Herman Haverkort Laura Toma Yi Zhuang

TU. Eindhoven Bowdoin College
Netherlands USA

¢ Problem: visibility map (viewshed) of v
“terrain T
¢ arbitrary viewpoint v
¢ the set of points in T visible from v

Sierra Nevada, 30m resolution

¢ Problem: visibility map (viewshed) of v
¢terrain T
¢ arbitrary viewpoint v
¢ the set of points in T visible from v

¢ Applications
- graphics
- games
- GIS
-military applications, path planning, navigation
- placement of fire fowers, radar sites, cell phone fowers
(terrain guarding)

¢ Why massive ferrains?
< Large amounts of data are becoming available
*NASA SRTM project: 30m resolution over the entire globe
(T10TB)
¢ LIDAR data: sub-meter resolution

¢ Traditional algorithms don't scale
*Buy more RAM?
-Data grows faster than memory
< Data on disk
< Disks are MUCH slower than memory

¢ => I/O-bottleneck

¢ I/0O-model [AV'88]
*Data on disk, arranged in blocks
¢ I/O-operation = reading/writing one block from/to disk

n=input size =~ M=memory size = B=block size

¢ I/O-complexity: nb. I/O-operations

¢ Basic I/0 bounds
n
scan(n) = © (sort(n) = © <§ log a5 n/M)

often: grid terrain

¢ Line-of-sight model
< a grid cell with centfer q is visible from viewpoint v iff
the line segment vq does not cross any cell that is above vq

i.

36

e Grids
< straightforward algorithm O(n?)
<O(n lg n) by van Kreveld
© experimental
< Fisher [F93, F94], Franklin & Ray [FR94],
Franklin [FO2]

“no worst-case guarantees

¢ TINs
-surveys: de Floriani & Magillo [FM94], Cole &
Sharir [CS89]
- recently: watchtowers and terrain guarding
[SoCG'05, SODA06]

van Krevelds algorithm

van Krevelds algorithm

van Krevelds algorithm

van Krevelds algorithm

van Krevelds algorithm

| -'>
\’\\

__qu____ N

ANN

van Krevelds algorithm

| -'>
\’\\

__qu____ N

ANN

van Kreveld's algorithm
-in external memory-

¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure

¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure

¢ Requires 4 structures in memory
¢input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure
¢ (2(1) I/0O per cell, Q(n) I/Os total

B B B
B B B

¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure
e (1) I/0 per cell, ©(n) 1/Os total

B B B
B B B

kreveld 1GB

Time [microsec]/point

Grid size [number of points]

¢ Requires 4 structures in memory
“input elevation grid, output visibility grid
¢ stored in row-major order, accessed in rotational order
¢ event list
¢ active structure
e (1) I/0 per cell, ©(n) 1/Os total

B B B
B B B

kreveld 1GB

Time [microsec]/point

Grid size [number of points]

n = grid size M=memory size size B=block size

¢ The visibility grid of an arbitrary viewpoint on a grid of size n can
be computed with O(n) space and O(sort(n)) I/Os

¢ Experimental evaluation
< ioviewshed
- standard algorithm (Kreveld)
- visibility algorithm in GRASS GIS

¢ Distribution sweeping [GTVV FOCS93]
< divide input in M/B sectors each containing an equal nb. of points
¢solve each sector recursively
¢ handle sector interactions

¢ Usually, stop recursion when n < M
¢ Our idea: stop when status structure fits in memory

¢ Run modified Kreveld
< elevation grid: encode elevation in event

¢ event list: store events in a sorted stream on disk

- visibility grid: when determining visibility of a cell, write it to a
stream. Sort the stream at the end to get visibility grid

¢ Total: O(sort(n)) I/0s

The recursion

The recursion

The recursion:
Distributing events fo sectors

7
’
-
d <
-
% |

The recursion:
Distributing events fo sectors

¢ narrow cells
¢ cut and insert in both sectors

¢ narrow cells
¢ cut and insert in both sectors

* wide cells
< the visibility of a cell is determined by
< all narrow cells in its sector that are closer
to the viewpoint
¢ the highest of all wide cells that span the
sector and are closer to the viewpoint
¢ concentric sweep
¢ process wide cells spanning the sector
interleaved with query points and narrow cells
in the sector

¢ Input: event list in concentric order E. and in radial order E;

¢ Radial sweep: scan E; \.
¢ find sector boundaries §\§X

<
X Q\\

¢ Concentric sweep: scan E. \X\\S\%\
< for each sector v
< keep a block of events in memory
*maintain the current highest wide cell spanning the sector, Highs
¢if next event in Ec is
-narrow cell: if it is not occluded by Highs, insert in the buffer of
sector. Otherwise skip ift.
-wide cell: for each sector spanned, update Highs
- query point: if it is not occluded by Highs, insert it in the buffer
of sector. Otherwise, mark it as invisible and output it.
¢Recurse on each sector

Experimental results

¢ Kreveld
2uses virtual memory system

¢ joviewshed
°C++
-uses an I/O core derived from TPIE library

¢ GRASS visibility module
= O(n?) straightforward algorithm
-uses GRASS library for virtual memory management
- program will always run (no malloc() fails) but ... slow

Grid Size MB
(million elements) (Grid Only)

Kaweah 1.6 7

Dataset

Sierra Nevada 9.5 40

¢ Experimental Platform

. App[e Power Mac G5 Cumberlands 67

“Dual 2.5 GHz processors
=512 KB L2 cache il
<1 GB RAM

Lower New

East Coast USA

Midwest USA

Washington

¢ Sierra Nevada, 30m resolution, 40MB

¢ East-Coast USA, 30m resolution, 983 MB

Running time [sec]

total time (seconds)
1GB RAM

1e+06

100000

10000

1000

100

10

1

rlos ——

kreveld - P
ioviewshed ---*--

Time [microsec]/point

100000

1e+06 1e+07 1e+08 1e+09
Valid grid size [number of points]

1e+10

70

microseconds per grid point
1GB RAM

60

50

40

30

20

10

kreveld -+
ioviewshed ---x--

100000

1e+06 1e+07 1e+08 1e+09
Valid grid size [number of points]

1e+10

total time (seconds) microseconds per grid point
1GB RAM 1GB RAM

1e+06 . . . 70 .

rlos —— kreveld -+
kreveld -+ ioviewshed ---x--
100000 ioviewshed ----- 60

10000 20

40
1000

30
100

Running time [sec]
Time [microsec]/point

20
10

w 10

1 1 1 1 1
100000 1e+06 1e+07 1e+08 1e+09 1e+10 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Valid grid size [number of points] Valid grid size [number of points]

¢ GRASS
- program always runs (no malloc() failures) but is very slow
¢ kreveld
- starts thrashing on Cumberlands (75% CPU)
- malloc() fails on East-Coast USA
¢ joviewshed
- finishes Washington in 3.3 hours

total time (seconds) microseconds per grid point
1GB RAM 1GB RAM

1e+06 T T 70

kreveld -+
kreveld - oo ioviewshed ---*--
100000 ioviewshed ----- 60

rlos ——

10000 20

40
1000
30

100

Running time [sec]

20

Time [microsec]/point

10
10

1 1 1
100000 1e+06 1e+07 1e+08 1e+09 1e+10 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Valid grid size [number of points] Valid grid size [number of points]

Kaweah 2928 1
Sierra Nevada 16493 Ho (
Cumberlands >1200000 h38 (T8'%
LowerNE 1226 (T2%
East-Coast USA malloc fails
Horn of Africa

Midwest USA

Washington

Data set r.los kraveld ioviewshed

{
{

Table II. Running times (seconds) and CPU-utilization {in parentheses) at 1 GB
RAM.

total time (seconds) microseconds per grid point
256 MB RAM 256 MB RAM

1e+06 . . . 70 . . .
rlos —— kreveld -+
kreveld -+ ioviewshed ---x--
100000 ioviewshed ---x-- 60 ;

50

/'X

10000

40
1000

30
100

Running time [sec]
Time [microsec]/point

20

R
B
Bgta
Pt
L
g
23

" 10

1 1 1 1 1
100000 1e+06 1e+07 1e+08 1e+09 1e+10 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Valid grid size [number of points] Valid grid size [number of points]

- kreveld starts thrashing earlier (Sierra, 33% CPU)
- ioviewshed scales up

Running time [sec]

total time (seconds)
256 MB RAM

1e+06 T r

100000

10000

1000

100

10

rlos ——

kreveld -
ioviewshed --

o=f Moo

odboasno

Time [microsec]/point

1 1 1
100000 1e+06 1e+07 1e+08 1e+09

Valid grid size [number of points]

Data set
Kaweah

Sierra Nevada
Cumberlands
LowerNE
East-Coast USA
Horn of Africa
Midwest USA

Washingron

Table IV. Running times (seconds) and CPU-utilization

RAM.

1e+10

~

r.los
3177
19 140

=1200000

microseconds per grid point
256 MB RAM

70

60

50

40

30

20

10

kreveld -+
ioviewshed ---*--

100000

kreveld
6 (94%)
288 (33%%)
932 (52%)
1776 (56%%)

zalloc fails

1e+06 1e+07 1e+08 1e+09
Valid grid size [number of points]

ioviewshed
6 (86 %

ar (53 %
224 (63 %
370 (5%
1254 (49%
26l

RS Y

)
a0 |

290 (525
Ll

18717

(in parentheses) at 256 MB

1e+10

Running time [sec]

total time (seconds)

1e+06

100000

10000

1000

100

10

+

krevelci 256MB —<—
kreveld 1GB -+

Time [microsec]/point

1
100000

1e+06

1e+07

Valid grid size [number of points]

1e+08

Kaweah
Sierra Nevada

Cumberlands

Lower New
England

East Coast USA
Midwest USA

Washington

microseconds per grid point

70

60

50

40

30

20

10

kreveld 256MB —x—
kreveld 1G

100000

Valid grid size [number of points]

o
o)
&
o
£
=
o
£
c
c
=]
o

1e+06

total time (seconds)

100000

10000

1000

100

10

1

ioviewshed 256MB ——
ioviewshed 1GB -+

Time [microsec]/point

100000

1e+06 1e+07 1e+08 1e+09
Valid grid size [number of points]

- increase due to sorting
- may be optimized using customized sorting (STXXL)
- in practice status structure fits in memory, never enters recursion

1e+10

70

Kaweah
Sierra Nevada

Cumberlands

Lower New
England

East Coast USA
Midwest USA

Washington

microseconds per grid point

60

50

40

30

20

10

ioviewshed 256MB ——
ioviewshed 1GB -+

100000

1e+06 1e+07 1e+08 1e+09
Valid grid size [number of points]

1e+10

¢ I/O-efficient visibility computation
 Theoretically worst-case optimal algorithm

¢ Scalable
< Can process grids that are out of scope with traditional
algorithm

< Empirical finding:
-diagonal of dataset fits in memory
< extended base case, no recursion necessary

¢ O(sort(n)) I/Os in cache-oblivious model

Thank you.

