
r.terracost:
Computing Least-Cost Path Surfaces

for Massive Rasters

Thomas Hazel Laura Toma Jan Vahrenhold Rajiv Wickremesinghe

FOSS4G 2006
Lausanne, Switzerland

Bowdoin College
USA

U. Muenster
Germany

Oracle
USA

Problem
Input

a cost surface of a terrain
a set of sources

Output
a least-cost path surface: each point represents the shortest
distance to a source

Cost surfaces
Can be correlated elevation, slope, or simply constant (uniform cost)

Applications
Spread of fires from different sources
Distance from streams or roads
Cost of building pipelines or roads

Least-Cost Path Surfaces

Sierra Nevada, 30m resolution Sierra Nevada, cost surface = slope

Example

Example (One Source)

Least-cost path surfacesource

Example (Many Sources)

Multiple sources Least-cost path surface

Least-Cost Surfaces in GRASS
r.cost

Description: Outputs a raster map layer showing the cumulative cost of moving between different
geographic locations on an input raster map layer whose cell category values represent cost.

Usage:
r.cost [-vkn] input=name output=name [start_sites=name] [stop_sites=name] [start_rast=name]
[coordinate=x,y[,x,y,...][stop_coordinate=x,y[,x,y,...]] [max_cost=cost] [null_cost=null cost]

Flags
-v Run verbosely
-k Use the 'Knight's move'; slower, but more accurate
-n Keep null values in output map

Parameters:
input Name of raster map containing grid cell cost information
output Name of raster map to contain results
start_sites Starting points site file
stop_sites Stop points site file
start_rast Starting points raster file coordinate
coordinate The map E and N grid coordinates of a starting point (E,N
stop_coordinate The map E and N grid coordinates of a stopping point (E,N)
max_cost An optional maximum cumulative cost. default:
null_cost Cost assigned to null cells. By default, null cells are excluded

Massive Terrains

Why massive terrains?
Large amounts of data are becoming available

NASA SRTM project: 30m resolution over the entire globe
(~10TB)
LIDAR data: sub-meter resolution

Traditional algorithms designed that assume that data fits in memory
and has uniform access cost don’t scale

Buy more RAM?
Data grows faster than memory

Data does not fit in memory, sits on disk
Disks are MUCH slower than memory

=> I/O-bottleneck

Performance of r.cost
rcost

0

20000

40000

60000

80000

100000

120000

140000

K
aw

ea
h

(2
M

)

Prto
ric

o
(6

M
)

H
aw

ai
i (
28

M
)

Sie
rr
a

(1
0M

)

C
um

ber
la
nd

s
(6

7M
)

Lo
w
er

N
E (7

8M
)

M
id

w
es

t U
S (2

80
M

)

ti
m

e
 (

s
e

c
o

n
d

s
)

rcost

GRASS users have complained it is very slow for large grids

What To Do?

Massive data => needs efficient algorithms
small data: 1 sec vs 3 sec
large data: 1 hour vs 1 day (or worse)

Massive data: bottleneck is the I/O
==> Design algorithms that specifically minimize I/O
I/O-efficient algorithms

Idea:
Do not rely on virtual memory!
Instead, change the data access pattern of the algorithm to
increase spatial locality and minimize the number of blocks
transfered between main memory and disk

This project:
r.terracost

r.terracost
has same functionality as r.cost
based on an I/O-efficient algorithm
is scalable

can process grids that are out of scope with r.cost
parallelizable on a cluster

Outline

Background
Least-cost path surfaces and shortest paths in graphs
Dijkstra’s algorithm for SP
Dijkstra’s algorithm on large grids

r.terracost
Algorithm
Experimental results
Cluster implementation

Conclusions and current/future work

Least-Cost Path Surfaces
and

Shortest Paths in Graphs

Raster terrains --> graphs
Least-cost path surfaces correspond to computing shortest paths on
(raster) graphs

Cost raster Corresponding graph Shortest-distance
from center point

Related Work on Shortest Paths

Dijkstra’s Algorithm
Best known for SSSP on general graphs, non-negative weights

Recent variations on the SP algorithm
Goldberg et al SODA 2000, WAE 2005
Kohler, Mohring, Schilling WEA 2005
Gutman WEA 2004
Lauther 2004

Different setting
Point-to-point SP

E.g. Route planning, navigation systems
Exploit geometric characteristics of graph to narrow down search
space

Dijkstra’s SP Algorithm

Greedy algorithm

Dijkstra’s SP Algorithm

Greedy algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

Dijkstra’S SP Algorithm

SP (one source)

SP (many sources)

Dijkstra’s Algorithm on Large Grids

Dijkstra’s algorithm requires 3 data structures:
1: Cost grid
2: Least-cost grid
3: Priority queue

If grids do not fit in main memory ==> stored on disk
For each vertex that we settle, we must do a lookup
in both grids.

These lookups can cost one I/O each in the worst
case

==> One I/O per element in the grid

Cost grid

Least-cost grid

GRASS Segment Library

If data does not fit in memory
default: use the virtual memory system (VMS)

program may abort because of malloc() fail

use GRASS segment library
bypass the VMS
manage data allocation and de-allocation in segments on disk
program will always run
but.... may be slow

GRASS segment library cannot change the data access pattern of the
algorithm, and thus cannot optimize block transfer

Performance of r.cost
rcost

0

20000

40000

60000

80000

100000

120000

140000

K
aw

ea
h

(2
M

)

Prto
ric

o
(6

M
)

H
aw

ai
i (
28

M
)

Sie
rr
a

(1
0M

)

C
um

ber
la
nd

s
(6

7M
)

Lo
w
er

N
E (7

8M
)

M
id

w
es

t U
S (2

80
M

)

ti
m

e
 (

s
e

c
o

n
d

s
)

rcost

uses segment library

r.terracost

Step 1 (intra-tile Dijkstra)
Divide grid G into tiles. of size R
Compute boundary-to-boundary graph: Replace each
tile with a complete graph on its boundary

Step 2 (Inter-tile Dijkstra)
Dijkstra on boundary-to-boundary graph
Gives SP for all boundary vertices in G

Step 3 (Final-Dijkstra)
Dijkstra inside each tile
Gives SP to vertices inside tiles

r.terracost

Optimized for internal or external memory by setting numtiles
numtiles=1

r.terracost runs Dijkstra in memory
numtiles = xxx

Use xxx tiles
if numtiles is not specified

if computation its in memory, use numtiles = 1
otherwise, numtiles is set to an optimal optimal value

r.terracost
GRASS:~ > r.terracost -h

Synopsis:
 r.terracost computes a least-cost surface for a given cost grid and a set of start points. See
“Terracost: a versatile and scalable approach for computing shortest paths on massive terrains” by
Hazel, Toma, Vahrenhold and Wickremesinghe (2005)

Usage:
 r.terracost [-hqdi0123] [cost=name] [start_raster=name] [distance=name] [memory=value]
[STREAM_DIR=name] [VTMPDIR=name] [numtiles=value]
Flags:
 -h Help
 -q Quiet (suppress messages)
 -d Debug (for developer use)
 -i Info (prints useful information and exits)

Parameters:

cost Input cost grid
start_raster Input raster of source points
distance Output distance grid
memory Main memory size (in MB) default: 400
STREAM_DIR Location of temporary STREAM default: /var/tmp
VTMPDIR Location of intermediate STREAM default: /var/tmp/ltoma
numtiles Number of tiles (-h for info)

Example
GRASS:~ > r.terracost cost=elev start_rast=accu1000 dist=lcs numtiles=1

STREAM temporary files in /var/tmp (THESE INTERMEDIATE STREAMS WILL NOT BE DELETED IN
CASE OF ABNORMAL TERMINATION OF THE PROGRAM. TO SAVE SPACE PLEASE DELETE THESE
FILES MANUALLY!)
intermediate files in /var/tmp/ltoma
region size is 472 x 391
file set1-stats.out exists - renaming.
memory size: 400.00M (419430400) bytes
Memory manager registering memory in MM_WARN_ON_MEMORY_EXCEEDED mode.
Using normal Dijkstra
Using normal Dijkstra
 99%
Opened raster file lcs for writing!

cleaning up...
r.terracost done

GRASS:~ >

Example
GRASS:~/nfs-gis > r.terracost cost=elev start_rast=accu1000 dist=lcs numtiles=10

STREAM temporary files in /var/tmp (THESE INTERMEDIATE STREAMS WILL NOT BE DELETED IN
CASE OF ABNORMAL TERMINATION OF THE PROGRAM. TO SAVE SPACE PLEASE DELETE THESE
FILES MANUALLY!)
intermediate files in /var/tmp/ltoma
region size is 472 x 391
memory size: 400.00M (419430400) bytes
--
STEP 0: COMPUTE SUBSTITUTE GRAPH
Grid size is: 184552 Tile size is: 18360 TF #Tiles: 12
--
STEP 1
TileFactory: Sorting internalstr...
--
STEP 2
Sorting b2b stream
--
STEP 3
--
INTER TILE DIJKSTRA
--
IN-TILE FINAL DIJKSTRA
r.terracost done

GRASS:~/nfs-gis >

Experimental Results

Experimental Platform
Apple Power Macintosh G5
Dual 2.5 GHz processors
512 KB L2 cache
1 GB RAM

Dataset Grid Size
(million elements) MB (Grid Only)

Kaweah 1.6 6

Puerto Rico 5.9 24

Hawaii 28.2 112

Sierra Nevada 9.5 38

Cumberlands 67 268

Lower New England 77.8 312

Midwest USA 280 1100

Experimental Results

r.cost
Opt Dijkstra (r.terracost numtiles=1: internal memory version of Terracost)
TerraCost (r.terracost numtiles=optimal: I/O-efficient version of Terracost)

r.terracost on Clusters

We parallelized the most CPU-intensive part (Step 1)
Hgrid: Cluster management tool

Clients submit requests (run jobs, query status); agents get jobs
and run them
Near-linear speedup

Results

elevation

cost=elevation, 1 source

cost=elevation, many src

flow accumulation

if(flowaccumulation>1000, 1, null())

cost=elevation, sources=flowaccu>1000

Conclusion

r.terracost
has same functionality as r.cost
based on an I/O-efficient algorithm
is scalable

can process grids that are out of scope with r.cost
parallelizable

Current/Future Work

Scalable viewshed computation
GRASS: r.los
New: r.viewshed

r.viewshed

(.1M)
r.los: 3 sec
r.viewshed: 1 sec

Sierra (10M)
r.los: 4.5 hours
r.viewshed: 1 min

Washington (1000M)
r.viewshed: 4.5 hours

Thank you.

Laura Toma
Bowdoin College

Maine, USA
ltoma@bowdoin.edu

http://www.bowdoin.edu/~ltoma/

mailto:ltoma@bowdoin.edu
mailto:ltoma@bowdoin.edu

