Terracost: A Versatile and Scalable Approach to
Computing Least-Cost-Path Surfaces for
Massive Grid-Based Terrains

Thomas Hazel Laura Toma Jan Vahrenhold Rajiv Wickremesinghe

Bowdoin College Bowdoin College U. Muenster Duke University

ACM SAC April 2006

Dijon, France

Least-cost path surfaces

Problem
— Input: A of a grid terrain and a set of
— Output: A : each point represents the shortest

distance to a source

Applications
— Spread of fires from different sources
— Distance from streams or roads
— Cost of building pipelines or roads

Grid terrains

Sierra Nevada, 30m resolution Sierra Nevada, a cost surface

Terracost: Hazel, Toma, Vahrenhold, Wickremesinghe

Least-Cost Surface with one source

Cost surface Least-cost path surface (1 source)

Terracost: Hazel, Toma, Vahrenhold, Wickremesinghe

Least-cost surface with Multiple Sources

o A
7 F* = /
- < A

Ty I Y L
{ / . /, i
‘ o < [/) e

4"‘ R, L S N W =

Koy, D)

Multiple sources ~ Least-cost surface (multiple sourc"s'

Terracost: Hazel, Toma, Vahrenhold, Wickremesinghe

Least-cost path surfaces on massive terrains

+ Why massive terrains?
— Large amounts of data are becoming available
+ NASA SRTM project: 30m resolution over the entire globe (~10TB)
+ LIDAR data: sub-meter resolution

+ Traditional algorithms designed in RAM model don’t scale
— Buy more RAM?
» Data grows faster than memory
— Data does not fit in memory, sits on disk
— Random I/O + Virtual memory => swapping
=> |/O-bottleneck

Terracost: Hazel, Toma, Vahrenhold, Wickremesinghe

|/O-Efficient Algorithms

Input data (grid) stored on disk

I/0O-model [Agarwal and Vitter, 88]
— N = size of grid
— M = size of main memory blocked I/0
— B =size of disk block
— 1/O-operation (I/0): Reading/Writing one
block of data from/to disk
I/0 efficiency M
— Number of 1/0Os performed by the algorithm

Basic 1/0 bounds
— Scanning: Scan(N) = O(N/B) 1/0s
— Sorting: Sort(N) = O(N/B log,,z N/B) 1/0s
— In practice M and B are big:

Terracost

Scalable approach to computing least-cost path surfaces on massive
terrains

— Based on optimal I/O-efficient algorithm: O(Sort(N)) I/Os
Experimental analysis on real-life data

— Can handle bigger grids

— Can handle more sources

Versatile: Interpolate between versions optimized for 1/0 or CPU

Parallelization on a cluster

e Background

e Terracost

e Shortest paths
e Related Work

Outline

e Shortest paths in the I/O-Model

e Algorithm

e Experimental analysis

e Cluster implementation

e Conclusions

Least-cost path surfaces correspond to computing shortest paths
Shortest paths

Grid terrains --> graphs

Shortest Paths

— Ubiquitous graph problem

— Variations

+ SSSP: Single source shortest path
+ MSSP: Multiple source shortest path

1112

1113

4 |1 |3
Cost grid

25)

Corresponding graph

2.1

1.4
1 2
3.5 2.8

Shortest-distance
from center point

Related Work

+ Dijkstra’s Algorithm
— Best known for SSSP/MSSP on general graphs, non-negative weights

+ Recent variations on the SP algorithm
Goldberg et al SODA 200, WAE 2005
Kohler, Mohring, Schilling WEA 2005
Gutman WEA 2004

Lauther 2004

+ Different setting
— Point-to-point SP
+ E.g. Route planning, navigation systems
— Exploit geometric characteristics of graph to narrow down search space
* Route planning graphs
— Use RAM model

Dijkstra’s Algorithm

1: Insert sources in a priority queue(PQ)

2: While PQ is not empty

3: DeleteMin vertex u with the least cost from PQ
4: Relax all edges incident to u

In external memory
— Dijkstra’s algorithm requires 3 main data structures:
1: Priority queue (can be implemented I/O-efficiently)
2: Grid of costs (size = N >> M)
3: Grid of current shortest path (size = N >> M)

— Each time we DeleteMin from PQ, for every adjacent edge (u,v) we must do a
lookup in both grids.

+ To check whether v can be relaxed
— These lookups can cost O(1) I/Os each in the worst case

==> Total O(N) I/Os

|/O-Efficient SSSP on Grids [ATV’01]

M

N
/ —

AN,

/ N

t

0: Divide grid G into subgrids(G)) of size O(M)
1: Construct a substitute graph S on the boundary vertices
Replace each subgrid with a complete graph on its boundary
For any u,v on the boundary of G; the weight of edge (u,v) in S is SPg(u,v)

Lemma: S has O(N WM) vertices, O(N) edges and it preserves the SP in G
between any two boundary vertices u, v.

2:Solve SPin S
Gives SP for all boundary vertices in G
3: Compute SP to vertices inside subgrids

Terracost
- Step 1: (intra-tile Dijkstra) :"%": St
'

— Partition into tiles of size R - 2 al 2.2

— Compute an edge-list representatonof § § § S8 o
substitute graph S o000 00000 00000

- Dijkstra from each boundarytotle & o o e o o
boundaries o000 OOGOOOOES OOOO

+ Dijkstra from sources to tile 2000000049
boundaries e o o\ e

[E X X NN NN N N

L) L] .{/l

L] L] []

- Step 2: ooo:ooo,oo
— Sort boundary-to-boundary stream s 2 2 3

[E X XX NN N NN]

« Step 3: (inter-tile Dijkstra) $8404004004

— Dijkstraon S e0C®00®00e
[E X R ERRREN N]
[RoRoX RoRoN NoRo¥
[RojoN ReRoX ReleX }

+ Step 4: (final Dijkstra) 2000000900
— MSSP for each tile ,88:88:8’8{

eseesendoo

[]

Experimental Analysis

Dataset (m“ﬁ:ldeizeems) MB (Grid Only) | Experimental Platform
Kaweah 1.6 6 « Apple Power Macintosh G5
Puerto Rico 59 o4 + Dual 2.5 GHz processors
+ 512 KB L2 cache
Hawaii 28.2 112 * 1GBRAM
Sierra Nevada 9.5 38
Compare Terracost with r.cost in
Cumberlands 67 268 GRASS . .
» r.cost has same functionality
Lower New England 778 312 . _GuRASS users have compl_alned it
is very slow for large terrains
Midwest USA 280 1100

time/h

Experimental Analysis

GRASS: r.cost
Opt Dijkstra: internal memory version of Terracost (num tiles = 1)
Terracost: 1/0O-efficient version of Terracost

10% 10?
>
10" _ 10! _
M =1024 MB M =256 MB
10° 100k
©

107" =107 |

-2 -2 .
10 . *— GRASS 10 . «— GRASS

—— Opt. Dijkstra —— Opt. Dijkstra

3 . —— TerraCost 102 . —— TerraCost .

10 10 100 1000 10 100 1000

size of data set/ MB size of data set/ MB

CPU-1/0O Tradeoff

R = tile size
+ 1/O-complexity = O(N / VR + sort(N))

— Dominated by Step 3 (inter-tile Dijkstra)
+ CPU-complexity = O(N VR log R)

— Dominated by Step 1 (intra-tile Dijkstra)

+ So, to optimize I/0Os, we want a large R.
+ But, to optimize CPU, we want a small R.
+ Optimal performance: balance 1/0-CPU

150%

@

100% 16
50% @
0% ()

Tiles 1024 4096 8192 12000 20000
R/103 766 192 98 6.6 3.9

Lower NE, Cost = Slope, 1GB RAM, Single source

Terracost on Clusters

+ Terracost lends itself to parallelization
+ We parallelized the most CPU-intensive part
— Computing the substitute graph (Step 1)
« Hgrid
— Cluster management tool

— Clients submit requests (run jobs, query status); agents get jobs and run
them

* Near-linear speedup

Raw data 1.1 GB
—— Raw data 38 MB
10 b —— Rawdata 312 MB

—a— Raw data 268 MB

submit
Client | Controller

relative speedup

a 1 2 3 4 5 & 7 B
number of machines (2 CPUs each)

Conclusions and Future Work

Key Points
+ Dijkstra’s algorithm is 1/O-inefficient on large data sets

+ Terracost restructures the input grid to run I/O-efficiently
- But we can’t ignore CPU-complexity completely

+ 1/O-bottleneck increases with number of sources for MSSP
+ Tiling inTerracost allows for parallelization

Future Work
+ Determine the optimal tile size analytically
+ Find I/O-efficient SSSP/MSSP w/o increase of CPU-efficiency

Thank you.

