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69.1 Introduction

An important goal of cognitive science is to understand human cognition. Good models of cognition can
be predictive — describing how people are likely to react in different scenarios — as well as prescriptive —
describing limitations in cognition and potentially ways in which the limitations might be overcome. In
a sense, the benefits of having cognitive models are similar to the benefits individuals accrue in building
their own internal model. To quote Craik [1943]:

If the organism carries a ‘small-scale model’ of external reality and of its own possible actions
within it head, it is able to try out various alternatives, conclude which is the best of them, react
to future situations before they arise, utilize the knowledge of past events in dealing with the
present and future, and in every way to react in a much fuller, safer, and more competent manner
to the emergencies which face it. (p. 61)

Among the important questions facing cognitive scientists are how such models are created and how
they are represented internally. Craik emphasizes the importance of the predictive power of models, and
it is the model’s ability to make accurate predictions that is the ultimate measure of the model’s value.
One important value of computers in cognitive science is that computer simulations provide a means
to instantiate theories and to concretely test their predictive power. Further, implementation of a theory
in a computer model forces theoreticians to face practical issues that they may never have otherwise
considered.

The role of computer science in cognitive modeling is not strictly limited to implementation and
testing, however. A core belief of most cognitive scientists is that cognition is a form of computation
(otherwise, computer modeling is a doomed enterprise) and the study of computation has long been
a source of ideas (and material for debates) for building cognitive models. Computers themselves once
served as the dominant metaphor for cognition. In more recent years, the influence of computers has
been more in the area of computational paradigms, such as rule-based systems, neural network models,
etc.
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69.2 Underlying Principles

One of the dangers of cognitive modeling is falling under the spell of trying to apply computational models
directly to cognition. A good example of this is the “mind as computer” metaphor that was once popular
but has fallen into disfavor. Computer science offers a range of computational tools designed to solve
problems, and it is tempting to apply these tools to psychological data and call the result a cognitive model.
As McCloskey [1991] has pointed out, this falls far short of the criteria that could reasonably used to define a
theory of cognition. One replacement for the “mind as computer” metaphor makes this point well. Neurally
inspired models of cognition fell out of favor following Minsky and Papert’s 1969 book Perceptrons that
showed that the dominant neural models at the time were unable to model nonlinear functions (notably
exclusive-or). The extension of these models by the PDP (Parallel Distributed Processing) group in 1986
[Rumelhart and McClelland, 1986] is largely responsible for the connectionist revolution of the past
25 years. The excitement generated by these models was twofold: (1) they were computationally powerful
and simple to use, and (2) as neural-level models they appeared to be physiologically plausible.

A major difficulty for connectionist theory of the past 20 years has been that, despite the fact that the early
PDP-style models (particularly models built upon feed-forward back-propagation networks) were proven
to be implausible for both physiological and theoretical reasons (e.g., see [Lachter and Bever, 1988; Newell,
1990]), many cognitive models are still built using such discredited computational engines. The reason for
this appears to be simple convenience. Back-propagation networks, for example, can approximate virtually
any function and are simple to train. Because any set of psychological data can be viewed as a function
that maps an input to a behavior, and because feed-forward back-propagation networks can approximate
virtually any function, it is hardly surprising that such networks can “model” an extraordinary range
of psychological phenomena. To put this another way, many cognitive models are written in computer
languages like C. Although such models may accurately characterize a huge range of data on human
cognition, no one would argue that the C programming language is a realistic model of human cognition.
Feed-forward neural networks seem to be a better candidate for a cognitive model because of some of their
features: they intrinsically learn, they process information in a manner reminiscent of neurons, etc. In any
regard, this suggests that the criteria for judging the merits of a cognitive model must include many more
constraints than whether or not the model is capable of accounting for a given data set. While issues such as
how information is processed are useful for judging models, they are also crucial for constructing modals.

There are a number of sources and types of constraints used in cognitive modeling. These break
down relatively well by the disciplines that comprise the field. In practice most cognitive models draw
constraints from some, but not all, of these disciplines. In broad terms, the data for cognitive models
comes from psychology. “Hardware” constraints come from neuroscience. “Software” constraints come
from computer science, which also provides methodologies for validation and testing. Two related fields
that are relatively new, and therefore tend to provide softer constraints are evolutionary psychology and
environmental psychology. The root idea of each of these fields is that the evolution process, and especially
the environmental conditions that took place during evolution, are crucially important to the kind of brain
that we now have. We will examine the impact of each field on cognitive modeling in turn.

69.2.1 Psychology

The ultimate test of any theory is whether or not it can account for, or correctly predict, human behavior.
Psychology as a field is responsible for the vast majority of data on human behavior. Over the last century
the source of this data has evolved from mere introspection on the part of theorists to rigorous laboratory
experimentation. Normally the goal of psychological experiments is to isolate a particular cognitive factor;
for example, the number of items a person can hold in short term memory. In general this isolation is
used as a means of reducing complexity. In principle this means that cognitive theories can be constructed
piecewise instead of out of whole cloth. It would be fair to say that the majority of work in cognitive science
proceeds on this principle. A fairly typical paper in a cognitive science conference proceeding, for example,
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will present a set of psychological experiments on some specific area of cognition, a model to account for
the data, and computer simulations of the model.

69.2.2 Neuroscience

The impact of neuroscience on cognitive science has grown dramatically in conjunction with the influence
of neural models in the last 20 years. Unfortunately, terms such as “neurally plausible” have been applied
fairly haphazardly in order to lend an air of credibility to models. In response, some critics have argued that
neurons are not well understood enough to be productively used as part of cognitive theory. Nevertheless,
though the low level details are still being studied, neuroscience can provide a rich source of constraints
and information for cognitive modelers. Within the field there are several different types of architectural
constraint available. These include:

1) Information flow. We have learned from neuroscientists, for example, that the visual system is divided
into two distinct parts, a “what” system for object identification, and a “where” system for determining
spatial locations. This suggests computational models of vision should have similar properties. Further,
these constraints can be used to drive cognitive theory as with the PLAN model of human cognitive
mapping [Chown, et al. 1995]. In PLAN it was posited that humans navigate in two distinct ways, each
corresponding to one of the visual pathways. Virtually all theories of cognitive mapping had previously
included a “what” component based upon topological collections of landmarks, but none had a good
theory of how more metric representations are constructed. The split in the visual system led the developers
of PLAN to theorize that metric representations would have simple “where” objects as their basic units.
This led directly to a representation built out of “scenes,” which are roughly akin to snapshots.

2) Modularity. A great deal of work in neuroscience goes towards understanding what kinds of pro-
cessing is done by particular areas of the brain, such as the hippocampus. These studies can range from
working with patients with brain damage to intentionally lesioning animal brains. More recently, imaging
techniques such as fMRI (functional magnetic resonance imaging) have been used to gain information
non-invasively. This work has provided a picture of the brain far more complex than the simple “right
brain-left brain” distinction of popular psychology. The hippocampus, for example, has been implicated
in the retrieval of long-term memories [Squire, 1992] as well as in the processing of spatial information
[O’Keefe and Nadel, 1978]. In principle, discovering what each of the brain’s different subsystems does is
akin to determining what each function that makes up a computer program does.

Modularity in the brain, however, is not as clean as modularity in computer programs. This is largely
due to the way information is processed in the brain, namely by neurons passing activity to each other
in a massively parallel fashion. Items processed close together in the brain, for example, tend to interfere
with each other because neural cells often have a kind of inhibitory surround. This fact is useful in
understanding how certain perceptual processes work. Further it means that when one is thinking about
a certain kind of math problem, it may be possible to also think about something unrelated like what
will be for dinner, but it will be more difficult to simultaneously think about another math problem. The
increased interference between similar items (processed close together) over items processed far apart has
been called “the functional distance principle” by Kinsbourne [1982]. This suggests, among other things,
that there may not be a clean separation of “modules” in the brain, and further that even within a module
architectural issues impact processing.

3) Mechanisms. Numerous data are simpler to make sense of in the context of neural processing
mechanisms. A good example of this would be the Necker cube. From a pure information processing
point of view, there is no reason that people would only be able to hold one view of the cube in their
mind at a time. From a neural point of view, on the other hand, the perception of the cube can be seen
as a competitive process with two mutually inhibitory outcomes. Perceptual theory is an area that has
particularly benefited from a neural viewpoint.

4) Timing. Perhaps the most famous constraint on cognitive processing offered by neuroscience is
the “100 step rule.” This rule is based upon looking at timing data of perception and the firing rate of
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neurons. From these it has been determined that no perceptual algorithm could be more than 100 steps
long (though the algorithm could be massively parallel as the brain itself is).

69.2.3 Computer Science

Aside from providing the means to implement and simulate models of cognition, computer science has
also provided constraints on models through limits drawn from the theory of computation, and has been
a source of algorithms for modelers.

One of the biggest debates in the cognitive modeling community is whether or not computers are
even capable of modeling human intelligence. Critics, normally philosophers, point to the limitations on
what is computable and have gone as far as suggesting that the mind may not be computational. While
some find these debates interesting, they do not actually have a significant impact on the enterprise of
modeling. On the other hand, there have been theoretical results from computational theory that have had
a huge impact on the development of cognitive models. Probably the best example of this is the previously
mentioned work done by Minsky and Papert on Perceptrons [1969]. They showed that perceptrons,
which are a simple kind of neural network, are not capable of modeling nonlinear functions (including
exclusive-or). This result effectively ended the majority of neural network research for more than a decade
until the PDP group developed far more powerful neural network models [Rumelhart and McClelland,
1986].

69.2.4 Evolutionary and Environmental Psychology

In recent years two branches of psychology have come to prominence as providing alternate sources of
constraints based upon evolution, and in particular the kinds of environments in which humans evolved.
Evolutionary psychology is most often associated with the work of Tooby and Cosmides (e.g. [Tooby and
Cosmides, 1992]) while environmental psychology is often associated with the work of Steve and Rachel
Kaplan (e.g. [Kaplan & Kaplan, 1989]). What both of these fields have in common is a belief that the brain
should not be studied in a vacuum, that some types of context are extremely meaningful.

In the case of evolutionary psychology the context is provided by evolution. As has been noted in many
places, systems that are evolved rather than designed, tend to end up looking like the work of a “tinkerer.”
The eye is a well known example of a system that is poorly “designed” but is nonetheless functional and can
be understood as a series of successive improvements, each adding functionality to the previous iteration
[Dawkins, 1986]. This example captures the core tenets of evolutionary psychology, that evolution tends
to work in piecemeal fashion with each change adding functionality to what existed previously. This does
not tend to be a hard constraint on cognitive models, as it can be argued that the evolutionary story behind
any particular theory simply has yet to be found. Nevertheless, the evolutionary view provides a powerful
way to think about how pieces of the cognitive system came about and for what purpose.

As the name would suggest, work in environmental psychology focuses on the environment as a source
of constraints. Most environmental psychologists focus their research on how people interact with different
kinds of environments and how to use this knowledge to design better spaces. Another branch of the field,
however, has noted that the environment adds additional meaningful context to evolutionary history. The
evolutionary history of the brain is a story of information processing mechanisms that evolved to address
the specific needs of our ancestors. The human ability to represent and reason about large-scale space, for
example, allowed our ancestors to forage and hunt over large areas of savanna. In turn once these spatial
abilities were in place they were available for the greater cognitive system and impact cognition of virtually
every type [Chown, 1999]. The importance in understanding the evolutionary environments that the brain
developed in is highlighted by the work of the Kaplans and their colleagues. The Kaplans have shown,
for example, that people will recover more quickly in hospitals with views of nature, perform better in
workplaces with views of trees, etc (for reviews see [Kaplan, 1993; Kaplan and Peterson, 1993]). This is a
clear indicator that people do not treat information neutrally. As Kaplan and others [Chown, et al. 2002]
have argued, the human emotional system can be understood in these terms. The argument is based upon
the idea that human emotions address the need our ancestors had to make very fast decisions in encounters
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with other dangerous predators. In such cases it is usually better to act quickly than to pause and consider
an optimal strategy. This view of cognition undercuts rationality approaches and helps explain many of
the supposed shortcomings in human reasoning.

Some of the advantages of an evolutionary/environmental perspective have been clarified by work in
robotics. Early artificial intelligence and cognitive mapping focused on reasoning, for example. This led
to models that were too abstract to be implemented on actual robots. The move to using robots forced
researchers to come at the problem from a far more practical point of view and to consider perceptual
issues more directly.

69.3 Research Issues

Since so much about cognition is still not well understood, this section will focus on two of the key debates
driving research in the field. These include: 1) is the brain a symbol processor, or does it need to be modeled
in neural terms? 2) Should the field be working on grand theories of cognition, or is it better to proceed
on a reductionist path?

69.3.1 Are We Symbol Processors?

The connectionist revolution brought a new way of thinking to cognitive science. The critical idea is rather
simple-since the “hardware” of the brain is neural, then models of the brain should be described in neural
terms. Lending credence to this position was a series of neural models that had a number of attractive
properties that seemed notably lacking in symbolic models of the time (e.g. content addressable memory,
graceful degradation, etc. [Rumelhart and McClelland, 1986]). On the face of it, the argument for neural
models seems unassailable given that the brain is a neural system. Symbolists, notably Newell [1990] and
Fodor and Plyshen [1988] have attacked these models on a number of grounds, however. Their arguments
are based upon the idea that the brain, like any complex system, is hierarchical. Neural models, so the
argument goes, provide appropriate computational descriptions for only the lowest levels of the cognitive
hierarchy. From the point of view of the symbolists, these levels of cognition are also less well understood
and not as interesting from a behavioral point of view as the so-called cognitive band [Newell, 1990].
From this point of view the operation of the cognitive band is nothing like a neural network, but is much
more like a traditional symbol system. The argument is akin to finding the appropriate level at which to
study computers. It is possible, and often necessary, to look at the performance of a computer from the
point of view of gates. When trying to understand the performance of a complicated piece of software,
however, it is much more appropriate to study the performance at the level of a high level programming
language. Further, symbolists have effectively argued that current connectionist models are not capable of
the full range of behaviors needed for cognitive modeling [Newell, 1990].

The argument for symbolic models comes from computational theory. It is based upon the idea of com-
putational equivalence. Since symbolic models are Turing-complete they are equivalent computationally
to any other Turing-complete model. Along these lines a number of efforts have been made to implement
symbolic models in neural hardware. The case can then be made that this is exactly what the brain does.
Symbolists see this equivalence as freeing them from the need to worry about mechanisms. Even so, the
impact of connectionism and the capability of neural models for pattern recognition has led even strongly
symbolic models like Soar [Laird, et al., 1987] to use neural networks as pattern recognizers to obtain the
symbols.

The freeing up from the constraints of mechanisms has been something of a double-edged sword for
symbolic models. On the one hand, symbolic models are easily implemented on computers and relatively
easy to expand, debug, etc. Further, in terms of high-level behavior, symbolic models have been shown to
be capable of a much wider range of behaviors than their current connectionist counterparts. For example,
Soar agents are capable of modeling the flying behaviors of combat pilots [Jones et al., 1999]. On the other
hand, critics have complained that systems like Soar are little more than symbolic programming languages.
As noted earlier, while a computer running C may be Turing-complete, it would be ridiculous to call
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it a model of human cognition. Clark [2001] refers to this as “surface mimicry” and points out that
the Soar model is far more homogeneous than the “Swiss Army Knife” model suggested by Tooby and
Cosmides [1992]. The critics argue that symbolic models like Soar and ACT-R are under constrained, and
therefore they cannot truly be called cognitive models. The lack of constraints goes even further than just
mechanisms, symbolic models have also been attacked on evolutionary grounds. It is difficult to see how
symbolic constructs like distal memory access could have evolved in any sort of piecemeal fashion.

There are several arguments that symbolists use against neural models. First is the “levels of modeling”
argument. This argument posits that we simply do not understand the behavior of neurons well enough to
construct credible models from them. To be fair, the majority of neural models do not model the behavior
of individual neurons. Other attacks on connectionist models are based upon what current models cannot
do. Popular connectionist models, such as feed-forward back-propagation networks, for example, exhibit a
number of problems as memory models including “catastrophic forgetting” of old material when presented
with new material [McCloskey and Cohen, 1989] . While it is certainly appropriate to attack the individual
models on these grounds, it is less so to attack the entire connectionist position based on the failure of
even its most notable examples. Similarly, other criticisms of connectionism have attacked the models as
being nothing more than new versions of the discredited behaviorist position [Lachter and Bever, 1988].
Again, this is certainly the case with many connectionist models, and should rightfully lead to a search for
better models, but it cannot undermine the general position.

A more interesting criticism focuses upon the way that connectionists have pursued cognitive modeling.
The argument is the same as the one against some of the symbolic programs. As McCloskey [1991] put
it, connectionists often pursue a path of “simulation in search of theory” (p. 388). McCloskey argues
that many of these simulations are little better than “black boxes.” Modelers do not provide insight into
what aspects of the network are crucial to its performance with regard to the task. For example, if back-
propagation was used to train the network, is that a crucial step, or could another training regime have
been used? If back-propagation were crucial then it would undermine the model if back-propagation were
found implausible on other grounds. In other words, connectionist systems are engaged in the same sort
of “surface mimicry” as symbolic systems under the guise of “neural plausibility.” McCloskey goes on to
complain that connectionist models generally fall short in describing how their networks elucidate the
cognitive processes they purport to model. To put it simply, connectionist networks are not well understood
enough to tell us exactly how they manage to accomplish what they are trained for.

So far in discussing connectionist systems, we have avoided discussing connectionist “symbols.” While
it may be the case that connectionist units represent collections of neurons, they do not normally represent
what most computer scientists would think of as symbols. There are, however, connectionist models that
recognize the power of symbols as a basic unit of thought. Many of these models trace their lineage to
the work of D.O. Hebb’s book The Organization of Behavior [1949]. Hebb proposed that the “symbols” of
thought were cell assemblies, tightly connected groups of neurons capable of functioning as a unit because
of their strong interconnections. The problem with cell assemblies as originally formulated by Hebb was
that all of the connections between neurons were positive and only became stronger through learning.
Hebb omitted inhibition because there was still no hard evidence of it at the time of publication. A later
simulation of the cell assembly construct [Rochester, et al., 1956] showed that without inhibition activity
in the simulated brain quickly grew out of control. Unfortunately these results were sufficient to essentially
stop research on cell assemblies for more than a decade even though the same paper showed that with the
addition of inhibition the cell assembly construct was viable. In recent years, however, the cell assembly
idea has undergone a revival as researchers from a number of domains have proposed models based upon
Hebb’s original idea, but modified with modern understandings of neuroscience [Kaplan et al., 1991; Amit,
1995].

Neural models based upon cell assemblies purport to contain the best of both symbolic and connec-
tionist models. It is difficult to study sequence learning, for example, without something approximating
a symbol to serve as a unit in the sequence. Further, many connectionist systems do not address temporal
issues at all. Conversely, symbolic models do not ground the symbols in any physical mechanism, nor
are symbolic systems able to take advantage of the properties of neural hardware. Chown [2002], for
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example, has shown that some learning results that have defied conventional modeling for nearly 40 years
can be fairly easily explained when basic neural properties are accounted for in a cell assembly-based
model.

69.3.2 Grand Theories?

In his book Unified Theories of Cognition Allen Newell [1990] called for a return to all-encompassing
theories of mind called UTCs after the title of the book. Newell’s reasoning echoes McCloskey’s complaints
about connectionism [1991], that by operating at too small a scale cognitive modelers have worked on
under-constrained models. While it may be true, for example, that connectionist system X can model
psychological data set Y, such models rarely address questions of how they would or could fit into a larger
system. Modeling efforts such as these are sometimes attacked on the grounds that they are “doomed to
succeed” in much the same way that models with too many parameters can fit all types of curves. Put
another way, if a model is Turing complete, the question of whether or not it can be used to fit some data
is not particularly interesting. The interesting question is whether or not there is actually evidence for it.
McCloskey and others argue that for these reasons theory should drive simulation rather than the other
way around.

Ironically, the two most notable examples of UTCs, Soar and ACT-R, have been attacked on virtually
the same grounds-that they are under-constrained. Both systems are built on the same assumption, that
at higher levels of cognition the brain is a rule-based system. At the heart of each system is a production
system implementing the rule-base that serves as long-term memory. Since production systems are Turing-
complete they are capable of modeling anything. To be fair, however, Soar does make some key theoretical
commitments that can be used to judge its merits. First and foremost, Soar is a symbol manipulation
system with all that that implies. Second, in Soar deliberative thought is equated to a search through a
problem space. For example, Soar is equipped with all the basic weak search methods including breadth-
first, depth-first, etc. At one time another key constraint associated with Soar was that all learning came
as the result of a single mechanism called “chunking” [Laird, et al., 1984]. It is not clear, however, from
recent work in SOAR that this is still held as a central tenet of the system.

Soar and ACT-R have both been attacked for their commitment to production systems. This criticism
actually pre-dates either system and is most famously associated with the philosopher Hubert Dreyfus
[1972]. The Dreyfus position is that systems based upon rules are too brittle to account for the richness
of human behavior. For example, Dreyfus discusses how knowledge about the health of a jockey’s mother
might influence how a bettor would make a wager. It seems unlikely that the bettor would have explicit
rules dealing with such a situation, and yet humans are capable of dealing with such situations with ease.
The response to this criticism has been to test it explicitly, Either with Doug Lenat’s CYC [Lenat and
Feigenbaum, 1992] which aims to capture enough knowledge to perform common sense reasoning, or
with the Soar program which builds more and more complex agents capable of difficult tasks such as
flying jet airplanes in combat situations. In part, Dreyfus’s criticisms can also be addressed by noting that
rules need not all be specified at the same level of generality. For example, while a system for betting on
horses might contain many specific rules concerning the records of horses and jockeys, a general cognitive
system might reasonably be expected to include rules such as “when something traumatic happens to a
person they will not perform at normal levels.” Of course this raises further questions of how such rules
are learned, how patterns such as “something traumatic” are recognized, etc. Dreyfus would argue that
this leads to an endless cycle for any reasonably complex task.

There are also connectionist programs that work at the level of large theories of cognition. Steven
Grossberg, for example, has produced a huge body of work that have never been explicitly put forth as a
UTC, but which when viewed as a whole have many of the same principles. Probably the best example of
this work is the ART model developed in conjunction with Gail Carpenter [1987]. The SESAME group,
operating mainly out of the University of Michigan is also working on a cognitive architecture [Kaplan et al.,
1991]. The SESAME architecture is based on the cell assembly and is also the only cognitive architecture
to include a complete theory of spatial processing [Chown et al., 1995].
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69.4 Best Practices

As the previous sections suggest, there are a number of pitfalls involved in putting together a cognitive
model. History has shown that there are two problems that crop up again and again. The first is the danger
of constructing a simulation without theoretically motivating the details. This is akin to the old saw that
“if you have a big enough hammer everything looks like a nail.” There is a related danger that once a
simulation works (or at least models the data) it is often difficult to say why. Together these dangers suggest
that there should be a close relationship between theory and the simulation process. The goal of a simulation
should not be simply to model a dataset, but should also be to elucidate the theory. For example, some
connectionist models propose a number of mechanisms as being central to understanding a particular
process. These models can be systematically “damaged” by disabling the individual mechanisms. In many
cases the damage to the model can be equated to damage to individuals. This provides a second dataset to
model, and provides solid evidence of what the mechanism does in the simulation. Alternatively models
can be built piecewise mechanism by mechanism. Each new piece of the simulation would correspond to a
new theoretical mechanism aiming to address some shortcoming of the previous iteration. This motivates
each mechanism and helps to clearly delineate its role in the overall simulation. In the SESAME group
this style of simulation has been termed “the systematic exploitation of failure” by one of its members,
Abraham Kaplan.

One of the earliest examples of this approach was done by Booker [1982] in an influential work that
has helped shaped the adaptive systems paradigm. In an adaptive systems paradigm a simple creature is
placed in a microworld where the goal is survival. Creatures are successively altered (and sometimes the
environments are as well) by adding and subtracting mechanisms. In each case the success of the new
mechanism can be judged by improvements in the survival rate of the organism. In addition to providing
a way to motivate theoretical mechanisms, this paradigm is also essentially the same one used for the
development of genetic algorithms.

The Soar architecture is probably the pre-eminent symbolic cognitive architecture. Soar is based upon
a number of crucial premises that constrain all models written in Soar (which can be considered a kind
of programming environment). First, Soar is a rule-based system implemented as a production system.
In the Soar paradigm the production rules represent long-term memory and knowledge. One effect of a
production firing in Soar can be to put new elements into working memory, Soar’s version of short-term
memory. For example, a Soar system might contain a number of perceptual productions that aim to
identify different types of aircraft. When a production fires it might create a structure in working memory
to represent the aircraft it identifies. This structure in turn might cause further productions to fire. Soar
enforces a kind of hierarchy through the use of a subgoaling system. Productions can be written to apply
generally, or might only match when a certain goal is active. The combination of goals and productions
forms a problem space that provides the basic framework for any task. Finally, the Soar architecture
contains a single mechanism for learning called “chunking.” Essentially Soar systems learn when they
reach an impasse generally created by not being able to match any productions. When impasses occur Soar
can apply weak search methods to the problem space in order to discover what to do. Once a solution is
found, a new production or “chunk” is created to apply to the situation.

Here is an example of a Soar production taken from the Soar tutorial [Laird, 2001]. In this example the
agent is driving a tank in a battle exercise.

1 sp {wander∗propose∗move
2 (state ¡s¿ ∧ name wander
3 ∧io.input-linked-blocked.forward no)
4 –
5 (¡s¿ ∧operator ¡o¿ + = )
6 (¡o¿ ∧name move
7 ∧ actions.move.direction forward) }
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In the example “sp” stands for “Soar production” and starts every production. The production is named
“wander∗propose∗move”. The elements that come before the arrow represent the “if” part of the produc-
tion. In this case the production fires only if the current subgoal is to wander and the forward direction
is not blocked (input comes from a specialized structure tagged ∧io). The elements that come after the
arrow represent the “then” parts of the production. In this case a new working memory element is created
to represent the operator for moving forward. In a typical production cycle, productions are matched in
parallel and can propose operators such as the move operator in this case. Then other productions can be
used to select among the proposed operators. This selection can be based upon virtually any criteria; for
example cognitive productions may be selected over more reactive productions. Production matching can
be done in parallel to simulate the parallelism of the brain.

Both the Soar and ACT communities are engaged in programs of simulating more and more human
behavior. These simulations can be done at the level of models of simple psychological experiments,
or, as is increasingly the case, they can simulate human performance on complex tasks such as flying
airplanes. The implicit argument is that if they can simulate anything that humans can do then they
must be modeling human cognition. On one level this argument has merit, if either architecture can
accurately simulate human performance then it can be used in a predictive fashion. Tac-air Soar [Jones
et al., 1999], for example, simulates the performance of combat pilots and is used to train new pilots
in a more cost-effective way than if experienced pilots had to be used. On the other hand equivalent
functionality is not the same thing as equivalence. As noted previously, critics point out that both Soar and
Act are essentially Turing-complete programming environments and therefore are capable of simulating
any computable function given clever enough programmers. The fact that both systems still rely heavily
on clever programming is still a major limitation with regard to being considered a fully realized model
of human cognition. Although Soar’s initial success was due in large part to its learning mechanism, for
example, little progress has been made within the Soar community in building agents that exhibit any sort
of developmental patterns. It is much simpler to build a Soar system that can fly planes than one that can
learn to fly planes.

Gail Carpenter, Stephen Grosseberg and their associates have also attacked a wide range of problems,
but have done so with much more of an eye towards cognitive theory than applications. While Carpenter
and Grossberg have not explicitly developed a unified theory of cognition they have modeled a remarkable
range of cognitive processes and has done so using an approach more sympathetic to a systems view of
cognition than is typical in connectionist modelers. A good example of this approach can be found in
their Adaptive Resonance Theory (ART) [Carpenter and Grossberg, 1987; Grossberg, 1987]. Superficially
ART looks similar to many connectionist learning systems in that it is essentially a classification system,
but it was developed to specifically address many of the shortcomings of such models. ART takes a feature
vector as an input and uses it to provide a classification of the input. For example, a typical task would be
to recognize hand-written numbers. The features would consist of the presence or absence of a pen stroke
at different spatial locations.

One of the problems that ART was designed to address was what Grossberg [1987] referred to as the
“stability-plasticity” dilemma. This is essentially a problem of how much new knowledge should impact
what has been learned before. For example, a system that has been trained to recognize horses might have
a problem when confronted with a zebra. The system could either change its representation of horses to
include zebras, or it could create a separate representation for zebras. This is a significant issue for neural
network models because they achieve a great deal of their power by having multiple representations share
structure. Such sharing is useful for building compact representations and for automatic abstraction, but it
also means that new knowledge tends to constantly overwrite what has come before. Among the problems
this raises, is “catastrophic forgetting” as mentioned previously.

The stability-plasticity dilemma was addressed in part in ART through the introduction of a vigilance
parameter that adaptively changed according to how well the system was performing. In some cases,
for example, the system would be extremely vigilant and would require an unusually high degree of
match before it would recognize an input as being familiar. In cases where inputs were not recognized as
familiar, novel structure was created to form a new category or prototype. Such a new category would not
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share internal structure directly with previously learned categories. Essentially when vigilence is high the
system creates “exemplars” or very specialized categories, whereas when vigilence is low ART will create
“prototypes” that generalize across many instances. This makes ART systems attractive since they do not
commit fully either to exemplar or prototype models, but can exhibit properties of both, as seems to be
the case with human categorization.

In ART systems an input vector activates a set of feature cells within an attentional system, essentially
storing the vector in short-term memory. These in turn activate corresponding pathways in a bottom-up
process. The weights in these pathways represent long-term memory traces and act to pass activity to
individual categories. The degree of activation of a category represents an estimate that the input is an
example of the category. In the meantime the categories send top down information back to the features
as a kind of hypothesis test. The vigilence parameter defines the criteria for whether the match is good
enough. When a match is established the bottom up and top down signals are locked into a “resonant”
state, and this in turn triggers learning, is incorporated into conciousness, etc.

It is important to note that ART, unlike many connectionist learning systems, is unsupervised-it learns
the categories without any teaching signals.

ART has since been extended to a number of times, to models including ART1, ART2, ART3, and
ARTMAP. Grossberg has also tied it to his FACADE model in a system called ARTEX [Grossberg and
Williamson, 1999]. These models vary in features and complexity, but share intrinsic theoretical properties.
ART models are self-organizing (i.e., unsupervised, though ARTMAP systems can include supervised
learning) and consist of an attentional and an orienting subsystem. A fundamental property of any ART
system (and many other connectionist systems) is that perception is a competitive process. Different learned
patterns generate expectations that essentially compete against each other. Meanwhile, the orienting system
controls whether or not such expectations sufficiently match the input-in other words it acts as a novelty
detector.

The ART family of models demonstrate many of the reasons why working with connectionist models
can be so attractive. Among them:

� The neural computational medium is natural for many processes including perception. Fundamen-
tal ideas such as representations competing against each other (including inhibiting each other) are
often difficult to capture in a symbolic model. In a system like ART, on the other hand, a systemic
property like the level of activation of a unit can naturally fill many roles from the straightfor-
ward transmission of information to providing different measures of the goodness of fit of various
representations to input data.

� The architecture of the brain is a source of both constraints and ideas. Parameters, such as ART’s
vigilance parameter, can be linked directly to real brain mechanisms such as the arousal system. In
this way what is known about the arousal system provides clues as to the necessary effects of the
mechanism in the model and provides insight into how the brain handles fundamental issues such
as the plasticity-stability dilemma.

69.5 Summary

Unlike many disciplines in computer science there are no provably correct algorithms for building cognitive
models. Progress in the field is made through a process of successive approximation. Models are continually
proposed and rejected; and with each iteration of this process the hope is that the models come closer
to a true approximation of the underlying cognitive structure of the brain. It should be clear from the
preceding sections that there is no “right” way to do this.

Improvements in cognitive models come from several sources. In many cases improvements result
from an increased understanding of some aspect of cognition. For example, neuroscientists are constantly
getting new data on how neurons work, how they are connected, what parts of the brain process what
types of information, etc. In the meantime models are implemented on computers and on robots. These
implementations provide direct feedback about model quality and shortcomings. This feedback often will
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lead to revisions in the models and sometimes may even drive further experimental work. Because of the
complexity of cognition and the number of interactions amongst parts of the brain it is really the case
that definitive answers can be found; which is not to say that cognitive scientists do not reach consensus
on any issues. Over time, for example, evidence has accumulated that there are multiple memory systems
operating at different time scales. While many models have been proposed to account for this there is
general agreement on the kinds of behavior that those models need to be able to display. This represents
real progress in the field because it eliminates whole classes of models that could not account for the
different time scales. The constraints provided by data and by testing models work to continually narrow
the field of prospective models.

Defining Terms

Back-propagation A method for training neural networks based upon gradient descent. An error signal
is propagated backward from output layers toward the input layer through the network.

Cognitive band In Newell’s hierarchy of cognition, the cognitive band is the level at which deliberate
thought takes place.

Cognitive map A mental model. Often, but not exclusively, used for models of large-scale space.
Connectionist A term used to describe neural network models. The choice of the term is meant to indicate

that the power of the models comes from the massive number of connections between units within
the model.

Content addressable memory Memory that can be retrieved by descriptors. For example, people can
remember a person when given a general description of the person.

Feed forward Neural networks are often constructed in a series of layers. In many models, information
flows from an input layer toward an output layer in one direction. Models in which the information
flows in both directions are called recurrent.

Graceful degradation The principle that small changes in the input to a model, or that result from damage
to a model, should result in only small changes to the model’s performance. For example, adding
noise to a model’s input should not break the model.

Necker cube A three-dimensional drawing of a cube drawn in such a way that either of the two main
squares that comprise the drawing can be viewed as the face closest to the viewer.

UTC Unified Theory of Cognition.
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Further Information

There are numerous journals and conferences on cognitive modeling. Probably the best place to start is
with the annual conference of the Cognitive Science Society. This conference takes place in a different city
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each summer. The Society also has an associated journal, Cognitive Science. Information on the journal
and the conference can be found at the society’s homepage at http://www.cognitivesciencesociety.org.

Because of the lag-time in publishing journals, conferences are often the best place to get the latest
research. Among other conferences, Neural Information Processing Systems (NIPS) is one of the best for
work specializing in neural modeling. The Simulation of Adaptive Behavior conference is excellent for
adaptive systems. It has an associated journal as well, Adaptive Behavior.

A good place for anyone interested in cognitive modeling to start is Allen Newell’s book, Unified Theories
of Cognition. While a great deal of the book is devoted to Soar, the first several chapters lay out the challenges
and issues facing any cognitive modeler. Another excellent starting point is Dana Ballard’s 1999 book, An
Introduction to Natural Computation. Ballard emphasizes neural models, and his book provides good
covereage on most of the major models in use. Andy Clark’s 2001 book, Mindware: An Introduction to
the Philosophy of Cognitive Science, covers much of the same ground as this article, but in greater detail,
especially with regard to the debate between connectionists and symbolists.




