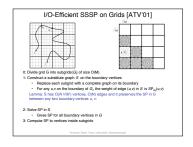
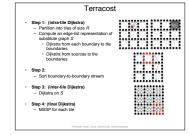
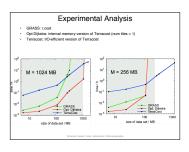

| Input data (grid) stored on disk | Input data (grid) stored (grid) stored | Input data (grid) stored (gr

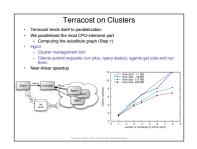




Related Work Dijkstra's Aportitim Beat twown for SSSP/MSSP on general graphs, non-negative weights Pecent variations on the SP algoritim Codeberg et al SCRA 200, WRE 2005 Guitame NAE 2004 Guitame NAE 2004 Lauther 2004 Different setting Ponth-b-point SP Eg, Route planning, navigation systems Epoly dependent characteristics of graph to narrow down search space Route planning graphs Use FAM model When dealing with massive graphs —> I/O bottleneck



2



Dataset	Grid Stae (million elements)	MB (Grid Only)	Experimental Platform
Kaweah	1.6	6	Apple Power Macintosh G5 Dual 2.5 GHz processors S1z KB L2 cache 1 GB RAM Compare Terracost with r.cost in GRASS r.cost has same functionality GRASS users have complained it is very slow for large terrains
Puerto Rico	5.9	24	
Hawaii	28.2	112	
Sierra Nevada	9.5	38	
Cumberlands	67	268	
Lower New England	77.8	312	
Michwest USA	280	1100	

Conclusions and Future Work

Key Points

- Dijustra's algorithm is I/O-inefficient on large data sets

- Terracost restructures the injust grid to run I/O-difficiently
- But we card lignore CPU-contenently
- But we card lignore CPU-contenently
- I/O-bottleneck increases with number of sources for MSSP

- Tiling in Terracost allows for parallelization

Future Work
- Determine the optimal file size analytically
- Find I/O-efficient SSSP/MSSP w/o increase of CPU-efficiency

Thank you.

3