Herman Haverkort Laura Toma Yi Zhuang

TU. Eindhoven Bowdoin College
Netherlands USA

ALENEX 2007
New Orleans, USA

¢ Problem: visibility map (viewshed) of v
“terrain T
¢ arbitrary viewpoint v
¢ the set of points in T visible from v

Sierra Nevada, 30m resolution

¢ Problem: visibility map (viewshed) of v
¢terrain T
¢ arbitrary viewpoint v
¢ the set of points in T visible from v

¢ Applications
- graphics
- games
- GIS
-military applications, path planning, navigation
- placement of fire fowers, radar sites, cell phone fowers
(terrain guarding)

¢ Why massive ferrains?
< Large amounts of data are becoming available
*NASA SRTM project: 30m resolution over the entire globe
(T10TB)
¢ LIDAR data: sub-meter resolution

¢ Traditional algorithms don't scale
*Buy more RAM?
-Data grows faster than memory
< Data on disk
< Disks are MUCH slower than memory

¢ => I/O-bottleneck

¢ I/O-model [AV'88]
¢ Data on disk, arranged in blocks
< I/O-operation = reading/writing one block from/to disk

n=grid size =~ M=memory size B=block size

¢ I/O-complexity: nb. I/0-operations

Basic I/O bounds
2scan(n)=n/B sort(n)=n/B logm/s n/M

often: grid terrain

¢ Line-of-sight model
< a grid cell with centfer q is visible from viewpoint v iff
the line segment vq does not cross any cell that is above vq

i.

36

e Grids
< straightforward algorithm O(n?)
<O(n lg n) by van Kreveld
© experimental
< Fisher [F93, F94], Franklin & Ray [FR94],
Franklin [FO2]

“no worst-case guarantees

¢ TINs
-surveys: de Floriani & Magillo [FM94], Cole &
Sharir [CS89]
- recently: watchtowers and terrain guarding
[SoCG'05, SODA06]

van Krevelds algorithm

van Krevelds algorithm

van Krevelds algorithm

van Krevelds algorithm

van Krevelds algorithm

| -'>
\’\\

__qu____ N

ANN

van Krevelds algorithm

| -'>
\’\\

__qu____ N

ANN

¢ Requires 4 structures in memory
¢input elevation grid, output visibility grid
< stored in row-major order, read in sweep order
¢ event list
¢ status structure

¢ Requires 4 structures in memory
¢input elevation grid, output visibility grid
< stored in row-major order, read in sweep order
¢ event list
¢ status structure

¢ Requires 4 structures in memory
¢input elevation grid, output visibility grid
< stored in row-major order, read in sweep order
event list
¢status structure

¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
< stored in row-major order, read in sweep order
¢ event list
¢ status structure
oIf n > M: O(1) I/0 per element, O(n) I/Os total

B B B
B B B

¢ Requires 4 structures in memory
¢input elevation grid, output visibility grid
< stored in row-major order, read in sweep order
¢ event list
¢status structure
oIf n > M: O(1) I/0 per element, O(n) I/Os total

B B B
B B B

kreveld 1GB

Time [microsec]/point

Grid size [number of points]

n = grid size M=memory size B=block size

¢ The visibility grid of an arbitrary viewpoint on a grid of size n can
be computed with O(n) space and O(sort(n)) I/Os

¢ Experimental evaluation
< ioviewshed
- standard algorithm (Kreveld)
- visibility algorithm in GRASS GIS

¢ Distribution sweeping [GTVV FOCS93]
< divide input in M/B sectors each containing an equal nb. of points
¢solve each sector recursively
¢ handle sector interactions

¢ Usually, stop recursion when n < M
¢ Our idea: stop when status structure fits in memory

¢ Run modified Kreveld
< elevation grid: encode elevation in event

¢ event list: store events in a sorted stream on disk

- visibility grid: when determining visibility of a cell, write it to a
stream. Sort the stream at the end to get visibility grid

¢ Total: O(sort(n)) I/0s

The recursion

The recursion

The recursion:
Distributing events fo sectors

7
’
-
d <
-
% |

The recursion:
Distributing events fo sectors

¢ narrow cells
¢ cut and insert in both sectors

¢ narrow cells
¢ cut and insert in both sectors

e wide cells
< cannot insert cell in each sector spanned (space
blow-up)
¢ the visibility of a cell is determined by
¢ the highest of all wide cells that span the
sector and are closer to the viewpoint
<all narrow cells in the sector that are closer
to the viewpoint
o for each sector, process wide cells spanning the
sector interleaved with query points and narrow
cells in the sector, in increasing order of their

distance form viewpoint

¢ Input: event list in concentric order E. and in radial order E;
¢ Radial sweep: scan E; ,
¢ find sector boundaries \‘\\

< compute a list E. of events in each sector NS
\3&}\4&’\

¢ Concentric sweep: scan E. :
< for each sector \\\\\\\\\\
(o g

- keep a block of events in memory

©maintain the currently highest wide cell spanning the sector,
Highs
¢if next event in Ec is
-wide cell: for each sector spanned, update Highs for that sector.
-narrow cell: if it is not occluded by Highs, insert in the buffer of
sector. Otherwise skip it.
- query point: if it is not occluded by Highs, insert it in the buffer
of sector. Otherwise, mark it as invisible and output it.
¢Recurse on each sector

¢ kreveld
eC
2uses virtual memory system

¢ joviewshed
¢ C++

-uses an I/O core derived from TPIE library

¢ GRASS visibility module
= 0(n?) straightforward algorithm
- GRASS segment library for virtual memory management
< bypass the VMS, manage data allocation and de-allocation in
segments on disk
- program will always run (no malloc() fails) but ... slow

Grid Size MB
(million elements) (Grid Only)

Kaweah 1.6 6

Dataset

Puerto Rico 59 24

¢ Experimental Platform

] App[e Power Mac G5 Sierra Nevada 9.5 38

“Dual 2.5 GHz processors
<512 KB L2 cache
-1 GB RAM

Cumberlands

Lower New
England

Midwest USA

Washington

total time (seconds) microseconds per grid point
1GB RAM 1GB RAM

1e+06 T T 50 r r
r.los kreveld ——
kreveld -+ 45 ioviewshed -+
100000 ioviewshed -----
40
35
30
25
20

10000

1000

100

Running time [sec]

15
10 =7 10

Time [microsec]/point

5

1e+07 1e+08 1e+09 1e+10 1e+06 1e+07 1e+08 1e+09 1e+10
Grid size [number of points] Grid size [number of points]

total time (seconds) microseconds per grid point
1GB RAM 1GB RAM

1e+06 T T 50 r r
r.los kreveld ——
kreveld -+ 45 ioviewshed -+
100000 ioviewshed -----
40
35
30
25
20
15

X

10000

1000

100

Running time [sec]
Time [microsec]/point

w0} = 10

5

1e+07 1e+08 1e+09 1e+06 1e+07 1e+08 1e+09 1e+10
Grid size [number of points] Grid size [number of points]

¢ GRASS
- program always runs (no malloc() failures) but is very slow
¢ kreveld
- starts thrashing on Hawaii (39% CPU, 739 seconds)
- malloc() fails on Cumberlands
¢ joviewshed
- finishes Washington in 4.5 hours
- in practice status structure fits in memory, never enters recursion

Running time [sec]

total time (seconds) microseconds per grid point

1GB RAM 1GB RAM

1e+06 T T T 50 T T T
rlos —— kreveld ——

kreveld -+ 45 | ioviewshed -+
100000 F ioviewshed -----

40
35 |
30 |
25
20

X

10000

1000 f

100 |

15 |
10 b = 10 }

Time [microsec]/point

5 F

1e+07 1e+08 1e+09 1e+10 1e+06 1e+07 1e+08 1e+09 1e+10
Grid size [number of points] Grid size [number of points]

Data set | r.los | kreveld | ioviewshed |

Kaweah 2928 | 8 (100%) 13 (84%)
Puerto Rico 78778 | 38 (100 %) 53 (78 %)
Sierra Nevada 16493 | 80 (95%) 102 (67 %)
Hamail >1200000 | 736 (39%) | 353 (63%)
Cumberlands malloc fails 791 (63 %)
(64 %)
(64 %)
(68 %)

LowerNE 865 (64 %
Midwest USA 3546 (64 %
Washington 16 895 (68 %

Table 3: Running times (seconds) and CPU-utilization (in parentheses) at 1 GB RAM.

Running time [sec]

total time (seconds) microseconds per grid point
256 MB RAM 256 MB RAM
1e+06 T

rlos —<— ' ' kreveld ——
kreveld -+ P ioviewshed -+
100000 ioviewshed ---*--

10000

1000

100

Time [microsec]/point

10

1 : ; ;

1e+06 1e+07 1e+08 1e+09 1e+10 1e+06 1e+07 1e+08 1e+09 1e+10
Grid size [number of points] Grid size [number of points]

- kreveld starts thrashing earlier (Puerto Rico, 38% CPU)
- ioviewshed slowdown on Washington dataset
- due 90% to sorting
- can be improved using customized 1/0 sorting [TPIE, STXXL]

Running time [sec]

total time (seconds)
256 MB RAM

1e+06

r.los ——
kreveld -+
ioviewshed --- =

.’*
-

100000 ¢

10000 ¢

1000 F

100 F

10 F

1

1e+06 1e+08 1e+09

1e+07
Grid size [number of points]

1e+10

microseconds per grid point
256 MB RAM

kreveld —=—
ioviewshed -+

Time [microsec]/point

1e+07 1e+08 1e+09 1e+10

Grid size [number of points]

1e+06

Data set | r.los

kreveld | ioviewshed |

2984
78941
19140

>1200000

Kaweah
Puerto Rico
Sierra Nevada
Hawaii
Cumberlands
LowerNE
Midwest USA
Washington

7 (100 %)
112 (38%)
211 (29%)

1270 (27 %)
malloc fails

13 (77 %)
66 (60 %)

115 (57 %)
364 (63 %)
768 (62 %)
916 (62 %)
4631 (52 %)
40734 (30 %)

Table 4: Running times (seconds) and CPU-utilization (in parentheses) at 256 MB RAM.

Kaweah
Puerto Rico

Sierra
Nevada

Hawaii
Cumberlands

Lower New
England

Midwest

Washington

total time (seconds) microseconds per grid point

b " kreveld 256MB —— %0 " kreveld 256MB —x—

kreveld 1GB -+ 45 kreveld 1GB -+
40 |
35 |
30 |
25 |
20 |
15 |

100000

10000

1000

100

o)
[0}
2,
O
£
=
(@]
£
c
=
=)
o

Time [microsec]/point

5 L

1e+07 1e+06
Grid size [number of points] Grid size [number of points]

¢ starts thrashing earlier
- 1GB: Hawai, 39% CPU
< 256MB: Puerto Rico 38% CPU

Running time [sec]

total time (seconds)

1e+06 ~1— r
ioviewshed 256MB —<—

ioviewshed 1GB -+
100000

10000
1000
100

10

1 1 1 1

1e+06 1e+07 1e+08 1e+09
Grid size [number of points]

- slowdown on Washington dataset
- due 90% to sorting

1e+10

Time [microsec]/point

Kaweah
Puerto Rico

Sierra
Nevada

Hawaii
Cumberlands

Lower New
England

Midwest

Washington

microseconds per grid point

"ioviewshed 256MB ——
ioviewshed 1GB -+

1e+07 1e+08 1e+09
Grid size [number of points]

- can be improved using a customized I/O sorting [TPIE, STXXL]

¢ I/O-efficient visibility computation
 Theoretically worst-case optimal algorithm

< In practice status structure fits in memory
< with extended base case it never enters recursion

©Scalable
- Can process grids that are out of scope with traditional
algorithm

Thank you.

