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Least-cost path surfaces

Problem
— Input: A of a grid terrain and a set of
— Output: A : each point represents the shortest

distance to a source

Applications
— Spread of fires from different sources
— Distance from streams or roads
— Cost of building pipelines or roads



Grid terrains

Sierra Nevada, 30m resolution Sierra Nevada, a cost surface
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Least-Cost Surface with one source

Cost surface Least-cost path surface (1 source)
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Least-cost surface with Multiple Sources
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Least-cost path surfaces on massive terrains

+  Why massive terrains?
— Large amounts of data are becoming available
+ NASA SRTM project: 30m resolution over the entire globe (~10TB)
+ LIDAR data: sub-meter resolution

+ Traditional algorithms designed in RAM model don’t scale
— Buy more RAM?
» Data grows faster than memory
— Data does not fit in memory, sits on disk
— Random I/O + Virtual memory => swapping
=> |/O-bottleneck
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|/O-Efficient Algorithms

Input data (grid) stored on disk

I/0O-model [Agarwal and Vitter, 88]
— N = size of grid
— M = size of main memory blocked I/0
— B =size of disk block
— 1/O-operation (I/0): Reading/Writing one
block of data from/to disk
I/0 efficiency M
— Number of 1/0Os performed by the algorithm

Basic 1/0 bounds
— Scanning: Scan(N) = O(N/B) 1/0s
— Sorting: Sort(N) = O(N/B log,,z N/B) 1/0s
— In practice M and B are big:

Terracost

Scalable approach to computing least-cost path surfaces on massive
terrains

— Based on optimal I/O-efficient algorithm: O(Sort(N)) I/Os
Experimental analysis on real-life data

— Can handle bigger grids

— Can handle more sources

Versatile: Interpolate between versions optimized for 1/0 or CPU

Parallelization on a cluster
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Least-cost path surfaces correspond to computing shortest paths
Shortest paths

Grid terrains --> graphs

Shortest Paths

— Ubiquitous graph problem

— Variations

+ SSSP: Single source shortest path
+ MSSP: Multiple source shortest path
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Related Work

+ Dijkstra’s Algorithm
— Best known for SSSP/MSSP on general graphs, non-negative weights

+ Recent variations on the SP algorithm
Goldberg et al SODA 200, WAE 2005
Kohler, Mohring, Schilling WEA 2005
Gutman WEA 2004

Lauther 2004

+ Different setting
— Point-to-point SP
+ E.g. Route planning, navigation systems
— Exploit geometric characteristics of graph to narrow down search space
* Route planning graphs
— Use RAM model

Dijkstra’s Algorithm

1: Insert sources in a priority queue(PQ)

2: While PQ is not empty

3: DeleteMin vertex u with the least cost from PQ
4: Relax all edges incident to u

In external memory
— Dijkstra’s algorithm requires 3 main data structures:
1: Priority queue (can be implemented I/O-efficiently)
2: Grid of costs (size = N >> M)
3: Grid of current shortest path (size = N >> M)

— Each time we DeleteMin from PQ, for every adjacent edge (u,v) we must do a
lookup in both grids.

+ To check whether v can be relaxed
— These lookups can cost O(1) I/Os each in the worst case

==> Total O(N) I/Os



|/O-Efficient SSSP on Grids [ATV’01]
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0: Divide grid G into subgrids(G)) of size O(M)
1: Construct a substitute graph S on the boundary vertices
Replace each subgrid with a complete graph on its boundary
For any u,v on the boundary of G; the weight of edge (u,v) in S is SPg(u,v)

Lemma: S has O(N WM ) vertices, O(N) edges and it preserves the SP in G
between any two boundary vertices u, v.

2:Solve SPin S
Gives SP for all boundary vertices in G
3: Compute SP to vertices inside subgrids

Terracost
- Step 1: (intra-tile Dijkstra) :"%": St
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Experimental Analysis

Dataset (m“ﬁ:ldeizeems) MB (Grid Only) | Experimental Platform
Kaweah 1.6 6 « Apple Power Macintosh G5
Puerto Rico 59 o4 + Dual 2.5 GHz processors
+ 512 KB L2 cache
Hawaii 28.2 112 * 1GBRAM
Sierra Nevada 9.5 38
Compare Terracost with r.cost in
Cumberlands 67 268 GRASS . .
» r.cost has same functionality
Lower New England 778 312 . _GuRASS users have compl_alned it
is very slow for large terrains
Midwest USA 280 1100

time/h

Experimental Analysis

GRASS: r.cost
Opt Dijkstra: internal memory version of Terracost (num tiles = 1)
Terracost: 1/0O-efficient version of Terracost
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CPU-1/0O Tradeoff

R = tile size
+  1/O-complexity = O(N / VR + sort(N))

— Dominated by Step 3 (inter-tile Dijkstra)
+  CPU-complexity = O(N VR log R)

— Dominated by Step 1 (intra-tile Dijkstra)

+ So, to optimize I/0Os, we want a large R.
+ But, to optimize CPU, we want a small R.
+ Optimal performance: balance 1/0-CPU
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Tiles 1024 4096 8192 12000 20000
R/103 766 192 98 6.6 3.9

Lower NE, Cost = Slope, 1GB RAM, Single source

Terracost on Clusters

+ Terracost lends itself to parallelization
+  We parallelized the most CPU-intensive part
— Computing the substitute graph (Step 1)
«  Hgrid
— Cluster management tool

— Clients submit requests (run jobs, query status); agents get jobs and run
them

* Near-linear speedup

Raw data 1.1 GB
—— Raw data 38 MB
10 b —— Rawdata 312 MB

—a— Raw data 268 MB

submit
Client | Controller

relative speedup

a 1 2 3 4 5 & 7 B
number of machines (2 CPUs each)



Conclusions and Future Work

Key Points
+ Dijkstra’s algorithm is 1/O-inefficient on large data sets

+ Terracost restructures the input grid to run I/O-efficiently
- But we can’t ignore CPU-complexity completely

+ 1/O-bottleneck increases with number of sources for MSSP
+ Tiling inTerracost allows for parallelization

Future Work
+ Determine the optimal tile size analytically
+ Find I/O-efficient SSSP/MSSP w/o increase of CPU-efficiency

Thank you.



