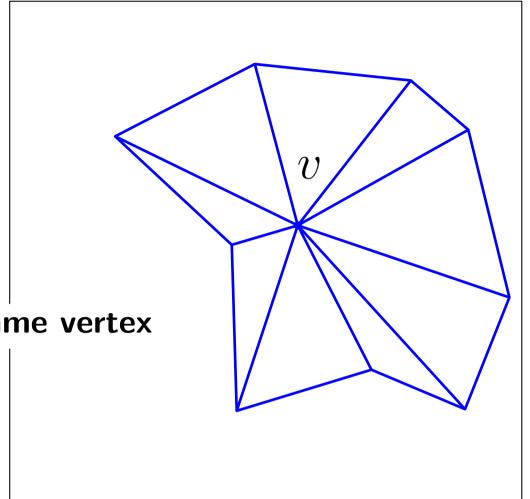


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

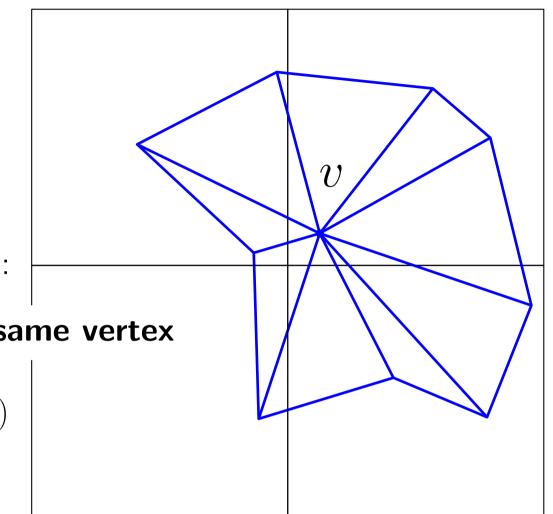


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - \bullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

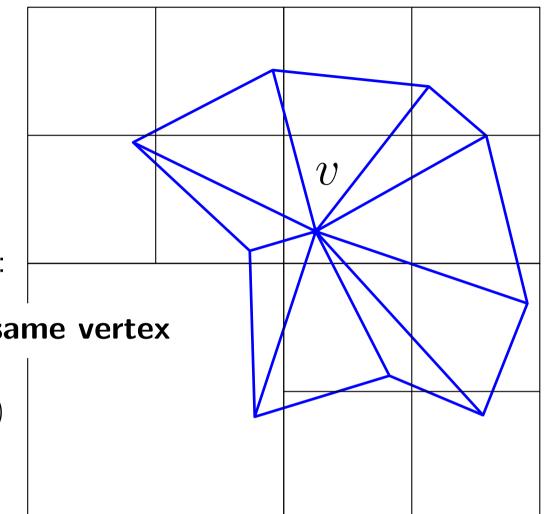


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - \bullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

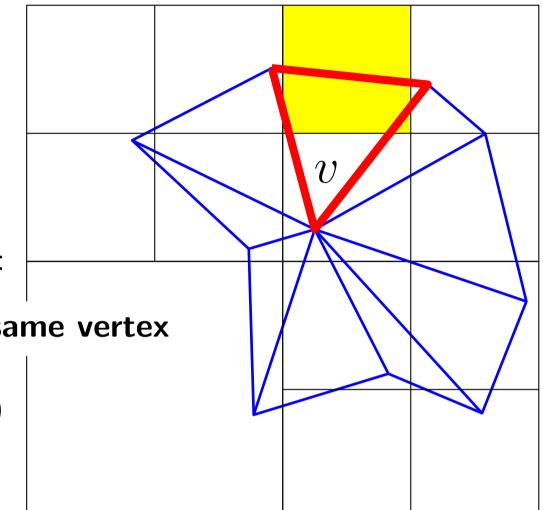


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

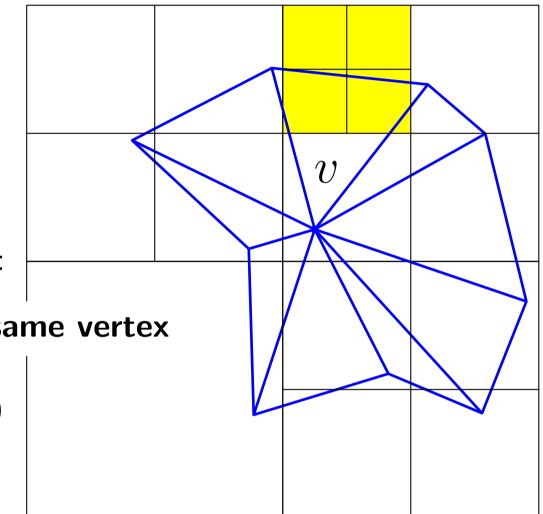


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - \bullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

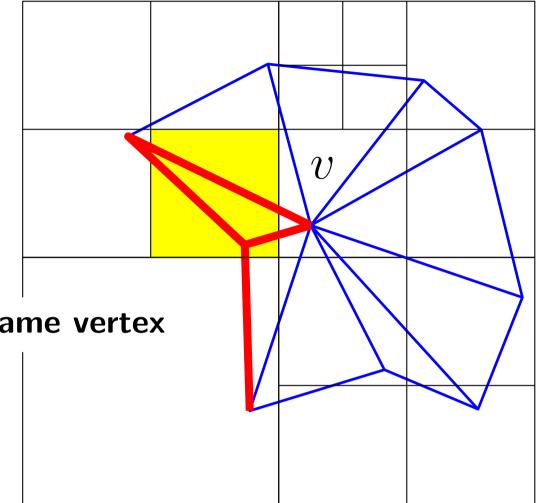


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - \bullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

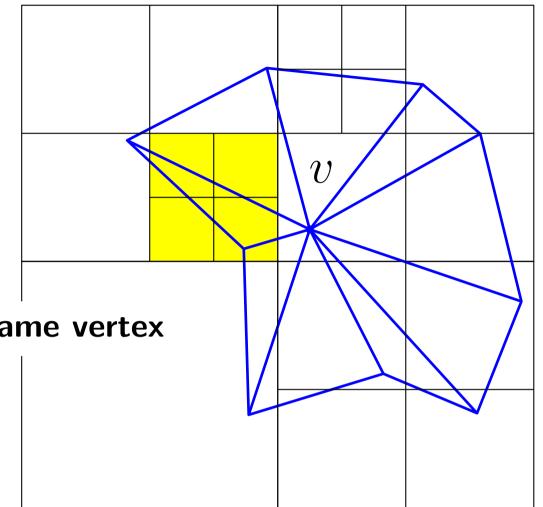


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

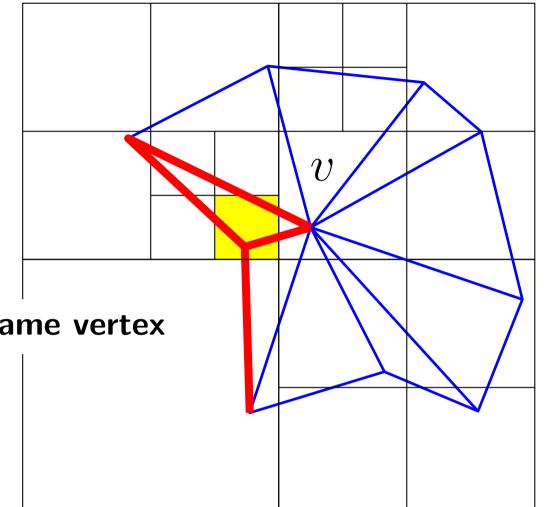


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

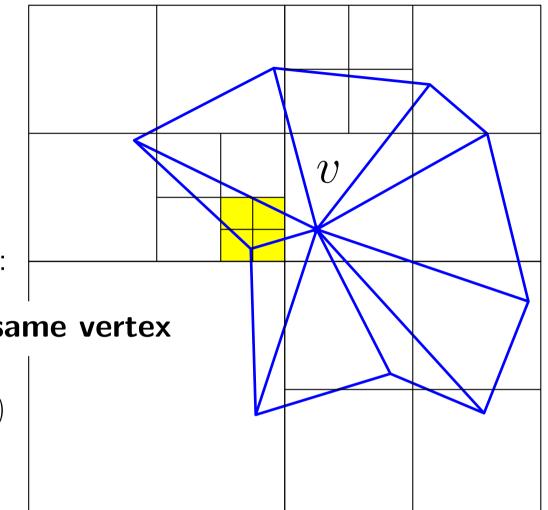


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - \bullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

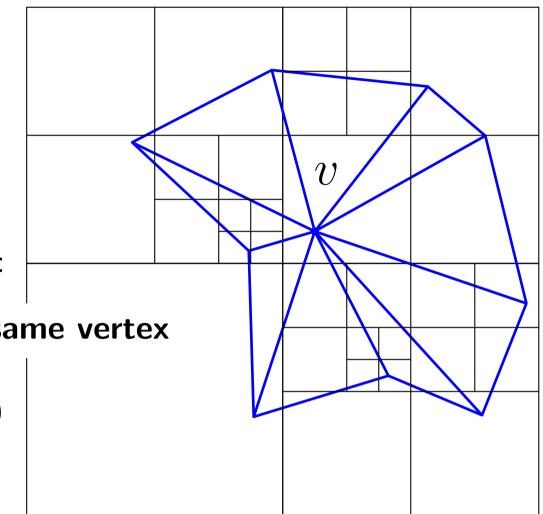


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

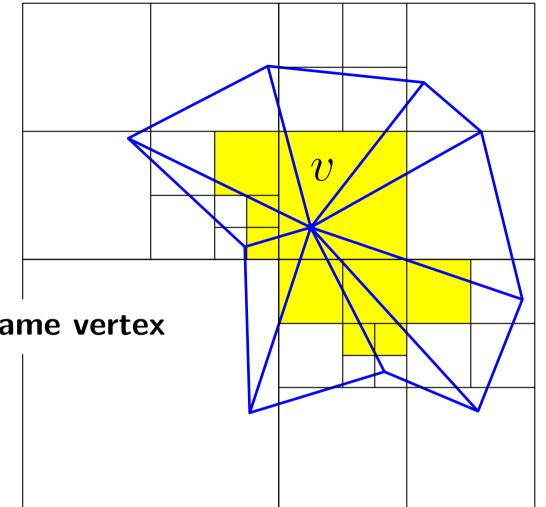


Input: file with for each vertex its adjacency list.

Algorithm:

- 1. For each vertex v:
 - load adjacency list in memory;
 - \bullet build quadtree on star(v) with splitting criterion:

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)



Input: file with for each vertex its adjacency list.

Algorithm:

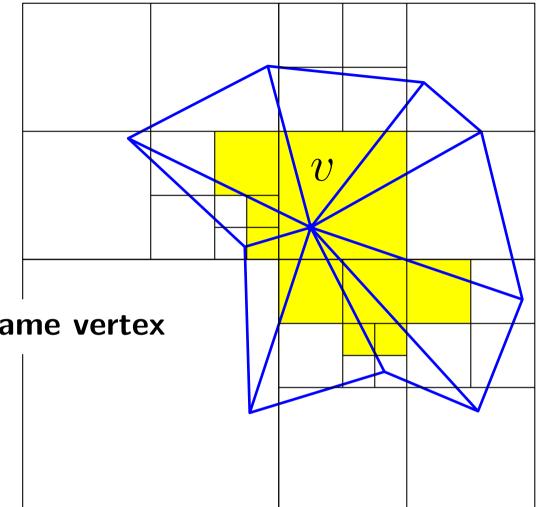
- 1. For each vertex v:
 - load adjacency list in memory;
 - ullet build quadtree on star(v) with splitting criterion:

Stop splitting when all edges incident to same vertex

- ullet output each cell that is completely inside star(v)
- 2. Sort leaves into Z-order (removing duplicates)

To prove (assuming input is n fat triangles):

- together cells form subdivision of unit square;
- \bullet O(1) triangles per cell;
- \bullet O(n) cells in total;
- ullet algorithm runs in O(sort(n)) I/O's



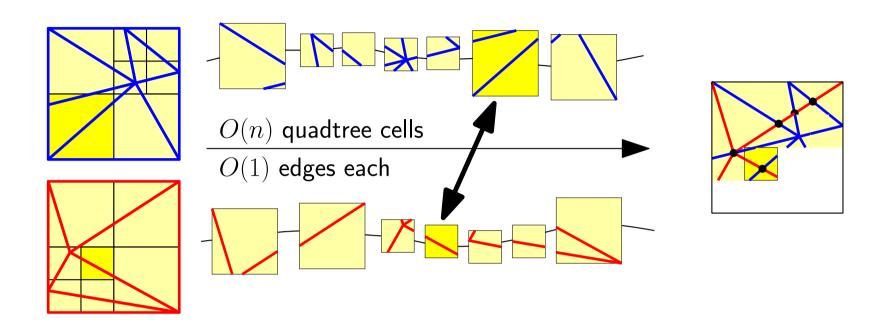
I/O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma



n= input size; M= main memory size; B= disk block size; scan(n) < sort(n) << n

For low-density triangulations / sets of line segments*, there is a data structure that supports:

- map overlay in O(scan(n)) I/O's;
- ullet point location in $O(\log_B n)$ I/O's;
- \bullet for triangulations: basic updates in $O(\log_B n)$ I/O's.

The data structure is built with O(sort(n)) I/Os.

*) for any square \square , number of intersecting segments bigger than \square is at most a constant

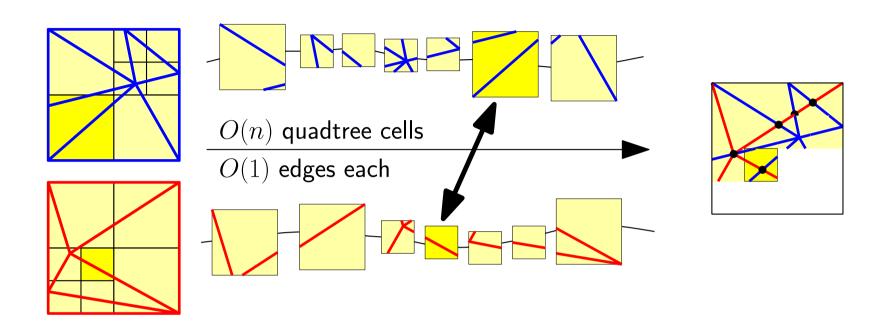
I/O-Efficient Map Overlay and Point Location on Low-Density Planar Maps

Mark de Berg

Herman Haverkort

Shripad Thite

Laura Toma



n= input size; M= main memory size; B= disk block size; scan(n) < sort(n) << n

For low-density triangulations / sets of line segments*, there is a data structure that supports:

- map overlay in O(scan(n)) I/O's;
- ullet point location in $O(\log_B n)$ I/O's;
- ullet for triangulations: basic updates in $O(\log_B n)$ I/O's.

The data structure is built with O(sort(n)) I/Os.

That's all folks

*) for any square \square , number of intersecting segments bigger than \square is at most a constant