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Problem: visibility map (viewshed) of v
terrain T
arbitrary viewpoint v
the set of points in T visible from v

Visibility

Sierra Nevada, 30m resolution
This project addresses the problem of computing efficiently visibility on terrains in external memory. 
Given an arbitrary viewpoint v, compute the set of points in the terrain that are visible from v.
This is called the viewshed (GIS terms) or visibility map (geometric  terms) of v. 

An example is sh. in the picture -- the viewpoint is depicted with a blue arrow, and the visible part is drawn in green.



Problem: visibility map (viewshed) of v
terrain T
arbitrary viewpoint v
the set of points in T visible from v

Visibility

Applications
graphics
games
GIS

military applications, path planning, navigation
placement of fire towers, radar sites, cell phone towers  (terrain 
guarding)

Computing visibility comes up and is important in many applications , ranging from graphics, game design  to  military applications,  
navigation, path planning , and variations of terrain guarding problems, like placement of radar sites and phone towers.



Massive terrains

Why massive terrains?
Large amounts of data are becoming available

NASA SRTM project: 30m resolution over the entire globe (~10TB)
LIDAR data: sub-meter resolution

Traditional algorithms don’t scale
Buy more RAM? 

Data grows faster than memory
Data on disk
Disks are MUCH slower than memory

=> I/O-bottleneck

We are interested in computing visibility  efficiently  on very large terrains. 
Why?  because massive data has become widely available ---- for e.g.  SRTM collected 10TB data, LIDAR provide for meter 
resotution. 
Thus the areas that we handle in GIS are larger and larger, and traditional algorithms, designed in the standard RAM model, do not 
scale.  Data does not fit in memory, sits on disk, and, since disks are MUCH slower than CPU, the bottleneck is the I/O---that is, teh 
data transfer between main memory and disk. 



I/O-efficient algorithms

I/O-model [AV’88]
data on disk, arranged in blocks
I/O-operation = reading/writing one block from/to disk

I/O-efficiency: nb. I/O-operations

Basic I/O bounds

n=grid size     M=memory size     B=block size

scan(n) = Θ
( n

B

)

< sort(n) = Θ
( n

B
logM/B n/M

)

! n

In order to compute efficiently on large data one must optimize not only the CPU, but also the I/O. We use the now 
standard model for designing  I/O-efficient algorithms introduced by A&V. The model assumes data sits on disks 
arranged in blocks. In order to compute on an item the algorithm must load the corresponding block in memory.  This 
is an I/O operation --- reading or writing one block of data from/to disk. 

Notation: M memory size, B block size, n input size.  scanning .. sorting. 



Terrain data

Most often: grid terrain 
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TIN (triangulated polyhedral terrain)

(So, we want to compute visibility on terrains I/O-efficiently)

Terrains in GIS are represented mostly as grids --- these are matrices of elevation values sampled uniformly from the 
terrain. 

Terrains can also be represented as TIN (triangular irregular network), or triangulated polyhedral terrain in geometric 
terms. Each representation has its pros and cons. Grids have uniform resolution and some redundancy, but so far they 
are the most widely used. 



Visibility on grids

line-of-sight model
a grid cell with center q is visible from viewpoint v iff                                  
the line segment vq does not cross any cell that is above vq 

Assume we have a grid of elevations, and assume that each elevation represents the center of the cell. 

Let v be an arbitrary viewpoint, for simplicity in the figure its in the center of one of the cells of the grid. 
The LOS (line of sight) from v to a cell is the line from v to the center of the cell. 

We say that a cell is visible from v iff the LOS from v to the cell  does not cross any cell with higher slope ---
that is, if the LOS  does not intersect any other grid cell q’ such that slope of vq’ is higher than slope vq.

(see example)

(probably no time for this)
note: this model was introduced by van Kreveld, and was presumably used in related work as well. it is a discrete 
model , where a cell is either visible or not --- no partial visibility.  a corner of a high cell can hide another cell 
completely. 



Visibility: Related work

grids
straightforward algorithm O(n2)
O(n lg n) by van Kreveld
experimental 

Fisher [F93, F94], Franklin & Ray [FR94], Franklin [F02]
no worst-case guarantees

TINs
surveys:  de Floriani & Magillo [FM94], Cole & Sharir [CS89]
recently: watchtowers and terrain guarding [SoCG’05, 
SODA’06]

(go very fast on this)

Given a viewpoint, we want to compute a visibility grid, which for each cell it records whether it is visible or not (and if 
not, its vertical distance to visibility). 

To compute whether two points are visible takes O(n) (O(\sqrt n) on a square grid), and thus the straightforward way to 
compute the visibility grid  takes O(n^2) (O(n ^{3/2}) on a square grid). 
This was improved to nlgn by van Kreveld. 
There are quite a few experimental results on visibility ffrom the GIS community, they dont give worst-case guarantees. 

Surveys of visibility results on TINs are given by de Floriani and Magillo, and Cole and Sharir.  Various variations of the 
problems have been studied,  most recently  there are results on watchtowers and terrain guarding. 



van Kreveld’s algorithm

remember that to compute if two points are visible we need to find all cells intersected by the LOS and determine if any 
slope is higher than the slope of the LOS. 

Kreveld’s idea is to use a line sweep, rotating around the viewpoint, and to compute the visibility of a cell when the line 
passes over its center. 
Each cell has 3 associated events: when it is first intersected by the line, when its center is intersected,  and when it is 
last intersected by the sweep line.

The active structure maintains the cells intersected by the sweep line at any time. When a cell is intersected for the 1st 
time it is inserted in the active structure, when its intersected last it is deleted, and when its centerpoint is intersected 
the active str is queried to determine whether the cell is visible. 

For this the active structure is a binary search tree, where  cells intersected by the sweep line are stored in order of the 
distance of their centerpoint from v. Note that when a cell is queried, all cells that are intersected by the LOS are in the 
active structure, to the left of the cell.  If we augment the tree we can find the maximum slope to the left of a point in lg 
n time.  

time: 3n events, lg n time each -> n lg n. 



van Kreveld’s algorithm

remember that to compute if two points are visible we need to find all cells intersected by the LOS and determine if any 
slope is higher than the slope of the LOS. 

Kreveld’s idea is to use a line sweep, rotating around the viewpoint, and to compute the visibility of a cell when the line 
passes over its center. 
Each cell has 3 associated events: when it is first intersected by the line, when its center is intersected,  and when it is 
last intersected by the sweep line.

The active structure maintains the cells intersected by the sweep line at any time. When a cell is intersected for the 1st 
time it is inserted in the active structure, when its intersected last it is deleted, and when its centerpoint is intersected 
the active str is queried to determine whether the cell is visible. 

For this the active structure is a binary search tree, where  cells intersected by the sweep line are stored in order of the 
distance of their centerpoint from v. Note that when a cell is queried, all cells that are intersected by the LOS are in the 
active structure, to the left of the cell.  If we augment the tree we can find the maximum slope to the left of a point in lg 
n time.  

time: 3n events, lg n time each -> n lg n. 



van Kreveld’s algorithm

remember that to compute if two points are visible we need to find all cells intersected by the LOS and determine if any 
slope is higher than the slope of the LOS. 

Kreveld’s idea is to use a line sweep, rotating around the viewpoint, and to compute the visibility of a cell when the line 
passes over its center. 
Each cell has 3 associated events: when it is first intersected by the line, when its center is intersected,  and when it is 
last intersected by the sweep line.

The active structure maintains the cells intersected by the sweep line at any time. When a cell is intersected for the 1st 
time it is inserted in the active structure, when its intersected last it is deleted, and when its centerpoint is intersected 
the active str is queried to determine whether the cell is visible. 

For this the active structure is a binary search tree, where  cells intersected by the sweep line are stored in order of the 
distance of their centerpoint from v. Note that when a cell is queried, all cells that are intersected by the LOS are in the 
active structure, to the left of the cell.  If we augment the tree we can find the maximum slope to the left of a point in lg 
n time.  

time: 3n events, lg n time each -> n lg n. 



van Kreveld’s algorithm

remember that to compute if two points are visible we need to find all cells intersected by the LOS and determine if any 
slope is higher than the slope of the LOS. 

Kreveld’s idea is to use a line sweep, rotating around the viewpoint, and to compute the visibility of a cell when the line 
passes over its center. 
Each cell has 3 associated events: when it is first intersected by the line, when its center is intersected,  and when it is 
last intersected by the sweep line.

The active structure maintains the cells intersected by the sweep line at any time. When a cell is intersected for the 1st 
time it is inserted in the active structure, when its intersected last it is deleted, and when its centerpoint is intersected 
the active str is queried to determine whether the cell is visible. 

For this the active structure is a binary search tree, where  cells intersected by the sweep line are stored in order of the 
distance of their centerpoint from v. Note that when a cell is queried, all cells that are intersected by the LOS are in the 
active structure, to the left of the cell.  If we augment the tree we can find the maximum slope to the left of a point in lg 
n time.  

time: 3n events, lg n time each -> n lg n. 



van Kreveld’s algorithm

remember that to compute if two points are visible we need to find all cells intersected by the LOS and determine if any 
slope is higher than the slope of the LOS. 

Kreveld’s idea is to use a line sweep, rotating around the viewpoint, and to compute the visibility of a cell when the line 
passes over its center. 
Each cell has 3 associated events: when it is first intersected by the line, when its center is intersected,  and when it is 
last intersected by the sweep line.

The active structure maintains the cells intersected by the sweep line at any time. When a cell is intersected for the 1st 
time it is inserted in the active structure, when its intersected last it is deleted, and when its centerpoint is intersected 
the active str is queried to determine whether the cell is visible. 

For this the active structure is a binary search tree, where  cells intersected by the sweep line are stored in order of the 
distance of their centerpoint from v. Note that when a cell is queried, all cells that are intersected by the LOS are in the 
active structure, to the left of the cell.  If we augment the tree we can find the maximum slope to the left of a point in lg 
n time.  

time: 3n events, lg n time each -> n lg n. 



van Kreveld’s algorithm

remember that to compute if two points are visible we need to find all cells intersected by the LOS and determine if any 
slope is higher than the slope of the LOS. 

Kreveld’s idea is to use a line sweep, rotating around the viewpoint, and to compute the visibility of a cell when the line 
passes over its center. 
Each cell has 3 associated events: when it is first intersected by the line, when its center is intersected,  and when it is 
last intersected by the sweep line.

The active structure maintains the cells intersected by the sweep line at any time. When a cell is intersected for the 1st 
time it is inserted in the active structure, when its intersected last it is deleted, and when its centerpoint is intersected 
the active str is queried to determine whether the cell is visible. 

For this the active structure is a binary search tree, where  cells intersected by the sweep line are stored in order of the 
distance of their centerpoint from v. Note that when a cell is queried, all cells that are intersected by the LOS are in the 
active structure, to the left of the cell.  If we augment the tree we can find the maximum slope to the left of a point in lg 
n time.  

time: 3n events, lg n time each -> n lg n. 



van Kreveld’s algorithm

remember that to compute if two points are visible we need to find all cells intersected by the LOS and determine if any 
slope is higher than the slope of the LOS. 

Kreveld’s idea is to use a line sweep, rotating around the viewpoint, and to compute the visibility of a cell when the line 
passes over its center. 
Each cell has 3 associated events: when it is first intersected by the line, when its center is intersected,  and when it is 
last intersected by the sweep line.

The active structure maintains the cells intersected by the sweep line at any time. When a cell is intersected for the 1st 
time it is inserted in the active structure, when its intersected last it is deleted, and when its centerpoint is intersected 
the active str is queried to determine whether the cell is visible. 

For this the active structure is a binary search tree, where  cells intersected by the sweep line are stored in order of the 
distance of their centerpoint from v. Note that when a cell is queried, all cells that are intersected by the LOS are in the 
active structure, to the left of the cell.  If we augment the tree we can find the maximum slope to the left of a point in lg 
n time.  

time: 3n events, lg n time each -> n lg n. 



van Kreveld’s algorithm

remember that to compute if two points are visible we need to find all cells intersected by the LOS and determine if any 
slope is higher than the slope of the LOS. 

Kreveld’s idea is to use a line sweep, rotating around the viewpoint, and to compute the visibility of a cell when the line 
passes over its center. 
Each cell has 3 associated events: when it is first intersected by the line, when its center is intersected,  and when it is 
last intersected by the sweep line.

The active structure maintains the cells intersected by the sweep line at any time. When a cell is intersected for the 1st 
time it is inserted in the active structure, when its intersected last it is deleted, and when its centerpoint is intersected 
the active str is queried to determine whether the cell is visible. 

For this the active structure is a binary search tree, where  cells intersected by the sweep line are stored in order of the 
distance of their centerpoint from v. Note that when a cell is queried, all cells that are intersected by the LOS are in the 
active structure, to the left of the cell.  If we augment the tree we can find the maximum slope to the left of a point in lg 
n time.  

time: 3n events, lg n time each -> n lg n. 



van Kreveld’s algorithm
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van Kreveld’s algorithm
-in external memory-

requires 4 structures in memory
input elevation grid:  stored in row-column order, read in sweep order
output visibility grid: stored in row-column order, written in sweep order
event list
status structure

This algorithm is not efficient in external memory.  

It requires 4 structures to be in memory: elevation grid, visibility grid, event list and status structure. The grids are 
stored in row-major order, and are accessed in rotational order. As you can see from the figure, there is some locality,  
but overall, it requires one I/O per element. 

When n is larger than M, as we’ll see from the experimental section, the algorithm starts thrashing. 



van Kreveld’s algorithm
-in external memory-

requires 4 structures in memory
input elevation grid:  stored in row-column order, read in sweep order
output visibility grid: stored in row-column order, written in sweep order
event list
status structure

B B B

B B B

..

..

..

This algorithm is not efficient in external memory.  

It requires 4 structures to be in memory: elevation grid, visibility grid, event list and status structure. The grids are 
stored in row-major order, and are accessed in rotational order. As you can see from the figure, there is some locality,  
but overall, it requires one I/O per element. 

When n is larger than M, as we’ll see from the experimental section, the algorithm starts thrashing. 



van Kreveld’s algorithm
-in external memory-

requires 4 structures in memory
input elevation grid:  stored in row-column order, read in sweep order
output visibility grid: stored in row-column order, written in sweep order
event list
status structure

B B B

B B B

..

..

..

B B B

B B B

..

..

..

This algorithm is not efficient in external memory.  

It requires 4 structures to be in memory: elevation grid, visibility grid, event list and status structure. The grids are 
stored in row-major order, and are accessed in rotational order. As you can see from the figure, there is some locality,  
but overall, it requires one I/O per element. 

When n is larger than M, as we’ll see from the experimental section, the algorithm starts thrashing. 



van Kreveld’s algorithm
-in external memory-

requires 4 structures in memory
input elevation grid:  stored in row-column order, read in sweep order
output visibility grid: stored in row-column order, written in sweep order
event list
status structure

B B B

B B B

..

..

..

B B B

B B B

..

..

..

if n > M:  O(1) I/O per element,  O(n) I/Os total

This algorithm is not efficient in external memory.  

It requires 4 structures to be in memory: elevation grid, visibility grid, event list and status structure. The grids are 
stored in row-major order, and are accessed in rotational order. As you can see from the figure, there is some locality,  
but overall, it requires one I/O per element. 

When n is larger than M, as we’ll see from the experimental section, the algorithm starts thrashing. 



van Kreveld’s algorithm
-in external memory-

requires 4 structures in memory
input elevation grid:  stored in row-column order, read in sweep order
output visibility grid: stored in row-column order, written in sweep order
event list
status structure

B B B

B B B

..

..

..

B B B

B B B

..

..

..

if n > M:  O(1) I/O per element,  O(n) I/Os total

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 1e+06  1e+07  1e+08

Ti
m

e 
[m

icr
os

ec
]/p

oi
nt

Grid size [number of points]

 

kreveld 1GB
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Our results

The visibility grid of an arbitrary viewpoint on a grid of size n can be 
computed with O(n) space and O(sort(n)) I/Os

Experimental evaluation
ioviewshed
standard algorithm (Kreveld)
visibility algorithm in GRASS GIS

n = grid size    M=memory    size B=block size

(go very fast)

We give an algorithm to compute the visibility grid in sort(n) I/Os and an experimental evaluation to test it. We  compare it with van 
Kreveld’s algorithm and a module that computes visibility from GRASS GIS.  



Computing visibility 
in external memory

Distribution sweeping [GTVV FOCS93]
divide input in M/B sectors each containing an equal nb of points
solve each sector recursively
handle sector interactions

(go very fast)

The algorithm is based on distribution sweeping, which was introduced by Goodrich, Tsay, Vengroff and Vitter. 

The idea is to [read slide]



The base case

usually, stop recursion when n < M
our idea:  stop when status structure fits in memory 

run modified Kreveld
elevation grid: encode elevation in event

event list: store events in a sorted stream on disk 

visibility grid: when determining visibility of a cell, write it to a stream.    
Sort the stream at the end to get visibility grid

total: O(sort(n)) I/Os

Usually, the recursion stops when the problem fits in memory. 
In this case, we stop it earlier, when the status structure fits in memory. 
At this point (note that the problem will not fit in memory), we run a modified version of Kreveld. 

That is: 
1 we get rid of elevation grid and encode elevation in events 
2. store the events in a stream on disk 
3. we assemble the visibility grid only at the end

for all these we use streams and i/o-efficient sorting. 
Assuming the status structure fits in memory, then this uses sort(n) I/Os. 



The recursion

cell <--> {start, end, query}
3n events

Now the recursion: 

remember each cell has 3 events, in total 3n. 



The recursion

divide events into O(M/B) sectors of equal size
                    recursion levels

if O(scan(n)) per recursion level 
-->  overall

O(logM/B n)

scan(n) · O(logM/B n) = O(sort(n))

we divide these events into M/B sectors of equal size.  We compute visibility recursively in each sector, and this gives O
() recursion levels (well, assuming we dont blow up space).

If we spend scan(n) per level, then overall we get the promised sort(n) bound. 



The recursion:
Distributing events to sectors

query points
narrow cells:    crossing at most one sector boundary
wide cells:       crossing at least two sector boundaries

Given the list of events sorted in rotational sweep order, we can find the sector boundaries easily. Knowing the 
boundaries, we have to distribute the events to sectors: 

- for query points, this is trivial. 
- there are two types of cells: cells that fall completely within a sector or cross a single boundary. We call these narrow 
cells. 
And cells that span completely more than one sector. we call these wide cells. 



The recursion:
Distributing events to sectors

narrow cells
cut and insert in both sectors

Narrow cells: if completely within a sector, insert  in that scetor.  Otherwise cut in two, and insert each piece in the 
appropriate sector. 
(this keeps space linear)

The harder part is to handle wide cells -- we cannot cut a wide cell and insert it in each spanned sector because space 
would blow up.

The observation here is...[ read slide]

Therefore,  what we do is ..... [read slide]



The recursion:
Distributing events to sectors

narrow cells
cut and insert in both sectors

wide cells 
cannot insert cell in each sector spanned (space blow-up)
the visibility of a cell is determined by 

the highest of all wide cells that span the sector and 
are closer to the viewpoint
all narrow cells in the sector that are closer to the 
viewpoint

for each sector, process wide cells spanning the sector 
interleaved with query points and narrow cells in the 
sector,  in increasing order of their distance form viewpoint 
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input: event list in concentric order Ec and in radial order Er

radial sweep: scan Er

find sector boundaries
compute a list Er of events in each sector

concentric sweep: scan Ec

 for each sector
keep a block of events in memory
maintain the currently highest wide cell spanning the sector, HighS

if next event in Ec is
wide cell:  for each sector spanned, update HighS for that sector
narrow cell: if it is not occluded by HighS, insert in the buffer of sector.                              
Otherwise skip it.
query point:  if it is not occluded by HighS, insert it in the buffer of sector. 
Otherwise, mark it as invisible and output it.

recurse on each sector

The recursion

O(scan(n)) per recursion level -> O(sort(n)) total

This is the overall algorithm.



Experimental results

kreveld
C
uses virtual memory system

ioviewshed
C++
uses an I./O core derived from TPIE library

GRASS visibility module
O(n2) straightforward algorithm
GRASS segment library for virtual memory management
bypass the VMS, manage data allocation and de-allocation in 
segments on disk
program will always run (no malloc() fails) but ... slow

(I expect only 2-3 minutes will be left at this point. should be enough.)

And now i’ll briefly go over the experimental results. 
We implemented kreveld and the ioefficient algorithm.  we compare also with a module to compute visibility from the 
open-source GRASS GIS. the module uses the straightforward algorithm , but handles virtual memory using its own VMS 
library. Because o fthis it has a significant bottleneck.



Experimental results

Experimental Platform
Apple Power Macintosh G5
Dual 2.5 GHz processors
512 KB L2 cache
1 GB RAM

Dataset Grid Size
(million elements)

MB 
(Grid Only)

Valid
size

Kaweah 1.6 6 56%

Puerto Rico 5.9 24 19%

Sierra Nevada 9.5 38 96%

Hawaii 28.2 112 7%

Cumberlands 67 268 27%

Lower New 
England 77.8 312 36%

Midwest USA 280 1100 86%

Washington 1066 4264 95%

for the experiments we used G5s with 1GB RAM  and test grids ranging from 1.6 M cells to 280 M ce
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These are the results for 1GB RAM. 

x-axis shows grid size log-scale. 
Left figure shows total running time, log scale. 
Right figure shows running time per grid point (on a regular scale).

we see that GRASS module is very slow, even for small sets.

kreveld is fast if n<M , which is the case for the smallest 3 datasets. It starts thrashing onn the 4th smallest, Hawaii. its 
time per poitn jump to 25 microseconds, and CPU usage drops to 39%. Then on Cumberlands, kreveld cannot complete 
because of malloc fails. 

ioviewshed on the other hand, scales nicely and finishes the 4GB dataset in 4.5 hours. In all experiments, the status 
structure fits in memory and it does not go into recursion. 

note: ioviewshed is slower than kreveld for small n. Of course, the implementation checks whether n<M and if so, it runs 
kreveld straihght.
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malloc() fails on Cumberlands

ioviewshed
finishes Washington in 4.5 hours
in practice status structure fits in memory, never enters recursion

total time (seconds) microseconds per grid point

These are the results for 1GB RAM. 

x-axis shows grid size log-scale. 
Left figure shows total running time, log scale. 
Right figure shows running time per grid point (on a regular scale).

we see that GRASS module is very slow, even for small sets.

kreveld is fast if n<M , which is the case for the smallest 3 datasets. It starts thrashing onn the 4th smallest, Hawaii. its 
time per poitn jump to 25 microseconds, and CPU usage drops to 39%. Then on Cumberlands, kreveld cannot complete 
because of malloc fails. 

ioviewshed on the other hand, scales nicely and finishes the 4GB dataset in 4.5 hours. In all experiments, the status 
structure fits in memory and it does not go into recursion. 

note: ioviewshed is slower than kreveld for small n. Of course, the implementation checks whether n<M and if so, it runs 
kreveld straihght.



1GB RAM

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+06  1e+07  1e+08  1e+09  1e+10

Ru
nn

in
g 

tim
e 

[s
ec

]

Grid size [number of points]

1GB RAM

r.los
kreveld

ioviewshed

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 1e+06  1e+07  1e+08  1e+09  1e+10

Ti
m

e 
[m

icr
os

ec
]/p

oi
nt

Grid size [number of points]

1GB RAM

kreveld
ioviewshed

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+06  1e+07  1e+08  1e+09  1e+10

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

Grid size [number of points]

1GB RAM

r.los
kreveld

ioviewshed

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1e+06  1e+07  1e+08  1e+09  1e+10

T
im

e
 [
m

ic
ro

s
e
c
]/
p
o
in

t

Grid size [number of points]

1GB RAM

kreveld
ioviewshed

Figure 5: Running time of r.los, kreveld and ioviewshed at 1 GB RAM. (a) Total. (b) Per item.

Data set r.los kreveld ioviewshed

Kaweah 2 928 8 (100 %) 13 (84 %)
Puerto Rico 78 778 38 (100 %) 53 (78 %)
Sierra Nevada 16 493 80 (95 %) 102 (67 %)
Hawaii >1 200 000 736 (39 %) 353 (63 %)
Cumberlands malloc fails 791 (63 %)
LowerNE 865 (64 %)
Midwest USA 3 546 (64 %)
Washington 16 895 (68 %)

Table 3: Running times (seconds) and CPU-utilization (in parentheses) at 1 GB RAM.

Data set r.los kreveld ioviewshed

Kaweah 2 984 7 (100 %) 13 (77 %)
Puerto Rico 78 941 112 (38 %) 66 (60 %)
Sierra Nevada 19 140 211 (29 %) 115 (57 %)
Hawaii >1 200 000 1270 (27 %) 364 (63 %)
Cumberlands malloc fails 768 (62 %)
LowerNE 916 (62 %)
Midwest USA 4 631 (52 %)
Washington 40 734 (30 %)

Table 4: Running times (seconds) and CPU-utilization (in parentheses) at 256 MB RAM.

total time (seconds) microseconds per grid point

(this shows running times, skip. use it only if there are specific questions)



256MB RAM

kreveld starts thrashing earlier (Puerto Rico, 38% CPU)
ioviewshed slowdown on Washington dataset 

due 90% to sorting 
can be improved using customized I/O sorting [TPIE, STXXL]
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(not sure if there will be time for this, but i included it just in case)

We also ran experiments rebooting the machines with 256MB RAM (to simulate the effect of larger datasets). 

Basically things are similar, just that the crossover point between kreveld and ioviewshed moves to the left.  kreveld 
starts thrashing earlier, on Puerto Rico dataset). 

(note: the space used by kreveld for a grid of size n is 44 bytes per grid point. so 44 x  6 million points in puertorico = 
256MB)

ioviewshed slows down on the largest dataset, and 90% of teh running time goes in sorting. We expect the time will be 
improved using a customized I/O library. 
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Figure 5: Running time of r.los, kreveld and ioviewshed at 1 GB RAM. (a) Total. (b) Per item.

Data set r.los kreveld ioviewshed

Kaweah 2 928 8 (100 %) 13 (84 %)
Puerto Rico 78 778 38 (100 %) 53 (78 %)
Sierra Nevada 16 493 80 (95 %) 102 (67 %)
Hawaii >1 200 000 736 (39 %) 353 (63 %)
Cumberlands malloc fails 791 (63 %)
LowerNE 865 (64 %)
Midwest USA 3 546 (64 %)
Washington 16 895 (68 %)

Table 3: Running times (seconds) and CPU-utilization (in parentheses) at 1 GB RAM.

Data set r.los kreveld ioviewshed

Kaweah 2 984 7 (100 %) 13 (77 %)
Puerto Rico 78 941 112 (38 %) 66 (60 %)
Sierra Nevada 19 140 211 (29 %) 115 (57 %)
Hawaii >1 200 000 1270 (27 %) 364 (63 %)
Cumberlands malloc fails 768 (62 %)
LowerNE 916 (62 %)
Midwest USA 4 631 (52 %)
Washington 40 734 (30 %)

Table 4: Running times (seconds) and CPU-utilization (in parentheses) at 256 MB RAM.

(skip, use only if specific questions)



1GB vs. 256MB RAM
kreveld
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kreveld 256MB
kreveld 1GB
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kreveld 256MB
kreveld 1GB

total time (seconds) microseconds per grid point

starts thrashing earlier 
1GB: Hawai, 39% CPU
256MB: Puerto Rico 38% CPU

Kaweah 1.6 6 56%

Puerto Rico 5.9 24 19%

Sierra 
Nevada 9.5 38 96%

Hawaii 28.2 112 7%

Cumberlands 67 268 27%

Lower New 
England 77.8 312 36%

Midwest 280 1100 86%

Washington 1066 4264 95%

skip? 
This shows the effect of RAM (1GB and 256MB RAM) for kreveld. 

Notice the slowdown. 



slowdown on Washington dataset 
due 90% to sorting 
can be improved using a customized I/O sorting [TPIE, STXXL]

1GB vs. 256MB RAM
ioviewshed

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+06  1e+07  1e+08  1e+09  1e+10

Ru
nn

in
g 

tim
e 

[s
ec

]

Grid size [number of points]

 

ioviewshed 256MB
ioviewshed 1GB
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ioviewshed 256MB
ioviewshed 1GB

total time (seconds) microseconds per grid point

Kaweah 1.6 6 56%

Puerto Rico 5.9 24 19%

Sierra 
Nevada 9.5 38 96%

Hawaii 28.2 112 7%

Cumberlands 67 268 27%

Lower New 
England 77.8 312 36%

Midwest 280 1100 86%

Washington 1066 4264 95%

skip?
Same, for ioviewshed. 



Conclusion

ioviewshed
theoretically worst-case optimal algorithm

in practice status structure fits in memory
with extended base case it never enters recursion

scalable 
can process grids that are out of scope with traditional algorithm



Thank you.


