Flow Computation on Massive (Grids

Laura Toma Rajiv Wickremesinghe
Lars Arge Jeffrey S. Chase Jeflrey S. Vitter

Patrick N. Halpin Dean Urban

NMICHLAS
Schoplofibe ENVIEOMNMENT

Duke University

Flow Computation on Massive Grids

Flow Modeling on Terrains

[1 Terrain represented as a grid
[1 Flow modeled by two basic attributes

e Flow direction: The direction water flows at a point in the
grid

e Flow accumulation value: Total amount of water which flows

through a point in the grid

[1 Objective: Compute flow directions and flow accumulation
values for the entire grid

e Flow routing

e Flow accumulation

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

Flow Computation on Massive Grids

Flow Routing

[] Water lows downhill.

[1 Compute flow directions by inspecting 8 neighbor points.

[1 Flat areas: plateaus and sinks.

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

Flow Computation on Massive Grids

Flow Accumulation

[1 Water flows following the flow directions
[1 Compute the total amount of flow through each grid point

e Initially one unit of water on each grid point

e Every point distributes water to the neighbors pointed to by

its flow direction(s)

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

Flow Computation on Massive Grids

Applications

[1 Watersheds, drainage network

[1 Erosion, infiltration, drainage, solar radiation distribution,

sediment transport, vegetation structure, species diversity

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

Flow Computation on Massive Grids

Massive Data

[1 Massive remote sensing data available
e USGS (entire US at 10m resolution)
e NASA’s SRTM (whole Earth, 5TB)
e LIDAR

[1 Example: Appalachian Mountains (800km x 800km)

at 100m resolution: 500MB
at 30m resolution: 5.5GB
at 10m resolution: H0GB

at 1m resolution: 5TB !

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

Flow Computation on Massive Grids

Scalability to Massive Data

[] Existing software

e GRASS r.watershed
x killed after 17 days on a 50MB dataset

e Arclnfo flowdirection, flowaccumulation
x can handle the 50MB dataset

x cannot process files > 2G' B

[1 Current GIS algorithms minimize CPU time

[0 I/0 is the bottleneck in computation on massive data!

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

Flow Computation on Massive Grids

Our Results:
TerraFlow

Collection of theoretical algorithms and practical
implementations for flow routing and flow accumulation on

massive grids.

Available at http://www.cs.duke.edu/geox/terraflow/

Efficient

e 2-1000 times faster on massive grids than existing software

Scalable

e 1 billion elements! (> 2GB)

Flexible

e different flow models

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

Flow Computation on Massive Grids

Outline

[1 The I/O-Model

[Flow routing: Previous work and I/O-efficient algorithm
[1 Experimental results

[Open problems

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

Flow Computation on Massive Grids

Disk Model
|[Aggarwal & Vitter '88]

@ N # of points in the grid
D

M # of vertices/edges that fit in memory
of vertices/edges per disk block
Block({I/O

[/O complexity

Basic bounds

e scan(N) =% < E
e sort(N) =O(% log s/ M) < E

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban 10

Flow Computation on Massive Grids

I/O-Efficient Flow Routing

[1 Flow routing: assign flow direction to every point such that

e Flow directions do not induce cycles = every point has a

flow path to the edge of the terrain

Steps:

1. Assign flow directions to all points which have downslope
neighbors.

. Identify flat areas, their boundaries and spill points.
. Assign flow directions on plateaus.
Remove sinks.

. Assign flow directions to the entire terrain (repeat steps 1-3).

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban 11

Flow Computation on Massive Grids

Removing Sinks

Sinks are removed by flooding [Jenson & Domingue ’88]

Flooding fills the terrain up to the steady state level reached

when an infinite amount of water is poured onto the terrain and

the outside is viewed as a giant ocean.

N, /

\

A watershed u is raised to height h by raising every point in u
of height lower than h to height A.

Watershed: part of the terrain that flows into the sink.

Partition the terrain into watersheds — watershed graph

. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban 12

Flow Computation on Massive Grids

Computing Watersheds

Internal Memory Algorithm

[] Assign to each sink a unique watershed label. Process (sweep)
points in reverse topological order of the flow directions
(increasing order of height), assigning labels to incoming
neighbor points = O(N) time

D
D
D

gh ZEWZEN

R 2
&7 ﬁ?’ﬁ?
2 IZEY

o

RN
R
R

R @ d

W.“ll
A @ d
AR AN AN

[1 Problem: algorithm uses O(/N) I/Os if directions and labels
stored as grids (not fitting in memory)

e Points with same height are distributed over the terrain

— scattered accesses

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

13

Flow Computation on Massive Grids

Computing Watersheds
I/O-Efficient Algorithm

[1 Eliminate scattered accesses to watershed-label grid

e Idea: neighbor only needs the label when the sweep plane

reaches its elevation
o Usea O(% log /B &) priority queue [A95, BK98]

+ Assign label by inserting it in priority queue with priority
equal to neighbor’s height

x Trade space for I/Os: Augment each height with heights of
neighbors which flow into it

e O(N) priority queue operations = O(% log /B X) 1/0s

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

14

Flow Computation on Massive Grids

Flooding

Internal Memory Algorithm

[1 Watershed graph

o W watersheds

e Fdges between adjacent watersheds (labeled with height)
[1 Identify and merge watersheds that spill into each other

e For each watershed follow the steepest edge downslope; if it

leads back into itself, merge all watersheds on the cycle

e Repeat until there are no cycles

O O(W?) time, I/0s

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

15

Flow Computation on Massive Grids

Flooding
I/O-efficient Algorithm

[1 Plane sweep algorithm

e Introduce a watershed representing the outside of the terrain
e Initially only the “outside” watershed is done

e Sweep watershed graph bottom-up with a horizontal plane.
When hit edge (u,v):
x If both watersheds are done, ignore
« If none is done, union them

x If precisely one is not done, raise it and mark it as done

O OW -a(W,N)) time, I/0s

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

16

Flow Computation on Massive Grids

Implementation and Platform

http://www.cs.duke.edu/geo*/terraflow/
C++4, TPIE

TerraFlow, ArcInfo: 500MHz Alpha, FreeBSD 4.0, 1GB main

mMemory
GRASS: 500MHz Intel PIII, FreeBSD 4.0, 1GB main memory

TARDEM: 500MHz Intel PIII, Windows, 1GB main memory

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban 17

Flow Computation on Massive Grids

Experimental Results: Datasets

Dataset

Resolution

Dimensions

Grid Size

Kaweah

Puerto Rico

Sierra Nevada
Hawaii

Cumberlands

Lower New England
Central Appalachians
East-Coast USA
Midwest USA
Washington State

30m
100m
30m
100m
80m
80m
30m
100m
100m
10m

1163 x 1424
4452 x 1378
3750 x 2672
6784 x 4369
8704 x 7673
9148 x 8509
12042 x10136
13500 x 18200
11000 x 25500
33454 x 31866

3.2MB
12MB
19MB
56MB
133MB
156MB
232MB
491MB
561MB
2GB

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

18

Flow Computation on Massive Grids

TerraFlow Performance

 — TSR
EeelArcinks 18
B Aicinks 513
I TeiralFlow 138
T srraF o 512
21765
=« = | ZEAIE

=
2
=

Dataset size, RAM (MB)

50

B
=]
=
=]
=]

g
=
g
=
=}
£

B

Koweah Puerio Rico Siarra Hawaii Cumbarlands Lower NE East-Coast Midwesl Washington
Mevada

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

19

Flow Computation on Massive Grids

TerraFlow Performance

Significant speedup over Arclnfo for large grids

e Fast-Coast dataset

x TerraFlow: 8.7 hours
* ArcInfo: 78 hours

e Washington state dataset

x TerraFlow: 63 hours

x ArcInfo: cannot process it!

Other software
e GRASS: killed after 17 days on Hawaii

e TARDEM: Can handle Hawaii. Killed after 20 days on
Cumberlands (CPU utilization 5%, 3GB swap file)

. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

20

Flow Computation on Massive Grids

Future Directions

[1 Flow modeling on TINs

e Flow along edges. Compute flow accumulation of nodes.

e Extend grid approach: assign flow at triangle level. Flow
across edges and along channel edges. Compute flow

accumulation of triangles and channel nodes.

e Compute contributing area directly: trace steepest
downslope paths across triangles.

[0 Grid/TIN conversion

e Maintain global features

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

21

