I/O-Efficient Algorithms for Sparse Graphs

Laura Toma Norbert Zeh

Duke University Carleton University

GI-Dagstuhl Seminar:
Algorithms for Memory Hierarchies
March 2002

I/O-Efficient Algorithms for Sparse Graphs

External Graph Problems

[1 Applications
e Geographic Information Systems (GIS):
x Terrain analysis: flow modeling, topographic indices

* Routing (e.g. find optimal routes given US road network)

e Web modeling

x Web crawl of 200M nodes, 2000M links: shortest paths,
(strongly) connected components, breadth/depth first
search, diameter [BK0O]

x Search engines

[J Data resides on disk = 1/0 bottleneck

I/O-Efficient Algorithms for Sparse Graphs

Parallel Disk Model (PDM)
|Vitter & Shriver]

M # of vertices/edges that fit in memory
[2] # of vertices/edges per disk block
of disks
Block|{1/O

I/O operation

I/O complexity

Basic bounds

e scan(E) =L < F

o sort(E) = O(5logy s 5) < E

I/O-Efficient Algorithms for Sparse Graphs

Upper & Lower Bounds

Upper bounds — deterministic, linear space

Problem | General undirected graphs

CC, MST | O(sort(|E|) - loglog |‘|/ELJ|B> IMR99, ABTO1]

SSSP (|V\ + £ . log 'V') KS96]

DFS 0, (|V\ + % : scan(E)) [CGGH95]

O (V| + scan(|£])) - log, [V]) [KS96

BFS (|V\ + 2 sort(\V\)) IMR99]

Lower bounds: min{V, sort(|V|)}

I/O-Efficient Algorithms for Sparse Graphs

Sparse Graphs

If |[E|=0(|V]):
0 CC, MST: O(sort(|V]) - loglog B)
0 SSSP, BFS, DFS: O(|V|)

G(V,FE) sparse if |[E(H)| = O(|V(H)|), for any graph H which can
be obtained from G by a series of edge contractions followed by

removing duplicate edges.

[1 CC, MST in O(sort(/N)) on sparse graphs
[0 BFS, SSSP, DFS ? Open on sparse graphs

e O(sort(N)) on planar graphs, grid graphs, outerplanar
graphs, bounded treewidth graphs

I/O-Efficient Algorithms for Sparse Graphs

Some Classes of Sparse Graphs

[1 Grid graphs [1 Outerplanar graphs

H

[1 Bounded treewidth graphs

e Tree decomposition: Partition of the edges into a set of

subgraphs which “fit together in a tree-like way”

What do they have in common?

I/O-Efficient Algorithms for Sparse Graphs

Small separators

An e-separator of GG is a set S of vertices whose removal disconnects

(G into subgraphs having at most €N vertices.

Planar graph separation

[]

[LT] 2 subgraphs with 2% ver-

tices each and O(v/N) separator

vertices (2-separator)
—> (apply recursively) O(%)

subgraphs with O(R) vertices

each and O(%) separator ver-

tices (£-separator)

Q=
“B

Planar graphs, grid graphs, outerplanar graphs, bounded treewidth

graphs have small separators that can be computed efficiently in

O(sort(N)) I/Os

I/O-Efficient Algorithms for Sparse Graphs

Outline of the talk

Techniques
e Graph contraction

e Time forward processing

Connectivity problems (CC, MST, BCC, ear decomposition)

BFS and SSSP
DF'S
Separators

Embedding and tree-decomposition

I/O-Efficient Algorithms for Sparse Graphs

Time Forward Processing ([CGG+95], [A95])

Assume G is a DAG with vertices numbered in topological order.
Compute for each vertex v a “value” based on the values of its

in-neighbors ;.
u1 u2 [[] V [] [[V\{L [[] V\é [] V\é
How to compute the value of u; without spending one 1/07?
[1 Priority queue: stores values of u; with priority=v

[1 When processing v:
e ExtractMin to find values of u;

e For each out-edge (v, w,) insert value of v in pqueue with

priority w; (send forward in time)

— O(sort(FE)) I/0s

I/O-Efficient Algorithms for Sparse Graphs

Graph Contraction

Edge contraction: %

Graph contraction: Identify disjoint subgraphs and contract (to a

point or to a smaller subgraph).

Goal: Reduce the size of the graph
G:GQ%G1'°'—>G1€

Solve the problem on G}, and derive the solution for Gi_1,... Gy

Typically a contraction step reduces the size of G by a constant
fraction = O(log V') contraction steps

[/O-efficient graph contraction: usually stop after O(log B)

steps (V' = %)

I/O-Efficient Algorithms for Sparse Graphs

Connectivity Problems on Sparse Graphs

([CGG+95])

0 CC, MST

Vioa
2

e Contraction on G; takes O(sort(E;)) I/Os = > . O(sort(E;))
e Sparse graphs: E; = O(V;) = > . O(sort(E;)) = O(sort(E))

e Graph contraction G = Gog — G1 — ..., where V; <

[1 Biconnected components, ear decomposition
e Based on PRAM algorithms [TV85,MSVE&6|

e Biconnected components: Reduces to computing a spanning
tree, computing bottom-up labeling, and computing CC in a

new graph G’

e Far decomposition: Reduces to computing a spanning tree 1,

computing a BF'S of T', and batched Ilca queries on T’

I/O-Efficient Algorithms for Sparse Graphs

BFS and SSSP

bounded

[d terpl
sparse planar qri outerplanar | . ..

open | O(sort(NN)) | O(sort(N)) | O(sort(N)) | O(sort(N))

[1 Existence of small separators

[0 Planar graphs: O(sort(/V)) reductions
DFS

lO(sort(N))

BES — O(sort(N)) £ —separators< O(sort(N)) sSSP

I/O-Efficient Algorithms for Sparse Graphs

B

~|

t

The path A; — A;11 induced by d(s,t) in subgrid o is the
shortest path between A; and A;11 in o.

(1 Assume M > B?

[1 Idea: Replace each B x B subgrid with a complete graph on the
"boundary vertices”:

e Edge weight «— shortest path between the two boundary
vertices in the subgrid

— reduced graph G%: O(%) vertices, O(N) edges

I/O-Efficient Algorithms for Sparse Graphs

SSSP on Grid Graphs
Algorithm:

1. Compute SSSP in G from s to all boundary vertices

2. For any subgrid o, for any ¢ € o then
5(87 t) — minvEBnd(U){6(87 U) + 50 (U, t)}

Compute SSSP on G

o Use [KS96] = O(F + & log, o) I/0s

e Can be improved to O(sort(/N)) I/Os
« Dijkstra’s algorithm, I/O-efficient priority queue

+x Boundaries of a subgrid can be “blocked” together: load
them in O(1) I/Os per vertex

I/O-Efficient Algorithms for Sparse Graphs

SSSP on Planar Graphs
[0 Similar with grid graphs. Assume M > B?, bounded degree.

[1 Assume graph is separated
e O(£5) subgraphs, O(B?) vertices each, S = O(%)
separator; each subgraph adjacent to O(B) separators

\E

I/O-Efficient Algorithms for Sparse Graphs

SSSP on Planar Graphs
[0 Similar with grid graphs. Assume M > B?, bounded degree.

[1 Assume graph is separated
e O(£5) subgraphs, O(B?) vertices each, S = O(%)
separator; each subgraph adjacent to O(B) separators

replace each subgraph with a complete graph
on itsboundary vertices ==> reduced graph

I/O-Efficient Algorithms for Sparse Graphs

SSSP on Planar Graphs
[0 Similar with grid graphs. Assume M > B?, bounded degree.

[1 Assume graph is separated

° O(%) subgraphs, O(B?) vertices each, S O(%)

separator; each subgraph adjacent to O(B) separators

compute SSSP on reduced graph

replace each subgraph with a complete graph
on itsboundary vertices ==> reduced graph

I/O-Efficient Algorithms for Sparse Graphs

SSSP on Planar Graphs

Reduced graph G
0 O(S Al

(-) vertices

) =
0 O (45 - B?) = O(N) edges

O(B) boundary vertices
Compute SSSP on G
Dijkstra’s algorithm, I/O-efficient priority queue
Keep list Lg = {dist(s,v),Vv € S}

For each vertex, read from Lg its O(B) adjacent boundary
vertices

—> O (% - B) = O(N) I/Os (assume bounded degree)

I/O-Efficient Algorithms for Sparse Graphs

[1 Store Lg so that vertices in same boundary set are consecutive

[0 Each boundary set is accessed once by its O(B) adjacent vertices

— 0% - B) =0 (%) 1/0s

I/O-Efficient Algorithms for Sparse Graphs

Tree Decompositions of Graphs

A tree-decomposition of G = (V| F) consists of
[] A tree T°

[1 A set X of sets of vertices of (G, one for each node of T

Let X, denote the vertex set corresponding to a node ¢ of T'. Then:

: UiET X, =V

. For every edge (v, w) € E, there exists an ¢ € I, so that
v,w e X;, and

. For two nodes i, k € T' and any node j on the path from ¢ to &
in T, X; NX, CX;.

The width of tree-decomposition is max{|X;| — 1}.

The treewidth of a G is the minimum width over all possible tree

decompositions of G.

I/O-Efficient Algorithms for Sparse Graphs

Tree Decompositions

A tree decomposition — Separator decomposition tree

Bounded treewidth graph — |X;| =0(1) Vi € T

Notation:
[1 T is subtree of T' rooted at ¢

O V(@) =Ujer, Xi
[0 G(i) is subgraph induced by V' (7)

I/O-Efficient Algorithms for Sparse Graphs

SSSP on Bounded-treewidth Graphs

General idea:
For each node i € T', store APSP(Xj)

Dynamic programming

. Find a tree-decomposition of width at most &

. Bottom-up phase: For each node 7 in 1", compute the shortest
distance d;(u,v) in G(i) between every u,v € X; based on the

solutions of the children of 7.

. Top-down phase: For each node ¢ in T, compute the shortest
distance d(s,u) in GG between s and every node u € X; based
on the solutions of the parent of «.

[/O-efficient: O(sort(/N)) I/Os

I/O-Efficient Algorithms for Sparse Graphs

DFS Upper Bounds

sparse

outerplanar

bounded
treewidth

open

O(sort(V))

open

[Some DFS tree (not the lexicographically ordered DFS)

[0 Planar graphs: reduction to BFS

I/O-Efficient Algorithms for Sparse Graphs

A DFS to BFS Reduction on Planar Graphs

Idea: Partition the faces of G into levels around a source face

containing s and grow DF'S level-by-level.

I/O-Efficient Algorithms for Sparse Graphs

A DFS to BFS Reduction on Planar Graphs

[1 G; = union of the boundaries of faces at level < ¢
[0 T = DFS tree of G;
0 H;, =G\ Gi—1

Compute a spanning forest of H; and attach it onto T;_1.

Lemma: The bicomps of H; are the boundary cycles of G;.

Lemma: A spanning tree is a DF'S tree if and only if it does not

have cross edges.

I/O-Efficient Algorithms for Sparse Graphs

A DFS to BFS Reduction on Planar Graphs

[/O-analysis
[0 Compute CC of H;: O(sort(|H;|)) 1/Os
[0 Compute DFS of H!

e compute bicomps, bicomp-cut-point tree, tree DFS:

O(sort(|H;|)) 1/0s
[0 Find deepest node in T;_; which connects to H;
— total O(sort(N)) I/Os

