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Abstract

We describe a novel application of the distribution sweeping

technique to computing visibility on terrains. Given an arbi-

trary viewpoint v, the basic problem we address is computing

the visibility map or viewshed of v, which is the set of points

in the terrain that are visible from v. We give the first I/O-

efficient algorithm to compute the viewshed of v on a grid

terrain in external memory. Our algorithm is based on Van

Kreveld’s O(n lg n) time algorithm for the same problem in

internal memory. It uses O(sort(n)) I/Os, where sort(n) is

the complexity of sorting n items of data in the I/O-model.

We present an implementation and experimental evaluation

of the algorithm. Our implementation clearly outperforms

the previous (in-memory) algorithms and can compute visi-

bility for terrains of up to 4GB in a few hours on a low-cost

machine.

1 Introduction

In this paper we consider the problem of computing
visibility on very large terrains in external memory.
Given an arbitrary viewpoint v and a terrain, the basic
problem we address is computing the visibility map
or viewshed of v, which is the set of points in the
terrain that are visible from v (Figure 1). Visibility has
applications in graphics and game design, and mainly
in Geographic Information Systems (GIS), ranging from
path planning, navigation, landscaping, to placement of
fire towers, radar sites and cellphone towers [12, 16].

Visibility has been widely studied in computational
geometry and graphics; for a survey of the various
problems and results see Cole and Sharir [9] or De
Floriani and Magillo [11]. Recently, researchers have
obtained a number of results on visibility addressing
the watchtower problem and terrain guarding [2, 8].
The standard terrain model used in geometry is the
polyhedral terrain, which is a continuous piecewise linear
function defined over the triangles of a triangulation
in the plane. In GIS, however, the most common
representation of terrain data is the grid, which samples
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the elevation of a terrain with a uniform grid and records
the values in a 2D-matrix. Thus we are interested in
computing visibility on grid terrains.

Figure 1: The viewshed of a point on a terrain is shown
in white.

In the recent years an increasing number of applica-
tions involve high-resolution massive terrain data that
is becoming available from remote sensing technology.
NASA’s Shuttle Radar Topography Mission (SRTM) ac-
quired terrain data with one sample per 30m (900m2) in
2002, in total about 10 terabytes of data. More recently,
LIDAR and real-time kinematic global positioning sys-
tem technology offer the capability to collect geospatial
data at 1m-resolution.

When working with massive data, only a fraction
of the data can be held in the main memory of a com-
puter. Thus, the transfer of data between main mem-
ory and disk, rather than the computation as such, is
usually the performance bottleneck. One approach to
improving performance is to design external memory
or I/O-efficient algorithms — algorithms that specifi-
cally optimize the number of block transfers between
main memory and disk. In this paper we present the
design and experimental evaluation of an I/O-efficient
algorithm for viewshed computation on very large grid
terrains.



1.1 Problem definition. Let T be a terrain repre-
sented as a grid of n square cells. For computational
purposes, we assume that the entire grid cell is repre-
sented by its center point. In particular, we assume
that we are given the elevation of each grid cell’s center
point. The line of sight from a viewpoint v to a grid
cell Q is the line segment that connects v to the center
q of Q. We use the definition of visibility also applied
by Van Kreveld [18]: a grid cell with center q is visible
from v if the line of sight vq does not cross any grid cell
that appears higher on the horizon—more precisely, if
the line segment vq does not cross any grid cell with
center q′ such that the slope of vq′ is higher than the
slope of vq. Note that this is a discrete visibility model,
where a cell is either completely visible or not. There is
no concept of partial visibility: A corner of a high cell is
assumed to hide another grid cell Q from the viewpoint
v completely if it intersects the line of sight from v to
the center q of Q.

Let v be an arbitrary viewpoint. With visibility
defined as above, the visibility map or viewshed of v on
a grid terrain is the set of all grid cells that are visible
from v. In GIS, one is not only interested in computing
boolean cell visibility, but also, for cells that are invisible
from v, their vertical distance to visibility: how far the
cells should be raised to become visible from v. Thus,
for a given viewpoint, we want to compute a grid that
records the distance of each cell to visibility. We call
this the visibility grid of v. The viewshed of v is the set
of cells with distance 0.

A straightforward approach to determine whether
a cell is visible from a given viewpoint requires O(n)
time per cell, or O(n2) time for the entire grid—if the
grid is square the bounds become O(

√
n) and O(n

√
n)

respectively. The bound for the entire grid was im-
proved to O(n lg n) by Van Kreveld [18] using plane
sweeping. There have been many other papers from the
GIS community dealing with visibility computation on
grids; see for example the papers by Fisher, Franklin,
and Ray [13, 14, 15, 16], and the references therein.
They describe experimental studies for fast implemen-
tations of approximate visibility computations and ex-
plore various trade-offs between speed and accuracy;
they do not guarantee worst-case bounds better than
the straightforward one, nor do they prove any bounds
on the quality of the approximation. An overview of the
visibility results on grids, as well as on other terrain rep-
resentations (triangulations), can be found in the work
by De Floriani and Magillo [11, 12]. To our knowledge
no I/O-efficient results have been reported for visibility
computations so far.

1.2 I/O-Model and related I/O-work. We use
the standard two-level I/O-model by Aggarwal and
Vitter [3]. The model defines two parameters: M is
the size of internal memory, and B the size of a disk
block. An Input/Output (or: I/O) is the operation
of transferring a block of data between main memory
and disk. The I/O-complexity of an algorithm is the
number of I/Os it performs. The basic bounds in the
I/O-model are those for scanning and sorting. The
scanning bound, scan(n) = Θ( n

B ) is the number of I/Os
necessary to read n contiguous items from disk. The
sorting bound, sort(n) = Θ( n

B logM/B
n
B ) represents the

number of I/Os required to sort n contiguous items
on disk [3]. For all realistic values of n, B, and M ,
scan(n) < sort(n)� n.

I/O-efficient algorithms have been developed for
many problems encountered in GIS, like variants of seg-
ment intersection and range searching. The first results
were obtained by Goodrich et al. [17], who developed the
technique of distribution sweeping as an external mem-
ory version of the powerful plane sweep paradigm in
internal memory. Distribution sweeping was developed
for the problem of orthogonal line segment intersection,
and has been subsequently applied to other GIS prob-
lems, like the (red-blue) line segment intersection and
map overlay [5]. For a survey of distribution sweeping
and I/O-efficient algorithms for GIS see Arge [4] and
Van Kreveld et al. [19].

1.3 Our results. In this paper we show a novel ap-
plication of the distribution sweeping technique to the
computation of visibility on grid terrains. In Section 3
we present an O(sort(n))-I/O algorithm for the compu-
tation of the visibility grid of a viewpoint in external
memory. The algorithm is based on distribution sweep-
ing and the plane sweep algorithm by Van Kreveld [18].
In Section 4 we present an implementation and exper-
imental evaluation of the algorithm. The algorithm is
not only theoretically optimal, but simple and practical:
our algorithm clearly outperforms the previously known
(in-memory) algorithm and can compute visibility on up
to 4 GB terrains in less than 5 hours.

2 Van Kreveld’s Algorithm

In this section we describe the O(n lg n) time algorithm
by Van Kreveld [18], which gives the best known
upper bound for visibility grid computation in internal
memory.

The algorithm uses the plane sweep technique.
Given a grid and a viewpoint v, the basic idea is to
rotate a (half) line around v and compute the visibility
of each cell in the terrain when the sweep-line passes
over its center. For this we maintain a data structure
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(a) Each cell is marked with its 3 events. (b) Active cells.

Figure 2: Van Kreveld’s plane sweep algorithm.

(the active structure) that, at any time in the process,
contains the cells currently intersected by the sweep
line (the active cells); refer to Figure 2(b). When a
cell is intersected by the sweep-line, it is inserted in the
active structure; when a cell stops being intersected by
the sweep-line, it is deleted from the active structure.
When the center of a cell is intersected by the sweep line,
the active structure is queried to find out if that cell is
visible. Thus, each cell in the grid has three associated
events: when it is first intersected by the sweep-line
and entered in our data structure, when the sweep-line
passes over its center, and when it is last intersected
by the sweep-line and removed from our data structure;
refer to Figure 2(a).

Consider a cell Q in the grid, and let q be its
centerpoint. The height above the horizon of Q with
respect to the viewpoint v is defined as the height above
the horizon of q, which is

heightq = arctan
eq − ev

dvq

where eq and ev are the elevations of q and v, respec-
tively, and dvq is the distance between q and v. Note
that this means a cell is treated as having constant
height above the horizon with respect to the viewpoint.

A cell is visible if its line of sight from the viewpoint
does not intersect any cell that is higher above the
horizon. Therefore, a cell is visible if, when the sweep-
line passes over its center, there are no active cells
closer to the viewpoint and with greater height above
the horizon. To query the active cells efficiently Van
Kreveld [18] uses a balanced binary search tree for the
active structure, in which the active cells are stored from
left to right in order of increasing distance from their
centers to the viewpoint. In addition, each node in the
tree is augmented with the greatest height above the
horizon in the subtree rooted at that node; for leaves,
this is simply the height above the horizon of the cell
stored at the leaf.

The augmented binary search tree can be main-
tained in O(lg n) time per insertion and deletion in a
straightforward way. To determine whether a cell Q is
visible, we search for it in the tree. As we follow the
search path, all the cells that could obstruct visibility
are to the left of the path; to find the cell among them
that appears highest above the horizon, we collect the
maximum height stored in all the subtrees to the left
of the path in O(lg n) time. From here we can infer
whether Q is visible, and, if not, what is its vertical
distance to visibility. Overall, there are 3n events, and
each is handled in O(lg n) time. If we wanted to com-
pute only the viewshed of v, the algorithm would still
take Θ(n lg n) time: Irrespective of the size of the view-
shed, we would still sort the events and traverse the
entire grid. We have the following.

Theorem 2.1. (Van Kreveld [18]) The visibility grid
of an arbitrary viewpoint can be computed in O(n lg n)
time for a grid of size n.

3 Computing Visibility in External Memory

Van Kreveld’s algorithm uses four structures: the eleva-
tion grid, the visibility grid, the event list and the active
structure. Even if the event list is stored as a stream
on disk, and sorted I/O-efficienly, the algorithm would
still use Ω(n) I/Os to maintain and query the active
structure.

In Section 3.1 we describe simple modifications to
the plane sweep algorithm to obtain I/O-efficiency, un-
der the assumption that the active structure fits in mem-
ory. While the resulting algorithm is not guaranteed to
be worst-case optimal, it widely extends the size of the
problems that can be tackled in practice (as showed
by the experimental evaluation). In Section 3.2 we
extend the approach to an algorithm that needs only
O(sort(n)) I/Os in the worst case.



3.1 The base case The inefficiency of Van Kreveld’s
algorithm is caused by three problems. First, the
elevation grid is loaded in memory in row-column order,
but the grid is accessed (read) in rotating sweep order
to determine each cell’s height above the horizon as it is
entered or queried for in the active structure. Second,
the visibility grid is loaded in memory in row-column
order and is accessed (written) in sweep order. Third,
there is little structure in the way in which the active
structure is accessed.

The first problem can be solved, for example, by
augmenting the events in the event list with information
about the elevation of the cell, so that the input grid
does not need to be accessed at all once the event list
has been built. The second problem can be solved
by recording the visibility of each cell in a list in
sweep order, and sorting the list into grid order after
completing the sweep. With these two modifications,
the plane sweep does not need to load the input and
output grid into memory. Assuming the event list
is stored in a stream, the algorithm can now use all
available memory for the active structure. If the active
structure is small enough to fit in memory, the algorithm
runs in O(sort(n)) I/Os.

If the active structure does not fit in memory, an
immediate idea would be to implement it with a B-tree,
but this would give a running time of O(n logB n) I/Os.
Below we explain how to do better.

3.2 An O(sort(n)) I/O algorithm. In this section
we describe how to compute a visibility grid in worst-
case O(sort(n)) I/Os without any assumptions on the
input. The algorithm is based on the distribution
sweeping technique, which we describe below.

Distribution sweeping. The general idea in dis-
tribution sweeping is to divide the input into O(M/B)
and Ω((M/B)ε) strips (slabs), each containing an equal
number of input objects. Using these strips we decom-
pose the solution to the problem into a part that can
be found recursively in each strip, and a part that in-
volves interactions between strips. The recursive part of
the solution we can find by solving the problem recur-
sively in each strip. The recursion stops when the strips
are small enough to fit in main memory, which happens
after O(logM/B n) iterations. The challenging part in
distribution sweeping is finding the part of the solu-
tion that involves interactions between strips. To get
an algorithm that uses only O(sort(n)) I/Os we need to
handle interactions in O(n/B) I/Os in total per level of
recursion. Two approaches for this problem have been
described in the literature: handling the interactions by
a plane sweep based on maintaining active lists for each

strip (this approach was taken by Goodrich et al. [17]
to compute intersections of orthogonal line segments),
and using O(

√
M/B) fan-out and multi-slabs, used by

Arge et al. [5] for red-blue line segment intersections.
We show how to handle strip interactions for the visi-
bility problem by combining a radial (rotational) and a
concentric sweep.

Our algorithm follows the general approach of dis-
tribution sweeping described above: we divide the grid
into Θ(M/B) radial “strips” (sectors) around the view-
point. A cell can be narrow, that is, crossing at most
one sector boundary, or wide, that is, crossing at least
two sector boundaries and thus spanning at least one
sector completely—refer to Figure 3). On every level
of recursion, we first determine how wide cells affect
the visibility of cells in the sectors spanned by them,
and then compute the visibility grid recursively in each
sector. The recursion stops when the number of cells
gets small enough to run the base case algorithm de-
scribed in Section 3.1 while keeping the active structure
in memory. Below we detail the steps and their analysis.

Figure 3: Distribution sweeping. The grid is divided
into M/B radial slabs (sectors); cells may cross zero,
one or more sector boundaries.

We start by scanning the grid to identify the events;
for each cell Q, we determine the point p1 = (r1, θ1)
where Q will be hit by the rotating sweep line first, the
point p2 = (r2, θ2) that will be the last point of Q to
intersect the sweep line, and the center point q = (rq, θq)
of Q. The points are represented in polar coordinates
with respect to the viewpoint. As we scan the grid,
we create two lists of events, Er and Ec. The list Er



consists of all the event points, in the entire grid. The
list Ec contains two copies of each cell Q: one copy is
marked as query and stored with the center point q of
Q; the other copy is marked as obstacle and stored with
the points p1 and p2 where the rotating sweep line will
first and last intersect it. With each cell we also store
the height above the horizon of its center point.

After we finish scanning all the cells, we sort Er by
radial order around the viewpoint, and the cells in Ec

by distance from the viewpoint to their center points.
We sort Er and Ec only once at the beginning—we
construct the sorted event lists for recursive calls by
distributing the events of Er and Ec among the recursive
calls while keeping them in order.

Given the two sorted lists Er and Ec, the algorithm
proceeds in two phases: a radial sweep, which processes
events from list Er in order of the polar angle with re-
spect to the viewpoint, and a concentric sweep, which
processes the events from list Ec in increasing order of
their distance from the viewpoint. The radial sweep
is used to partition the events into approximately M/B
equal-sized sectors. The concentric sweep is used to pro-
cess wide obstacles and to distribute the query events
and narrow obstacles. By processing events concentri-
cally we are able to maintain, while distributing query
events, if there is any wide obstacle closer to the view-
point that may occlude the center of the query cell.

The details are slightly different, depending on
whether we want to compute a visibility grid (distances
to visibility) or only a viewshed (whether cells are visible
or not). We first discuss the details for the viewshed
computation.

The radial sweep: First, we need to determine
approximately M/B sectors such that each sector con-
tains O(n/(M/B)) event points. This is easily done by
scanning Er to identify the sector boundaries. While
doing so we also compute, for each sector, a list of the
events in that sector in radial order. We will use these
lists later as we recurse on the sectors to find radial
partitions within each sector.

The concentric sweep: During this sweep, we
scan and process the events (queries and obstacles) in
Ec in order of increasing distance from the viewpoint,
and for each sector we construct a list of events in that
sector in the same order. To do this I/O-efficiently,
we keep, for each sector, a buffer of one block of data
in memory. Initially the buffers are all empty. They
will get filled with events during the sweep—whenever
a buffer runs full, its contents are output to disk and
the buffer is emptied.

Furthermore, we keep for each sector S the radii

that form its boundaries in memory, and a variable
HighS that holds the greatest height above the horizon
among all the wide obstacles that completely span that
sector and that have been reached by the concentric
sweep. Initially HighS is set to −∞ for each sector.

The concentric sweep now proceeds as follows. We
go through the events in Ec in order of increasing
distance from the viewpoint. Events may be queries
or obstacles.

If the event is a query cell Q, we determine which
sector S contains its center point, and check if the height
of Q above the horizon is at least HighS . If so, we write
Q to the event buffer of S; if not, we output Q to a list
of points that have been found to be invisible, and do
not copy it to any event buffer.

If the event is an obstacle E, it may intersect several
sectors.

For each sector S that is intersected by E, but not
completely spanned by it, we check if the height of E
above the horizon is more than HighS . If so, we write
E to the event buffer of S. If not, we ignore E for this
sector, because it cannot occlude any query cells in S
that are not already occluded by the wide obstacle that
determined HighS .

For each sector S that is spanned by E (that is,
E touches or intersects both radii that delimit S), we
update HighS by setting it to the maximum of S and
the height above the horizon of (the center point of) E
(this takes no I/O, as all the necessary information is
kept in memory). As a result, all query cells in S that
are occluded by E will be filtered out of the event stream
of S.

(a) (b)

Figure 4: Segments corresponding to (a) narrow cells.
(b) wide cells.

In recursion: After completing the concentric
sweep, each sector is processed recursively. Through-
out the recursion cells are marked as invisible and dis-
carded. All query cells that are visible survive until the
final level of recursion. The recursion stops when we
can run the algorithm from Section 3.1 while keeping
the active structure in memory.

Note that as a result of the early discards, the lists
Ec and Er for a sector may get out of sync. That is,



Er may contain events whose corresponding cells have
already been discarded in the course of a concentric
sweep. This is not a problem, it just means that the
size of each recursive problem may actually be less than
O(n/(M/B)).

Computing a visibility grid: The algorithm
above can be extended to compute the vertical distance
to visibility for each invisible cell: As we process a query
cell Q, we keep track of HighQ, the greatest height above
the horizon among the wide obstacles that occluded (the
center point of) Q through the recursive steps. When
a query cell Q is occluded, we do not discard it, but
we update its HighQ variable, insert it in the event list
of its sector, and let the recursive calls determine its
distance to visibility.

Analysis: Initial sorting of the input into two
event streams Er and Ec, and sorting the output into
grid order, takes O(sort(n)) I/Os. At each level of re-
cursion a query is inserted in the event stream of at
most one sector, and an obstacle is inserted in the event
stream of at most two sectors. Hence both the radial
and the concentric sweeps use O(n/B) I/Os per level
of recursion, and there are O(logM/B n/M) levels of re-
cursion. Thus the entire algorithm uses O(sort(n)) I/Os
and linear space. We have the following.

Theorem 3.1. The visibility grid of an arbitrary view-
point on a grid of size n can be computed with O(n)
space and O(sort(n)) I/Os.

Note that the radial sweep and the sorted list Er are
only necessary for simplicity. It is possible to partition
the events in Ec radially by using an O(n/B) pivot-
finding algorithm, as in Aggarwal and Vitter [3]. Since
the algorithm is complicated, maintaining the events in
radial order throughout the recursion is probably more
likely to be efficient in practice. If the boundary of
the grid has an easy shape, for example if the grid
is rectangular and all cells are valid, one may simply
compute the sector boundaries analytically in memory,
instead of determining them by a radial sweep or pivot-
founding algorithm.

4 Experimental results

This section presents an experimental comparison of the
efficiency of our I/O-efficient algorithm (ioviewshed) to
compute a viewshed with Van Kreveld’s plane sweep al-
gorithm (kreveld) and with a module that implements
this functionality in the widely used open source GIS
GRASS (r.los).

We implemented the algorithms in C++ using the
g++ 4.0.1 compiler with optimization level -O3. For

the I/O-efficient algorithm we used an external memory
library IOStreams. This library is derived from the
TPIE library [7], and provides basic file functionality
along with an I/O-optimal external mergesort [3] and
an I/O-efficient priority queue [6].

kreveld: The implementation of the kreveld algo-
rithm is straightforward. It maintains the elevation grid
(input) and visibility grid (output) in memory, together
with an event array and an active structure. For the
active structure we used a standard implementation of
red-black trees [10].

ioviewshed: The implementation starts by loading
the input elevation grid into a stream, building the
event stream, and then sorting it. During the sweep
ioviewshed labels each cell as visible or not. For
each cell (i, j) this information is written to an output
stream; at the end, the output stream is sorted in (i, j)
order to produce the output grid. We observe that, most
of the time, only a small fraction of the terrain is visible
for very large terrains; when we compute the viewshed,
we optimize the algorithm by recording only the cells
that are visible, and assume that cells not recorded are
invisible to the observer. This optimization significantly
decreases the time needed to sort the output.

We found that in all of our experiments, with data
sets up to 4 GB, we could run the basic modified plane
sweep algorithm on the complete data set and still fit
the active structure completely in main memory (see
Table 2). As a result, ioviewshed never goes into
recursion.

GRASS: The open source GIS GRASS provides view-
shed computation via a module called r.los. The mod-
ule uses the straightforward O(n2) algorithm. To han-
dle the I/O-bottleneck it uses a GRASS memory- and
I/O-management tool called the segment library. This
library mimics a virtual memory manager that moves
data between memory and disk in segments so that the
size of memory r.los can access is limited by the disk
space only. From the experiments we see that r.los
always runs, and never aborts with a malloc fail. How-
ever, it is extremely slow. We include this module in
our experiments because GRASS is the most widely used
open source GIS; but mainly because this module il-
lustrates the thrashing of the straightforward internal
memory algorithm when the amount of virtual memory
is infinite.

Datasets: Table 1 describes the data sets, repre-
senting real terrains of various characteristics ranging
from 1 to over 1 000 million elements. Real terrains of-



ten contain points for which the elevation is unknown or
invalid; these points are marked as invalid, or no-data
points. Typically invalid points are marked with a spe-
cial elevation value and are ignored when processing the
terrain, so the amount of invalid data on a terrain can
significantly influence the running time. The amount of
valid data for each terrain is also given in Table 1.

Data set Points Size Valid
Kaweah 1.6·106 7 MB 56 %
Puerto Rico 6.1·106 25 MB 19 %
Sierra Nevada 9.5·106 40 MB 96 %
Hawaii 30 ·106 119 MB 7 %
Cumberlands 67 ·106 267 MB 27 %
Lower NE 78 ·106 311 MB 36 %
Midwest USA 280 ·106 1 122 MB 86 %
Washington 1 066 ·106 4 264 MB 95 %

Table 1: Size of terrain data sets. The valid-count ex-
cludes undefined (e.g. ocean) data values.

Platform: All experiments were run on Apple
Power Macintosh G5 computers with dual 2.5 GHz pro-
cessors, 512 KB L2 cache per processor, 1GB RAM,
and a Maxtor serial-ATA 7200 RPM hard drive. How-
ever only one processor is used since the algorithms
are single-threaded. We allowed our algorithm to use
800 MB of the available memory. We also ran experi-
ments with 256MB RAM (allowing our algorithm to use
200 MB), in which case we booted the machines with
this amount of memory.

Results: Table 3 summarizes the overall running
time of r.los, kreveld and ioviewshed on the test
datasets, together with the corresponding CPU utiliza-
tion in each case. The viewpoints were selected to be
in similar positions with respect to the size and shape
of the grid, and for each dataset, the viewpoint was the
same across tests with different algorithms. The run-
ning times are depicted in Figure 5.

r.los is by far the most inefficient of the three
algorithms. It takes about an hour on our smallest
data set (kaweah), and we let it run for two weeks on
Hawaii (n = 30 · 106 points). The inefficiency of r.los
is probably due to the overhead of the GRASS segment
library and to the straightforward O(n2) algorithm
(O(n

√
n) on square grids). This also explains why the

algorithm is much slower on Puerto Rico than on Sierra,
even though the latter is larger: Puerto Rico is long
(aspect ratio 3.2), while Sierra is almost square (aspect
ratio 1.4).

As expected, our implementation of kreveld per-

forms very well as long as the data fits in main memory.
For a grid of n points, the size of the memory neces-
sary during the algorithm is about 11n 32-bit integers
(elevation grid, visibility grid, and event array). If the
data structures fit completely in memory, the algorithm
finishes in seconds and its CPU utilization is 100%. On
the Hawaii data set it starts thrashing: the CPU utiliza-
tion drops down to 39%, and the running time becomes
736 seconds. On a larger dataset the required amount
of memory exceeds the available virtual memory, so the
algorithm does not finish (malloc failure).

In contrast, the performance of ioviewshed scales
nicely with increasing problem size. It manages to
compute visibility grids of approximately 109 points in
about 4.5 hours. This involves sorting an event stream
of approximately 60 GB (Table 2), which constitutes the
dominant part of the running time. ioviewshed can be
optimized further by plugging in one of the standard
I/O libraries like TPIE [7] or STXXL [1].

Data set Active str. Event str.
Kaweah 93 KB 92 MB
Puerto Rico 236 KB 343 MB
Sierra Nevada 234 KB 543 MB
Hawaii 410 KB 1 716 MB
Cumberlands 589 KB 3 833 MB
Lower NE 634 KB 4 463 MB
Midwest USA 1 413 KB 16 022 MB
Washington 2 344 KB 60 998 MB

Table 2: ioviewshed statistics: maximum size of the
active structure and size of the event stream.

As expected, ioviewshed is slower than kreveld
when the data set is small. A practical implementa-
tion of ioviewshed could detect this situation and run
kreveld instead—thus always achieving the best run-
ning time of kreveld and ioviewshed.

We also ran experiments with 256MB of RAM.
While a main memory size of 256 MB is certainly
not realistic, it illustrates the behaviour and trends
of algorithms as the difference between dataset and
memory size increases. The total running times for the
three algorithms with 256 MB are shown in Figure 6
and Table 4. The results are very similar to those
with 1GB—the crossover point between the internal
and external algorithms moves to the left in this case.

Figures 7 and 8 show the performance of kreveld
and ioviewshed comparatively at 256 MB and 1GB
RAM. With 256 MB kreveld processes Kaweah in a few
seconds, as with 1 GB. However, it starts thrashing (ear-
lier) on Puerto Rico: 112 seconds with 38% CPU utiliza-
tion as opposed to 38 seconds, 100% CPU utilization at
1 GB. This is not surprising, as the amount of memory
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Figure 5: Running time of r.los, kreveld and ioviewshed at 1 GB RAM. (a) Total. (b) Per item.

Data set r.los kreveld ioviewshed

Kaweah 2 928 8 (100 %) 13 (84 %)
Puerto Rico 78 778 38 (100 %) 53 (78 %)
Sierra Nevada 16 493 80 (95 %) 102 (67 %)
Hawaii >1 200 000 736 (39 %) 353 (63 %)
Cumberlands malloc fails 791 (63 %)
LowerNE 865 (64 %)
Midwest USA 3 546 (64 %)
Washington 16 895 (68 %)

Table 3: Running times (seconds) and CPU-utilization (in parentheses) at 1 GB RAM.

Data set r.los kreveld ioviewshed

Kaweah 2 984 7 (100 %) 13 (77 %)
Puerto Rico 78 941 112 (38 %) 66 (60 %)
Sierra Nevada 19 140 211 (29 %) 115 (57 %)
Hawaii >1 200 000 1270 (27 %) 364 (63 %)
Cumberlands malloc fails 768 (62 %)
LowerNE 916 (62 %)
Midwest USA 4 631 (52 %)
Washington 40 734 (30 %)

Table 4: Running times (seconds) and CPU-utilization (in parentheses) at 256 MB RAM.



needed to process Puerto Rico is 11 · 6.1 · 106 · 4 B =
268 MB, which does not fit in main memory. The
thrashing gets more pronounced for Sierra and Hawaii,
where the CPU utilization drops to 29% and 27%, re-
spectively. The malloc failure occurs on Cumberlands.

The performance of ioviewshed is practically the
same at 256 MB and 1 GB for the smaller datasets.
On the largest dataset, Washington, the running time
increases from 16 895 seconds with 1GB to 40 734
seconds with 256 MB. The cause of this increase is that
sorting the event stream takes more time (60% of the
total running time with 1 GB and 84% of the total
running time with 256MB). Using a more customized
I/O-library may improve the running time significantly.
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Figure 6: Running time of r.los, kreveld and ioviewshed at 256 MB RAM. (a) Total. (b) Per item.
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Figure 7: Running time of kreveld at 256 MB and 1GB RAM. (a) Total. (b) Per item.
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Figure 8: Running time of ioviewshed at 256 MB and 1GB RAM. (a) Total. (b) Per item.


