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Flow Computation on Massive Grids

Flow Modeling on Terrains

[1 Terrain represented as a grid
[1 Flow modeled by two basic attributes

e Flow direction: The direction water flows at a point in the
grid

e Flow accumulation value: Total amount of water which flows

through a point in the grid

[1 Objective: Compute flow directions and flow accumulation
values for the entire grid

e Flow routing

e Flow accumulation
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Flow Routing

[]  Water lows downhill.

[1 Compute flow directions by inspecting 8 neighbor points.

[1 Flat areas: plateaus and sinks.
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Flow Accumulation

[1 Water flows following the flow directions
[1 Compute the total amount of flow through each grid point

e Initially one unit of water on each grid point

e Every point distributes water to the neighbors pointed to by

its flow direction(s)
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Applications

[1 Watersheds, drainage network

[1 Erosion, infiltration, drainage, solar radiation distribution,

sediment transport, vegetation structure, species diversity
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Massive Data

[1 Massive remote sensing data available
e USGS (entire US at 10m resolution)
e NASA’s SRTM (whole Earth, 5TB)
e LIDAR

[1 Example: Appalachian Mountains (800km x 800km)

at 100m resolution: 500MB
at 30m resolution: 5.5GB
at 10m resolution: H0GB

at 1m resolution: 5TB !
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Scalability to Massive Data

[] Existing software

e GRASS r.watershed
x killed after 17 days on a 50MB dataset

e Arclnfo flowdirection, flowaccumulation
x can handle the 50MB dataset

x cannot process files > 2G' B

[1 Current GIS algorithms minimize CPU time

[0 I/0 is the bottleneck in computation on massive data!
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Our Results:
TerraFlow

Collection of theoretical algorithms and practical
implementations for flow routing and flow accumulation on

massive grids.

Available at http://www.cs.duke.edu/geox/terraflow/

Efficient

e 2-1000 times faster on massive grids than existing software

Scalable

e 1 billion elements! (> 2GB)

Flexible

e different flow models
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Outline

[1 The I/O-Model

[ Flow routing: Previous work and I/O-efficient algorithm
[1 Experimental results

[ Open problems
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Disk Model
|[Aggarwal & Vitter '88]

@ N # of points in the grid
D

M # of vertices/edges that fit in memory
# of vertices/edges per disk block
Block({I/O

[/O complexity

Basic bounds

e scan(N) =% < E
e sort(N) =O(% log s/ M) < E
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I/O-Efficient Flow Routing

[1 Flow routing: assign flow direction to every point such that

e Flow directions do not induce cycles = every point has a

flow path to the edge of the terrain

Steps:

1. Assign flow directions to all points which have downslope
neighbors.

. Identify flat areas, their boundaries and spill points.
. Assign flow directions on plateaus.
Remove sinks.

. Assign flow directions to the entire terrain (repeat steps 1-3).
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Removing Sinks

Sinks are removed by flooding [Jenson & Domingue ’88]

Flooding fills the terrain up to the steady state level reached

when an infinite amount of water is poured onto the terrain and

the outside is viewed as a giant ocean.

N, /

\

A watershed u is raised to height h by raising every point in u
of height lower than h to height A.

Watershed: part of the terrain that flows into the sink.

Partition the terrain into watersheds — watershed graph
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Computing Watersheds

Internal Memory Algorithm

[] Assign to each sink a unique watershed label. Process (sweep)
points in reverse topological order of the flow directions
(increasing order of height), assigning labels to incoming
neighbor points = O(N) time
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[1 Problem: algorithm uses O(/N) I/Os if directions and labels
stored as grids (not fitting in memory)

e Points with same height are distributed over the terrain

— scattered accesses
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Computing Watersheds
I/O-Efficient Algorithm

[1 Eliminate scattered accesses to watershed-label grid

e Idea: neighbor only needs the label when the sweep plane

reaches its elevation
o Usea O(% log /B &) priority queue [A95, BK98]

+ Assign label by inserting it in priority queue with priority
equal to neighbor’s height

x Trade space for I/Os: Augment each height with heights of
neighbors which flow into it

e O(N) priority queue operations = O(% log /B X) 1/0s
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Flooding

Internal Memory Algorithm

[1 Watershed graph

o W watersheds

e Fdges between adjacent watersheds (labeled with height)
[1 Identify and merge watersheds that spill into each other

e For each watershed follow the steepest edge downslope; if it

leads back into itself, merge all watersheds on the cycle

e Repeat until there are no cycles

O O(W?) time, I/0s
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Flooding
I/O-efficient Algorithm

[1 Plane sweep algorithm

e Introduce a watershed representing the outside of the terrain
e Initially only the “outside” watershed is done

e Sweep watershed graph bottom-up with a horizontal plane.
When hit edge (u,v):
x If both watersheds are done, ignore
« If none is done, union them

x If precisely one is not done, raise it and mark it as done

O OW -a(W,N)) time, I/0s

L. Toma, R. Wickremesinghe, L. Arge, J. Chase, J. Vitter, P. Halpin, D. Urban

16



Flow Computation on Massive Grids

Implementation and Platform

http://www.cs.duke.edu/geo*/terraflow/
C++4, TPIE

TerraFlow, ArcInfo: 500MHz Alpha, FreeBSD 4.0, 1GB main

mMemory
GRASS: 500MHz Intel PIII, FreeBSD 4.0, 1GB main memory

TARDEM: 500MHz Intel PIII, Windows, 1GB main memory
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Experimental Results: Datasets

Dataset

Resolution

Dimensions

Grid Size

Kaweah

Puerto Rico

Sierra Nevada
Hawaii

Cumberlands

Lower New England
Central Appalachians
East-Coast USA
Midwest USA
Washington State

30m
100m
30m
100m
80m
80m
30m
100m
100m
10m

1163 x 1424
4452 x 1378
3750 x 2672
6784 x 4369
8704 x 7673
9148 x 8509
12042 x10136
13500 x 18200
11000 x 25500
33454 x 31866

3.2MB
12MB
19MB
56MB
133MB
156MB
232MB
491MB
561MB
2GB
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TerraFlow Performance
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TerraFlow Performance

Significant speedup over Arclnfo for large grids

e Fast-Coast dataset

x TerraFlow: 8.7 hours
* ArcInfo: 78 hours

e Washington state dataset

x TerraFlow: 63 hours

x ArcInfo: cannot process it!

Other software
e GRASS: killed after 17 days on Hawaii

e TARDEM: Can handle Hawaii. Killed after 20 days on
Cumberlands (CPU utilization 5%, 3GB swap file)
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Future Directions

[1 Flow modeling on TINs

e Flow along edges. Compute flow accumulation of nodes.

e Extend grid approach: assign flow at triangle level. Flow
across edges and along channel edges. Compute flow

accumulation of triangles and channel nodes.

e Compute contributing area directly: trace steepest
downslope paths across triangles.

[0 Grid/TIN conversion

e Maintain global features
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