Terracost: A Versatile and Scalable Approach to
Computing Least-Cost-Path Surfaces for
Massive Grid-Based Terrail

Thormas Hazel Lawra Toma JanVahvenhold Rajiv Wickremesinghe
Bowdoin College: Bowdoin College U. Muenster Duke Uriversity

ACM SAC April 2006
Dion,France

Least-cost path surfaces

- Problem
= Input: A cost surface of a grid terrain and a set of sources
Output: A lest-cost path surface: each point represents the shortest

distance to a source

- Applications
~ Spread of fires from different sources
~ Distance from streams or roads
~ Costof building pipelines or roads

1/O-Efficient Algorithms

+ Input data (gri) stored on sk
+ VO-model [Agarwal and Viter, 8]
~ M= size of main memory blocked VO
lock

~ O-operation (I/O): ReadingWiting one
block of data from/to disk

0 effciency

~ Number of /0s performed by the algorithm

+ Basic 0 bounds
~ Scanning: Scan() = 0(N/B) 10s
- Sorting: Sort(N) = 6(N/B logys NB) 05
~ I practice M and B are big:

Terracost

Scalable approach to computing least-cost path surfaces on massive
terrains

~ Based on optimal I/O-efficient algorithm: O(Sort(N)) 1105

Experimental analysis on real-ffe data
~ Can handle bigger grids
~ Can handle more sources

Versatile: Interpolate between versions optimized for /O or CPU

Parallelization on a cluster

Grid terrains

Sierra Nevada, 30m resolution Sierra Nevada, a cost surface.

Least-Cost Surface with one source

Cost surface Least-cost path surface (1 source)

Outline
« Background
 Shortest paths
* Related Work
* Shortest paths in the I/O-Model
* Terracost

« Algorithm

Shortest Paths

- L
« Shortest paths
- Ubiuitous graph problem
- Variations.
+ SSSP: Single source shortest path
+ MSSP: Multple source shortest path
+ Grid terrains > graphs.

Least-cost surface with Multiple Sources

7
R
2 N

Multiple sources Least-cost surface (mult

Least-cost path surfaces on massive terrains

Why massive torrains?
- Large amounts of data are becoming available

(-10TB)
+ LIDAR data: sub-meter resolution
+ Traditional algorthms designed in RAM model don't scale

~ Buy more RAM?

- Data grows faster than memory

~ Data does not fitin memory, sits on disk

~ Random 10 + Virtual memory => swapping

=> IO-bottlenec

112 g2 141 |21

« Experimental analysis AN 25
« Cluster implementation 1113 K , [1]0]2

« Conclusions 25 N\
4,13 25 %2 35| 1|28
Cost grid Corresponding graph Shortest-distance
from center point
Related Work Dijkstra’s Algorithm

Dilkstra's Algorithm
~ Best known for SSSPMSSP on general graphs, non-negative weights

Recent variations on the SP algorithm

~ Goldberg et al SODA 200, WAE 2005
~ Kohler, Mohring, Schiling WEA 2005
~ Gutman WEA 2004

- Lauther 2004

Different setting
~ Point-to-point SP
+ E.g. Route planning, navigation systems

- Exploit of graph to
+ Route planning graphs
~ Use RAM model

When dealing with massive graphs ==

1: Insert sources in a priority queue(PQ)

2: While PQ is not empt

B DeleteMin verlex u with the least cost from PQ
4 Relax all edges incident 1o u

+ In external memory
- Dikstra’s algorithm requires 3 main data structures:
1: Priority queue (can be implemented l1O-sffiiently)
2:Grid of costs (size = N >> M)
3: Grid of current shortest path (size = N> M)

ch PO, i ‘o
lookup in both grids

+ To check whether v can be relaxed
~ These lookups can cost O(1) VOs each in the worst case

==>Total O(N) 105

1/0-Efficient SSSP on Grids [ATV'01]

7

0: Divido grid G into subgrids(G) of size OM)
1:Consiructa substtute graph S on the boundary verices
- Repiace sach subgrid with a complete graph on fs boundary
~ For any uvon the boundary of G, the weight of adge (1) in S is SP(uv)
Lemma: S has O(N M) vertces, O(N) edges and i preserves the SP n G
between any two boundary verics u, v.

2:Sove SPin S
+ Gives SP for all boundary vertces in G
3: Compute SP to vertices inside subgrids

Terracost

+ Step 1: (intra-tile Dijkstra)
~ Parition into tiles of size A

~ Compute an edge-list representation of
substitute graph S

+ Dijkstra from each boundary to tile
boundaries

+ Dikstra from sources to tile
boundaries

top 2:
~ Sort boundary-to-boundary stream |

- Step 3: (inter-tile Dilkstra)
~ Dikstraon §

+ Step 4: (final Dijkstra)
— MSSP for each tile

Conclusions and Future Work

Key Points

Dilkstra's algorithm is /O-inefficient on large data sets
Terracost restructures the input grid to run O-effciently

- But we can't ignore CPU-complexity completely
1O-bottleneck increases with number of sources for MSSP
Tiing inTerracost allows for parallelization

Future Work

Determine the optimal tile size analytically
Find /O-efficient SSSPIMSSP wio increase of CPU-efficiency

Thank you.

Experimental Analysis

Experimental Analysis

- GRASS: roost
— Grid Sze rid Oni i
ou st | MB (Grid Only) | - Experimental Platform - Opt Dijkstra: internal memory version of Terracost (num tiles = 1)
P, 6 5 -+ Temacost: sficient verson of Terracost
+ Apple Power Macintosh G5
PuerioFico 59 24 : Dual2.5 Gz processors
* 512KB L2 cache
Hawaii 282 12 + 1GBRAM
Sera Novada o5 8 M = 1024 MB
Compare Terracost with r.cost in . |
GRASS [z s
Cumberlands 67 268 H
Cumoernd « r.cost has same functionality H £
+ GRASS users have complained it
Lo tow Engand 778 312 is very slow for large terrains
[280 1100
m 0 oo
-
CPU-I/O Tradeoff Terracost on Clusters
R = te size .

+ l0-complexity = O(N / VR + sort(N))

~ Dominated by Step 3 (inter-tle Dilkstra)
CPU-complexity = O(N VR log

~ Dominated by Step 1 (intratile Dijkstra)

So, 1o optimize l/Os, e want a large R.
But, to optimize CPU, we want a small R
Optimal performance: balance I/0-CPU

1 =yt
1o0% =
s0% B me

-

o
Ties 1024 4096 8192 12000 20000
RI0S 786 192

Lower NE, Cost = Slope, 1GB RAM, Single source

Terracost lends itself to parallelization

We parallelized the most GPU-intensive part
~ Computing the substitute graph (Step 1)
igrid
~ Cluster management tool

~ Clients submit requests (run jobs, query status); agents get jobs and run
them

Near-linear speedup

