|/O-Efficient Algorithms

on
Near-Planar Graphs

LATIN 2006
Valdivia, Chile

Herman Haverkort
Eindhoven University, NL

Bowdoin College, USA

|/O-Efficient Graph Algorithms:
Motivation

® Massive graphs
® GIS (Geographic Information Systems)
® ‘Terabytes of data; e.g. NASA SRTM project, LIDAR data
® Terrains modeled as triangulations, contour lines, or grids (graphs)
® TIGER road data
® Internet graph

® Physics, astronomy

® On massive graphs the bottleneck is usually the I/O

|/O-Efficient Algorithms

Graph G = (V, E) stored on disk ‘ \

[/O-model [AV’88]
® M = main memory size blocked 1/0

® B = disk block size

® [/O operation= reading/writing a block of data from/to disk M

[/O-efficiency: number of 1/Os performed by the algorithm \L

Basic I/O bounds _/
E

® Scanning: scan(E) = © gB)

: E
o SOItll’lg: SOTt(E) = O (E logM/B E)

In practice M and B are big: scan(E) < sort(E) € E 1/Os

|/O-Efficient Algorithms: Related work

Lower bound: Q(min(V,sort(V)))

e practically Q(sort(V))

General directed graphs
e BFS, SSSP, DFS: © ((V + £)1gV + sort(E)) [BVWB’00]
e sparse (E =0(V)) = Q(V)

General undirected graphs:

e SSSP: © (V + £1gV) [KS'96]; © (\/% lg &+ sort(E)) [MZ’03]

e sparse (E=0(V)) = Q(V) (Q(%) if bounded weights)

Planar directed graphs:
e SSSP: O(sort(V)) [ATZ’03]
e DFS: O(sort(V)IgV) [AZ’03]

Motivation

® Planar directed graphs
® 3SSSP: Ofsort(V))

® Sparse directed graphs
® sSSP Q(V)

® Tower bound: practically Q2(sort(V))

Our Results

Let G = (V, EU E¢), where K = (V, F) is planar and Go = G — K = (Vo, E¢)
is the non-planar part of GG, given.

e We show how to find small separators for GG that gracefully depend on the
non-planar part of G

e Compute SSSP in O(E¢ + sort(V 4+ E¢)) 1/0Os.

e Generalize to graphs G = (V,EF U E¢) s.th. K can be drawn with T
crossings. SSSP in O(E¢ + sort(V + T + E¢)) 1/0s.

e Obtain similar results for BFS, DF'S, topological order and conn. comp.
Near-planar graphs: If 7= O(V) and Fc = O(V/B):
e SSSP, BFS, CC, topological order in O(sort(V)), DFS in O(%) I/Os.

If a suitable drawing of G = (V, F) is given, SSSP can be computed in O(sort(F))
on graphs with low crossing number, graphs that are k-embeddable in the plane,
graphe with low skewness and graphs with low splitting number.

Outline

Partitioning a planar graph

General approach to I/O-efficient SSSP using a partition
Partitioning a near-planar graph

SSSP using a near-planar partition

Planarizing graphs

Discussion and open questions

Partitioning a Planar Graph

R-partition: For any R, a planar graph L = (V, E) can be partitioned using a
set Vg of separator vertices into subgraphs (clusters) KC; such that

e Each cluster K; has at most O(R) vertices

e There are O() clusters in total

e The number of separator vertices is O(%)

e Each cluster K; is adjacent to O(v/R) separator vertices

cluster C; and its boundary 0IC;
(the set of separator vertices adj to ;)

Boundary set: a maximal set of separator vertices adjacent to same clusters.
Lemma: The number of boundary sets in an R-partition is O(%).

|/O-Efficient Planar SSSP

Compute a B2—partition of K

Construct a substitute graph KR on the separator vertices with the property that
it preserves SP in K between any u,v in Vg

® How? Replace each cluster with a complete graph on its boundary. For any

u,v on the boundary of K, the weight of edge (u,v) in KRisa K (u,v)

® Solve SSSP on KX

e This gives SP in K to all vertices in Vg

® TI'ind SP to vertices inside clusters

Theorem:
Planar SSSP can be solved in O(sort(V)) I/Os.

Partitioning a Near-Planar Graph

Notation

e K=(,E)planar ,
o G-=G-K =, Ep) cross-link part of G

Compute an R-partition of K

e Vg nota separator for G
e Add all cross-link vertices to Vg ? Planar SSSP takes O(V + E) [/Os

o Goal: refine partition to include V-~ and bound the number of cross-link

vertices per cluster

Partitioning a Near-Planar Graph

Refine subgraphs that contain more than ¢v/R cross-link vertices
In the paper we prove the following:
Lemma: Given a subgraph G = (V, E) of a planar graph with [6G| = O(V/V),

and a weight function w : V' — R such that) _,, w(v) = W, we can find

a subset S C V of size O(v/VW) which separates G — S into a set of O(W)
subgraphs (clusters) G’ with the following properties:

e cach cluster G’ = (V', E’) has a total weight » _, w(v) of at most 1.

e for each cluster G’ = (V', E'), we have that G’ has O(v/V) vertices.

Apply lemma to every subgraph /; that has more than ¢v/R cross link vertices
e assign w = 1/(cvV/R) to v € Vo and w = 0 otherwise

Thus every refined subraph has O(R) vertices, O(v/R) cross-link vertices and
O(VR) on its boundary.

Partitioning a Near-Planar Graph

Overall we prove the following:

For any graph G = (V, F U E¢) and any R we can find a subset Vg C V whose
removal separates K into a set of subgraphs GG; with the following properties:

e the total number of vertices in Vg is O(V/VR + /VVe/RY4)
e there are O(V/R + Vo /VR) subgraphs G; in K — Vg

e cach subgraph contains O(R) vertices, is adjacent to O(v/R) separator
vertices and contains O(v/R) cross-link vertices

This refined partition can be computed with sort(E) 1/0Os.

SSSP using a Refined R-Partition

Compute a refined R-partition (R = B2)

® A SP can enter and exit a cluster through a separator or cross-link vertex

Compute a substitute graph GR on the separator and cross-link vertices with the
property that it preserves SP in G between any u,vin Vg U V-

o GR contains G and the subgraph induced by Vs

® Replace each cluster with a complete graph on its boundary and cross-link
vertices. For any u,v on 0Gi, weight of (u,v) is 8G. (u,v)
i

Compute SSSP on GR
e This gives SP in G to all vertices in Vg U V-

Find SP to vertices inside clusters

SSSP using a Refined R-Partition

® Compute GR
° GR contains GC and the subgraph induced by VS = OV S + VC)

® Replace each cluster with a complete graph on its boundary and cross-link
vertices = each subgraph contributes O(R) edges

e Lemma: G has O(V/vVR+/VVe/RY*4- V) vertices and O(V 4+ VoV R+ Ec)
edges and can be computed in O(scan(E) + sort(|GE|)) 1/0s.
® Compute SSSP on GR

® Use Dijkstra’s algorithm and 1/O-efficient priority queue

® Keep alist L of current distances from to all vertices in GR ; use L throughout

Dijkstra to read and update the distances to neighbor vertices

e But.. we cannot afford one I/O per edge. Store L as follows: all v E VS
grouped by boundary set followed by all v & V(~-V¢ grouped by cluster

e Compute SP to vertices inside clusters:

® [.oad each cluster and its boundary in memory

Results

SSSP on a digraph G = K U G¢ uses O(E¢ + sort(V + E¢)) 1/0s.

® 'The ideas can be extended to

® Connected components (assuming G is undirected)
® ‘Topological order (assuming G is acyclic)

e DEFS

Topological order and the connected components of G can be computed with
O(Ec + sort(V + E¢)) 1/0s.

A DFS ordering can be computed with O(V/vB + E¢) 1/Os.

Planarizing G

e The algorithms assume G is givenas G = (V, EU E-), K= (V, E) planar

e How to find K?
® Measures of planarity [Liebers JACM 2001]

® Crossing number
® k-embeddability
® Skewness

® Splitting number

Graphs with Low Crossing Number

® (rossing number - minimum nb
of edge crossings needed in any
drawing of G in the plane

e Finding crossing nb of G 1is
NP-complete

® When a drawing of G=(V,E)
with T crossing is given
=> preprocess G to solve SSSP
in O(sort(E+T)) 1/Os

® Represent each crossing by a
vertex

N>

AR

N/ N
[FYYIX

2

61 crossin

Q
-
V'c
)

gs 17 cross edges
";"

AR
LA

Y

N>

AR

N/ N
[FYYIX

2

V!

f*“(ﬁ»"

A»”\
]

i)
0

Graphs with Low Skewness

Skewness of G=(V, E) is the min size of any set of edges E-~ s.t. G-E~ is planar

Finding skewness of G is NP-complete (finding maximum planar subgraph)

If E¢ givenand E~ = O(E/B) = SSSP in O(E - + sort(E))

® The crossing number could be large
It a drawing of G 1s given

® Define a crossing graph G’=(V’,E’): G’ has a vertex v(e) for every edge e in G;
and an edge (v(e), v(f)) for every pair of crossing edges e and f in G

e A maximum matching in G’ gives a 2-approximation of a min set E~ such that

G—EC 1s intersection -free

® Compute a matching of G’ in O(sort(E’))= O(sort(T)), T = nb crossings in G
[ABW’02]

Conclusion, Open Questions

Extend I/O-efficient algorithms to graphs that are near-planar

® Graphs with low crossing number, low skewness, low splitting number
Our algorithms can handle such graphs if a suitable drawing 1s given
SSSP in O(sort(E))

e CC, topological sort, DFS

It drawing 1s not given, identifying MPG is NP-complete

Questions
® Other measures of planarity (thickness)

e Constant-size approx for finding cross-links with O(E) crossings

