I/O-Efficient Algorithms for Sparse Graphs

Laura Toma

Norbert Zeh

Duke University

Carleton University

GI-Dagstuhl Seminar:
Algorithms for Memory Hierarchies
March 2002

External Graph Problems

- * Applications
 - Geographic Information Systems (GIS):
 - * Terrain analysis: flow modeling, topographic indices
 - * Routing (e.g. find optimal routes given US road network)
 - Web modeling
 - * Web crawl of 200M nodes, 2000M links: shortest paths, (strongly) connected components, breadth/depth first search, diameter [BK00]
 - * Search engines
- \star Data resides on disk \Longrightarrow I/O bottleneck

Parallel Disk Model (PDM)

[Vitter & Shriver]

M = # of vertices/edges that fit in memory

B = # of vertices/edges per disk block

D = # of disks

- ★ I/O operation
- ★ I/O complexity
- **★** Basic bounds
 - $\operatorname{scan}(E) = \frac{E}{B} \ll E$
 - $\operatorname{sort}(E) = \Theta(\frac{E}{B} \log_{M/B} \frac{E}{B}) \ll E$

Upper & Lower Bounds

Upper bounds – deterministic, linear space

Problem	General undirected graphs	
CC, MST	$O(\operatorname{sort}(E) \cdot \log \log \frac{ V B}{ E })$	[MR99, ABT01]
SSSP	$O\left(V + \frac{E}{B} \cdot \log \frac{ V }{B}\right)$	[KS96]
DFS	$O\left(V + \frac{ V }{M} \cdot \operatorname{scan}(E)\right)$	[CGG+95]
	$O\left((V + \operatorname{scan}(E)) \cdot \log_2 V \right)$	[KS96]
BFS	$O\left(V + \frac{ E }{ V } \cdot \operatorname{sort}(V)\right)$	[MR99]

Lower bounds: $\min\{V, \text{sort}(|V|)\}$

Sparse Graphs

```
If |E| = O(|V|):
```

- \star CC, MST: $O(\operatorname{sort}(|V|) \cdot \log \log B)$
- \star SSSP, BFS, DFS: O(|V|)

G(V, E) sparse if |E(H)| = O(|V(H)|), for any graph H which can be obtained from G by a series of edge contractions followed by removing duplicate edges.

- \star CC, MST in $O(\operatorname{sort}(N))$ on sparse graphs
- ★ BFS, SSSP, DFS? Open on sparse graphs
 - $O(\operatorname{sort}(N))$ on planar graphs, grid graphs, outerplanar graphs, bounded treewidth graphs

Some Classes of Sparse Graphs

★ Grid graphs

★ Outerplanar graphs

- **★** Bounded treewidth graphs
 - Tree decomposition: Partition of the edges into a set of subgraphs which "fit together in a tree-like way"

What do they have in common?

Small separators

An ϵ -separator of G is a set S of vertices whose removal disconnects G into subgraphs having at most ϵN vertices.

Planar graph separation

- ★ [LT] 2 subgraphs with $\frac{2N}{3}$ vertices each and $O(\sqrt{N})$ separator vertices $(\frac{2}{3}$ -separator)
- \Rightarrow (apply recursively) $O(\frac{N}{R})$ subgraphs with O(R) vertices each and $O(\frac{N}{\sqrt{R}})$ separator vertices $(\frac{R}{N}\text{-separator})$

Planar graphs, grid graphs, outerplanar graphs, bounded treewidth graphs have small separators that can be computed efficiently in $O(\operatorname{sort}(N))$ I/Os

Outline of the talk

- **★** Techniques
 - Graph contraction
 - Time forward processing
- ★ Connectivity problems (CC, MST, BCC, ear decomposition)
- ★ BFS and SSSP
- ★ DFS
- **★** Separators
- **★** Embedding and tree-decomposition

Time Forward Processing ([CGG+95], [A95])

Assume G is a DAG with vertices numbered in topological order. Compute for each vertex v a "value" based on the values of its in-neighbors u_i .

How to compute the value of u_i without spending one I/O?

- \star Priority queue: stores values of u_i with priority=v
- \star When processing v:
 - ExtractMin to find values of u_i
 - For each out-edge (v, w_j) insert value of v in pqueue with priority w_j (send forward in time)

$$\implies O(\operatorname{sort}(E)) \text{ I/Os}$$

Graph Contraction

Edge contraction:

Graph contraction: Identify disjoint subgraphs and contract (to a point or to a smaller subgraph).

Goal: Reduce the size of the graph

$$G = G_0 \longrightarrow G_1 \cdots \longrightarrow G_k$$

- \star Solve the problem on G_k and derive the solution for $G_{k-1}, \ldots G_0$
- \star Typically a contraction step reduces the size of G by a constant fraction $\Longrightarrow O(\log V)$ contraction steps
- ★ I/O-efficient graph contraction: usually stop after $O(\log B)$ steps $(V' = \frac{V}{B})$

Connectivity Problems on Sparse Graphs ([CGG+95])

- ★ CC, MST
 - Graph contraction $G = G_0 \longrightarrow G_1 \longrightarrow \ldots$, where $V_i \leq \frac{V_{i-1}}{2}$
 - Contraction on G_i takes $O(\operatorname{sort}(E_i))$ I/Os $\Longrightarrow \sum_i O(\operatorname{sort}(E_i))$
 - Sparse graphs: $E_i = O(V_i) \Longrightarrow \sum_i O(\operatorname{sort}(E_i)) = O(\operatorname{sort}(E))$
- ★ Biconnected components, ear decomposition
 - Based on PRAM algorithms [TV85,MSV86]
 - Biconnected components: Reduces to computing a spanning tree, computing bottom-up labeling, and computing CC in a new graph G'
 - Ear decomposition: Reduces to computing a spanning tree T, computing a BFS of T, and batched lca queries on T

BFS and SSSP

sparse	planar	grid	outerplanar	bounded
1	1	J	1	treewidth
open	$O(\operatorname{sort}(N))$	$O(\operatorname{sort}(N))$	$O(\operatorname{sort}(N))$	$O(\operatorname{sort}(N))$

- **★** Existence of small separators
- \bigstar Planar graphs: $O(\operatorname{sort}(N))$ reductions

SSSP on Grid Graphs

The path $A_i \longrightarrow A_{i+1}$ induced by $\delta(s,t)$ in subgrid σ is the shortest path between A_i and A_{i+1} in σ .

- \star Assume $M \geq B^2$
- ★ Idea: Replace each $B \times B$ subgrid with a complete graph on the "boundary vertices":
 - Edge weight ←→ shortest path between the two boundary vertices in the subgrid
 - \implies reduced graph G^R : $\Theta(\frac{N}{B})$ vertices, $\Theta(N)$ edges

SSSP on Grid Graphs

Algorithm:

- 1. Compute SSSP in G^R from s to all boundary vertices
- 2. For any subgrid σ , for any $t \in \sigma$ then $\delta(s,t) = \min_{v \in Bnd(\sigma)} \{\delta(s,v) + \delta_{\sigma}(v,t)\}$
- \star Compute SSSP on G^R
 - Use [KS96] $\Longrightarrow O(\frac{N}{B} + \frac{N}{B} \log_2 \frac{N}{B^2})$ I/Os

- Can be improved to $O(\operatorname{sort}(N))$ I/Os
 - * Dijkstra's algorithm, I/O-efficient priority queue
 - * Boundaries of a subgrid can be "blocked" together: load them in O(1) I/Os per vertex

- * Similar with grid graphs. Assume $M \geq B^2$, bounded degree.
- ★ Assume graph is separated
 - $O(\frac{N}{B^2})$ subgraphs, $O(B^2)$ vertices each, $S = O(\frac{N}{B})$ separator; each subgraph adjacent to O(B) separators

- * Similar with grid graphs. Assume $M \geq B^2$, bounded degree.
- ★ Assume graph is separated
 - $O(\frac{N}{B^2})$ subgraphs, $O(B^2)$ vertices each, $S = O(\frac{N}{B})$ separator; each subgraph adjacent to O(B) separators

- * Similar with grid graphs. Assume $M \geq B^2$, bounded degree.
- ★ Assume graph is separated
 - $O(\frac{N}{B^2})$ subgraphs, $O(B^2)$ vertices each, $S = O(\frac{N}{B})$ separator; each subgraph adjacent to O(B) separators

Reduced graph G^R :

$$\bigstar O(S) = O\left(\frac{N}{B}\right)$$
 vertices

$$\bigstar O\left(\frac{N}{B^2} \cdot B^2\right) = O(N) \text{ edges}$$

O(B) boundary vertices

Compute SSSP on G^R

- ★ Dijkstra's algorithm, I/O-efficient priority queue
- \star Keep list $L_S = \{ \text{dist}(s, v), \forall v \in S \}$
- ★ For each vertex, read from L_S its O(B) adjacent boundary vertices

$$\Longrightarrow O\left(\frac{N}{B} \cdot B\right) = O(N)$$
 I/Os (assume bounded degree)

SSSP on G^R in $O(\mathbf{sort}(N))$ I/Os

 $\bigstar O\left(\frac{N}{B^2}\right)$ boundary sets!

- \bigstar Boundary set is $O(B) \Longrightarrow \text{load in } O(1) \text{ I/O}$
- \star Store L_S so that vertices in same boundary set are consecutive
- ★ Each boundary set is accessed once by its O(B) adjacent vertices $\Longrightarrow O\left(\frac{N}{B^2} \cdot B\right) = O\left(\frac{N}{B}\right)$ I/Os

Tree Decompositions of Graphs

A tree-decomposition of G = (V, E) consists of

- \star A tree T
- \star A set \mathcal{X} of sets of vertices of G, one for each node of T

Let X_i denote the vertex set corresponding to a node i of T. Then:

- 1. $\bigcup_{i \in T} X_i = V$
- 2. For every edge $(v, w) \in E$, there exists an $i \in I$, so that $v, w \in X_i$, and
- 3. For two nodes $i, k \in T$ and any node j on the path from i to k in $T, X_i \cap X_k \subseteq X_j$.

The width of tree-decomposition is $\max\{|X_i|-1\}$.

The treewidth of a G is the minimum width over all possible tree decompositions of G.

Tree Decompositions

A tree decomposition — Separator decomposition tree

Bounded treewidth graph $\longrightarrow |X_i| = O(1) \ \forall i \in T$

Notation:

- \star T_i is subtree of T rooted at i
- $\bigstar V(i) = \bigcup_{j \in T_i} X_j$
- \star G(i) is subgraph induced by V(i)

SSSP on Bounded-treewidth Graphs

General idea:

- \bigstar For each node $i \in T$, store $APSP(X_i)$
- **★** Dynamic programming
- 1. Find a tree-decomposition of width at most k
- 2. Bottom-up phase: For each node i in T, compute the shortest distance $d_i(u, v)$ in G(i) between every $u, v \in X_i$ based on the solutions of the children of i.
- 3. Top-down phase: For each node i in T, compute the shortest distance d(s, u) in G between s and every node $u \in X_i$ based on the solutions of the parent of i.

I/O-efficient: $O(\operatorname{sort}(N))$ I/Os

DFS Upper Bounds

sparse	planar	grid	outerplanar	$bounded\\treewidth$
open	$O(\operatorname{sort}(N))$	open $\left(O\left(\frac{N}{\sqrt{B}}\right)\right)$	$O(\operatorname{sort}(N))$	open

- ★ Some DFS tree (not the lexicographically ordered DFS)
- ★ Planar graphs: reduction to BFS

A DFS to BFS Reduction on Planar Graphs

Idea: Partition the faces of G into levels around a source face containing s and grow DFS level-by-level.

A DFS to BFS Reduction on Planar Graphs

- $\star G_i$ = union of the boundaries of faces at level $\leq i$
- $\star T_i = \text{DFS tree of } G_i$
- $\bigstar H_i = G_i \setminus G_{i-1}$

Compute a spanning forest of H_i and attach it onto T_{i-1} .

Lemma: The bicomps of H_i are the boundary cycles of G_i .

Lemma: A spanning tree is a DFS tree if and only if it does not have cross edges.

A DFS to BFS Reduction on Planar Graphs

I/O-analysis

- ★ Compute CC of H'_i : $O(\text{sort}(|H_i|))$ I/Os
- \star Compute DFS of H'_i
 - compute bicomps, bicomp-cut-point tree, tree DFS: $O(\operatorname{sort}(|H_i|))$ I/Os
- \star Find deepest node in T_{i-1} which connects to H'_i
- \implies total $O(\operatorname{sort}(N))$ I/Os