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Least-cost path surfaces

• Problem

– Input: A cost surface of a grid terrain and a set of sources

– Output: A least-cost path surface:  each point represents the shortest

distance to a source

• Applications

– Spread of fires from different sources

– Distance from streams or roads

– Cost of building pipelines or roads
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Grid terrains

Sierra Nevada, 30m resolution Sierra Nevada, a cost surface
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Least-Cost Surface with one source

Least-cost path surface (1 source)Cost surface
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Least-cost surface with Multiple Sources

Multiple sources Least-cost surface (multiple sources)
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Least-cost path surfaces on massive terrains

• Why massive terrains?

– Large amounts of data are becoming available

• NASA SRTM project: 30m resolution over the entire globe (~10TB)

• LIDAR data: sub-meter resolution

• Traditional algorithms designed in RAM model don’t scale

– Buy more RAM?

• Data grows faster than memory

– Data does not fit in memory, sits on disk

– Random I/O + Virtual memory => swapping

=> I/O-bottleneck
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I/O-Efficient Algorithms

• Input data (grid) stored on disk

• I/O-model [Agarwal and Vitter, 88]

– N = size of grid

– M = size of main memory

– B = size of disk block

– I/O-operation (I/O): Reading/Writing one

block of data from/to disk

• I/O efficiency

– Number of I/Os performed by the algorithm

• Basic I/O bounds

– Scanning: Scan(N) = !(N/B) I/Os

– Sorting: Sort(N) = !(N/B logM/B N/B) I/Os

– In practice M  and B are big:

• Scan(N) < Sort(N) << N I/Os

blocked I/O 

M
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Terracost

• Scalable approach to computing least-cost path surfaces on massive

terrains

– Based on optimal I/O-efficient algorithm: O(Sort(N)) I/Os

• Experimental analysis on real-life data

– Can handle bigger grids

– Can handle more sources

• Versatile: Interpolate between versions optimized for I/O or CPU

• Parallelization on a cluster
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Shortest Paths

• Least-cost path surfaces correspond to computing shortest paths

• Shortest paths

– Ubiquitous graph problem

– Variations

• SSSP: Single source shortest path

• MSSP: Multiple source shortest path

• Grid terrains --> graphs

Cost grid
Corresponding graph

Shortest-distance

from center point
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Related Work

• Dijkstra’s Algorithm

– Best known for SSSP/MSSP on general graphs, non-negative weights

• Recent variations on the SP algorithm

– Goldberg et al SODA 200, WAE 2005

– Kohler, Mohring, Schilling WEA 2005

– Gutman WEA 2004

– Lauther 2004

• Different setting

– Point-to-point SP

• E.g. Route planning, navigation systems

– Exploit geometric characteristics  of graph to narrow down search space

• Route planning graphs

– Use RAM model

– When dealing with massive graphs ==> I/O bottleneck
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Dijkstra’s Algorithm

1: Insert sources in a priority queue(PQ)

2: While PQ is not empty

3: DeleteMin vertex u with the least cost from PQ

4: Relax all edges incident  to u

• In external memory

– Dijkstra’s algorithm requires 3 main data structures:

1: Priority queue (can be implemented I/O-efficiently)

2: Grid of costs (size = N >> M)

3: Grid of current shortest path (size = N >> M)

– Each time we DeleteMin from PQ, for every adjacent edge (u,v) we must do a
lookup in both grids.

• To check whether v can be relaxed

– These lookups can cost O(1) I/Os each in the worst case

==> Total O(N ) I/Os
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I/O-Efficient SSSP on Grids [ATV’01]

0: Divide grid G into subgrids(Gi) of size O(M)

1: Construct a substitute graph S  on the boundary vertices

• Replace each subgrid with a complete graph on its boundary

• For any u,v on the boundary of Gi, the weight of edge (u,v) in S  is SPGi
(u,v)

Lemma: S has O(N /!M ) vertices, O(N) edges and it preserves the SP in G

between any two boundary vertices u, v.

2: Solve SP in S

• Gives SP for all boundary vertices in G

3: Compute SP to vertices inside subgrids
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Terracost

• Step 1:  (intra-tile Dijkstra)

– Partition into tiles of size R

– Compute an edge-list representation of
substitute graph S

• Dijkstra from each boundary to tile
boundaries

• Dijkstra from sources to tile
boundaries

• Step 2:

– Sort boundary-to-boundary stream

• Step 3:  (inter-tile Dijkstra)

– Dijkstra on S

• Step 4: (final Dijkstra)

– MSSP for each tile
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Experimental Analysis

Experimental Platform

• Apple Power Macintosh G5

• Dual 2.5 GHz processors

• 512 KB L2 cache

• 1 GB RAM

Compare Terracost with r.cost in

GRASS

• r.cost has same functionality

• GRASS users have complained it

is very slow for large terrains

389.5Sierra Nevada

31277.8Lower New England

1100280Midwest USA

26867Cumberlands

MB (Grid Only)
Grid Size

(million elements)
Dataset

11228.2Hawaii

245.9Puerto Rico

61.6Kaweah
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Experimental Analysis
• GRASS: r.cost

• Opt Dijkstra: internal memory version of Terracost (num tiles = 1)

• Terracost: I/O-efficient version of Terracost
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CPU-I/O Tradeoff

R = tile size

• I/O-complexity  = O(N / !R + sort(N))

– Dominated by Step 3 (inter-tile Dijkstra)

• CPU-complexity = O(N !R log R)

– Dominated by Step 1 (intra-tile Dijkstra)

• So, to optimize I/Os, we want a large R.

• But, to optimize CPU,  we want a small R.

• Optimal performance: balance I/O-CPU

Lower NE, Cost = Slope, 1GB RAM, Single source
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Terracost on Clusters
• Terracost lends itself to parallelization

• We parallelized the most CPU-intensive part

– Computing the substitute graph (Step 1)

• Hgrid

– Cluster management tool

– Clients submit requests (run jobs, query status); agents get jobs and run
them

• Near-linear speedup
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Conclusions and Future Work

Key Points

• Dijkstra’s algorithm is I/O-inefficient on large data sets

• Terracost restructures the input grid to run I/O-efficiently

- But we can’t ignore CPU-complexity completely

• I/O-bottleneck increases with number of sources for MSSP

• Tiling inTerracost allows for parallelization

Future Work

• Determine the optimal tile size analytically

• Find I/O-efficient SSSP/MSSP w/o increase of CPU-efficiency
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Thank you.


