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¢ Problem: visibility map (viewshed) of v
“terrain T
¢ arbitrary viewpoint v
¢ the set of points in T visible from v

Sierra Nevada, 30m resolution



¢ Problem: visibility map (viewshed) of v
¢terrain T
¢ arbitrary viewpoint v
¢ the set of points in T visible from v

¢ Applications
- graphics
- games
- GIS
-military applications, path planning, navigation
- placement of fire fowers, radar sites, cell phone fowers
(terrain guarding)




¢ Why massive ferrains?
< Large amounts of data are becoming available
*NASA SRTM project: 30m resolution over the entire globe
(T10TB)
¢ LIDAR data: sub-meter resolution

¢ Traditional algorithms don't scale
*Buy more RAM?
-Data grows faster than memory
< Data on disk
< Disks are MUCH slower than memory

¢ => I/O-bottleneck




¢ I/0O-model [AV'88]
*Data on disk, arranged in blocks
¢ I/O-operation = reading/writing one block from/to disk

n=input size =~ M=memory size = B=block size

¢ I/O-complexity: nb. I/O-operations

¢ Basic I/0 bounds
n
scan(n) = © ( sort(n) = © <§ log a5 n/M)




often: grid terrain




¢ Line-of-sight model
< a grid cell with centfer q is visible from viewpoint v iff
the line segment vq does not cross any cell that is above vq

i.
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e Grids
< straightforward algorithm O(n?)
<O(n lg n) by van Kreveld
© experimental
< Fisher [F93, F94], Franklin & Ray [FR94],
Franklin [FO2]

“no worst-case guarantees

¢ TINs
-surveys: de Floriani & Magillo [FM94], Cole &
Sharir [CS89]
- recently: watchtowers and terrain guarding
[SoCG'05, SODA06]
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van Kreveld's algorithm
-in external memory-




¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure




¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure




¢ Requires 4 structures in memory
¢input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure
¢ (2(1) I/0O per cell, Q(n) I/Os total

B B B
B B B




¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure
e (1) I/0 per cell, ©(n) 1/Os total

B B B
B B B

kreveld 1GB

Time [microsec]/point

Grid size [number of points]




¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure
e (1) I/0 per cell, ©(n) 1/Os total

B B B
B B B

kreveld 1GB

Time [microsec]/point

Grid size [number of points]




n = grid size M=memory size size B=block size

¢ The visibility grid of an arbitrary viewpoint on a grid of size n can
be computed with O(n) space and O(sort(n)) I/Os

¢ Experimental evaluation
< ioviewshed
- standard algorithm (Kreveld)
- visibility algorithm in GRASS GIS




¢ Distribution sweeping [GTVV FOCS93]
< divide input in M/B sectors each containing an equal nb. of points
¢solve each sector recursively
¢ handle sector interactions




¢ Usually, stop recursion when n < M
¢ Our idea: stop when status structure fits in memory

¢ Run modified Kreveld
< elevation grid: encode elevation in event

¢ event list: store events in a sorted stream on disk

- visibility grid: when determining visibility of a cell, write it to a
stream. Sort the stream at the end to get visibility grid

¢ Total: O(sort(n)) I/0s
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The recursion:
Distributing events fo sectors
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The recursion:
Distributing events fo sectors

¢ narrow cells
¢ cut and insert in both sectors




¢ narrow cells
¢ cut and insert in both sectors

* wide cells
< the visibility of a cell is determined by
< all narrow cells in its sector that are closer
to the viewpoint
¢ the highest of all wide cells that span the
sector and are closer to the viewpoint
¢ concentric sweep
¢ process wide cells spanning the sector
interleaved with query points and narrow cells
in the sector




¢ Input: event list in concentric order E. and in radial order E;

¢ Radial sweep: scan E; \.
¢ find sector boundaries §\§X

<
X Q\\

¢ Concentric sweep: scan E. \X\\S\%\
< for each sector v
< keep a block of events in memory
*maintain the current highest wide cell spanning the sector, Highs
¢if next event in Ec is
-narrow cell: if it is not occluded by Highs, insert in the buffer of
sector. Otherwise skip ift.
-wide cell: for each sector spanned, update Highs
- query point: if it is not occluded by Highs, insert it in the buffer
of sector. Otherwise, mark it as invisible and output it.
¢Recurse on each sector




Experimental results




¢ Kreveld
2uses virtual memory system

¢ joviewshed
°C++
-uses an I/O core derived from TPIE library

¢ GRASS visibility module
= O(n?) straightforward algorithm
-uses GRASS library for virtual memory management
- program will always run (no malloc() fails) but ... slow




Grid Size MB
(million elements)  (Grid Only)

Kaweah 1.6 7

Dataset

Sierra Nevada 9.5 40

¢ Experimental Platform

. App[e Power Mac G5 Cumberlands 67

“Dual 2.5 GHz processors
=512 KB L2 cache il
<1 GB RAM

Lower New

East Coast USA

Midwest USA

Washington




¢ Sierra Nevada, 30m resolution, 40MB




¢ East-Coast USA, 30m resolution, 983 MB
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¢ GRASS
- program always runs (no malloc() failures) but is very slow
¢ kreveld
- starts thrashing on Cumberlands (75% CPU)
- malloc() fails on East-Coast USA
¢ joviewshed
- finishes Washington in 3.3 hours




total time (seconds) microseconds per grid point
1GB RAM 1GB RAM

1e+06 T T 70

kreveld -+
kreveld - oo ioviewshed ---*--
100000 ioviewshed ----- 60

rlos ——

10000 20

40
1000
30

100

Running time [sec]

20

Time [microsec]/point

10
10

1 1 1
100000  1e+06 1e+07 1e+08 1e+09 1e+10 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Valid grid size [number of points] Valid grid size [number of points]

Kaweah 2928 1
Sierra Nevada 16493 Ho (
Cumberlands >1200000 h38 (T8'%
LowerNE 1226 (T2%
East-Coast USA malloc fails
Horn of Africa

Midwest USA

Washington

Data set r.los kraveld ioviewshed

{
{

Table II. Running times (seconds) and CPU-utilization {in parentheses) at 1 GB
RAM.
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- kreveld starts thrashing earlier (Sierra, 33% CPU)
- ioviewshed scales up
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Table IV. Running times (seconds) and CPU-utilization
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- increase due to sorting
- may be optimized using customized sorting (STXXL)
- in practice status structure fits in memory, never enters recursion
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¢ I/O-efficient visibility computation
 Theoretically worst-case optimal algorithm

¢ Scalable
< Can process grids that are out of scope with traditional
algorithm

< Empirical finding:
-diagonal of dataset fits in memory
< extended base case, no recursion necessary

¢ O(sort(n)) I/Os in cache-oblivious model




Thank you.




