
I/O-Efficient Algorithms
on

Near-Planar Graphs

Herman Haverkort
Eindhoven University, NL

Laura Toma
Bowdoin College, USA

LATIN 2006
Valdivia, Chile

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

I/O-Efficient Graph Algorithms:
Motivation

• Massive graphs

• GIS (Geographic Information Systems)

• Terabytes of data; e.g. NASA SRTM project, LIDAR data

• Terrains modeled as triangulations, contour lines, or grids (graphs)

• TIGER road data

• Internet graph

• Physics, astronomy

• On massive graphs the bottleneck is usually the I/O

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

I/O-Efficient Algorithms

• Graph G = (V, E) stored on disk

• I/O-model [AV’88]

• M = main memory size

• B = disk block size

• I/O operation= reading/writing a block of data from/to disk

• I/O-efficiency: number of I/Os performed by the algorithm

• Basic I/O bounds

• Scanning:

• Sorting:

• In practice M and B are big: scan(E) < sort(E) ≪ E I/Os

sort(E) = Θ

(

E

B
logM/B

E

B

)

scan(E) = Θ

(

E

B

)

blocked I/O

M

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

I/O-Efficient Algorithms: Related work
Lower bound: Ω(min(V, sort(V)))

• practically Ω(sort(V))

General directed graphs

• BFS, SSSP, DFS: Θ
(

(V + E

B
) lg V + sort(E)

)

[BVWB’00]

• sparse (E = O(V)) =⇒ Ω(V)

General undirected graphs:

• SSSP: Θ
(

V + E

B
lg V

)

[KS’96]; Θ
(
√

V E

B
lg W

w
+ sort(E)

)

[MZ’03]

• sparse (E = O(V)) =⇒ Ω(V) (Ω(V
√

B
) if bounded weights)

Planar directed graphs:

• SSSP: Θ(sort(V)) [ATZ’03]

• DFS: Θ(sort(V) lg V) [AZ’03]

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Motivation

• Planar directed graphs

• SSSP: Θ(sort(V))

• Sparse directed graphs

• SSSP: Ω(V)

• Lower bound: practically Ω(sort(V))

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Our Results

Let G = (V, E ∪ EC), where K = (V, E) is planar and GC = G −K = (VC , EC)
is the non-planar part of G, given.

• We show how to find small separators for G that gracefully depend on the
non-planar part of G

• Compute SSSP in O(EC + sort(V + EC)) I/Os.

• Generalize to graphs G = (V, E ∪ EC) s.th. K can be drawn with T
crossings. SSSP in O(EC + sort(V + T + EC)) I/Os.

• Obtain similar results for BFS, DFS, topological order and conn. comp.

Near-planar graphs: If T = O(V) and EC = O(V/B):

• SSSP, BFS, CC, topological order in O(sort(V)), DFS in O(V
√

B
) I/Os.

If a suitable drawing of G = (V, E) is given, SSSP can be computed in O(sort(E))
on graphs with low crossing number, graphs that are k-embeddable in the plane,
graphe with low skewness and graphs with low splitting number.

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Outline

• Partitioning a planar graph

• General approach to I/O-efficient SSSP using a partition

• Partitioning a near-planar graph

• SSSP using a near-planar partition

• Planarizing graphs

• Discussion and open questions

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Partitioning a Planar Graph
R-partition: For any R, a planar graph K = (V,E) can be partitioned using a
set VS of separator vertices into subgraphs (clusters) Ki such that

• Each cluster Ki has at most O(R) vertices

• There are O(V

R
) clusters in total

• The number of separator vertices is O(V
√

R
)

• Each cluster Ki is adjacent to O(
√

R) separator vertices

(a) (b)

cluster Ki and its boundary δKi

(the set of separator vertices adj to Ki)

(a) (b)

Boundary set: a maximal set of separator vertices adjacent to same clusters.
Lemma: The number of boundary sets in an R-partition is O(V

R
).

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

I/O-Efficient Planar SSSP

• Compute a B2-partition of K

• Construct a substitute graph KR on the separator vertices with the property that
it preserves SP in K between any u,v in VS

• How? Replace each cluster with a complete graph on its boundary. For any

u,v on the boundary of Ki, the weight of edge (u,v) in KR is ∂K
i
 (u,v)

• Solve SSSP on KR

• This gives SP in K to all vertices in VS

• Find SP to vertices inside clusters

s

t

B2

Theorem:
Planar SSSP can be solved in O(sort(V)) I/Os.

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Partitioning a Near-Planar Graph

• Notation

• G = (V, E ∪ EC)

• K = (V, E) planar

• GC = G - K = (VC, EC) cross-link part of G

• Compute an R-partition of K

• VS not a separator for G

• Add all cross-link vertices to VS ? Planar SSSP takes O(V + EC) I/Os

• Goal: refine partition to include VC and bound the number of cross-link

vertices per cluster

←
 c

ro
ss

-li
nk

 v
er

tic
es

←
 c

ro
ss

-li
nk

 e
dg

es

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Partitioning a Near-Planar Graph

In the paper we prove the following:

Lemma: Given a subgraph G = (V, E) of a planar graph with |δG| = O(
√

V),
and a weight function w : V → R such that

∑
v∈V

w(v) = W , we can find

a subset S ⊂ V of size O(
√

V W) which separates G − S into a set of O(W)
subgraphs (clusters) G′ with the following properties:

• each cluster G′ = (V ′, E′) has a total weight
∑

v∈V ′ w(v) of at most 1.

• for each cluster G′ = (V ′, E′), we have that ∂G′ has O(
√

V) vertices.

Apply lemma to every subgraph Ki that has more than c
√

R cross link vertices

• assign w = 1/(c
√

R) to v ∈ VC and w = 0 otherwise

Thus every refined subraph has O(R) vertices, O(
√

R) cross-link vertices and
O(

√
R) on its boundary.

Refine subgraphs that contain more than c
√

R cross-link vertices

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Partitioning a Near-Planar Graph

Overall we prove the following:

For any graph G = (V,E ∪ EC) and any R we can find a subset VS ⊂ V whose
removal separates K into a set of subgraphs Gi with the following properties:

• the total number of vertices in VS is O(V/
√

R +
√

V VC/R1/4)

• there are O(V/R + VC/
√

R) subgraphs Gi in K − VS

• each subgraph contains O(R) vertices, is adjacent to O(
√

R) separator
vertices and contains O(

√
R) cross-link vertices

This refined partition can be computed with sort(E) I/Os.

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

SSSP using a Refined R-Partition

• Compute a refined R-partition (R = B2)

• A SP can enter and exit a cluster through a separator or cross-link vertex

• Compute a substitute graph GR on the separator and cross-link vertices with the
property that it preserves SP in G between any u,v in VS ∪ VC

• GR contains GC and the subgraph induced by Vs

• Replace each cluster with a complete graph on its boundary and cross-link
vertices. For any u,v on ∂Gi, weight of (u,v) is ∂Gi

 (u,v)

• Compute SSSP on GR

• This gives SP in G to all vertices in VS ∪ VC

• Find SP to vertices inside clusters

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

SSSP using a Refined R-Partition
• Compute GR

• GR contains GC and the subgraph induced by VS ⇒ O(VS + VC)

• Replace each cluster with a complete graph on its boundary and cross-link
vertices ⇒ each subgraph contributes O(R) edges

•

• Compute SSSP on GR

• Use Dijkstra’s algorithm and I/O-efficient priority queue

• Keep a list L of current distances from to all vertices in GR ; use L throughout
Dijkstra to read and update the distances to neighbor vertices

• But.. we cannot afford one I/O per edge. Store L as follows: all v ∈ VS

grouped by boundary set followed by all v ∈ VC-VS grouped by cluster

• Compute SP to vertices inside clusters:

• Load each cluster and its boundary in memory

Lemma: GR has O(V/
√

R+
√

V VC/R1/4+VC) vertices and O(V +VC

√
R+EC)

edges and can be computed in O(scan(E) + sort(|GR|)) I/Os.

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Results

• The ideas can be extended to

• Connected components (assuming G is undirected)

• Topological order (assuming G is acyclic)

• DFS

Topological order and the connected components of G can be computed with
O(EC + sort(V + EC)) I/Os.

A DFS ordering can be computed with O(V/
√

B + EC) I/Os.

SSSP on a digraph G = K ∪ GC uses O(EC + sort(V + EC)) I/Os.

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Planarizing G

• The algorithms assume G is given as G = (V, E ∪ EC), K = (V, E) planar

• How to find K?

• Measures of planarity [Liebers JACM 2001]

• Crossing number

• k-embeddability

• Skewness

• Splitting number

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Graphs with Low Crossing Number

• Crossing number - minimum nb
of edge crossings needed in any
drawing of G in the plane

• Finding crossing nb of G is
NP-complete

• When a drawing of G=(V,E)
with T crossing is given
⇒ preprocess G to solve SSSP
in O(sort(E+T)) I/Os

• Represent each crossing by a
vertex

61 crossings 17 cross edges

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

C

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

61 crossings 17 cross edges

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

C

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Graphs with Low Skewness

• Skewness of G=(V, E) is the min size of any set of edges EC s.t. G-EC is planar

• Finding skewness of G is NP-complete (finding maximum planar subgraph)

• If EC given and EC = O(E/B) ⇒ SSSP in O(EC + sort(E))

• The crossing number could be large

• If a drawing of G is given

• Define a crossing graph G’=(V’,E’): G’ has a vertex v(e) for every edge e in G;
and an edge (v(e), v(f)) for every pair of crossing edges e and f in G

• A maximum matching in G’ gives a 2-approximation of a min set EC such that

G-EC is intersection -free

• Compute a matching of G’ in O(sort(E’))= O(sort(T)), T = nb crossings in G
[ABW’02]

I/O-Efficient algorithms on near-planar graphs - Haverkort, Toma

Conclusion, Open Questions

• Extend I/O-efficient algorithms to graphs that are near-planar

• Graphs with low crossing number, low skewness, low splitting number

• Our algorithms can handle such graphs if a suitable drawing is given

• SSSP in O(sort(E))

• CC, topological sort, DFS

• If drawing is not given, identifying MPG is NP-complete

• Questions

• Other measures of planarity (thickness)

• Constant-size approx for finding cross-links with O(E) crossings

