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Abstract 
We identify the agricultural inputs that drove the growth in global and regional crop yields from 
1975 to the mid-2000s. We find that improvements in agricultural technology, increased fertilizer 
use, and changes in crop mix around the world explained most of the gain in global crop yields, 
although impacts varied across the latitude gradient. Climate change over this time period caused 
yields to be only slightly lower than they would have been otherwise. In some cases cropland 
extensification had as much of a negative impact on global and regional yields as climate change. 
To maintain the momentum in yield growth across the globe 1) use of agricultural chemicals and 
investment in agricultural technology in the tropics must increase rapidly and 2) international 
trade in agricultural products must expand significantly.       
 
Introduction 
A consensus has emerged that recent climate change has had a negative effect on crop yields 
around the world (e.g., 1–4). Accelerating climate change is likely to put even more downward 
pressure on agricultural productivity around the world in coming years.  Further, demand for food 
will grow quickly as the world races to a population of ~12 billion by 2100 (5). Therefore, the 
vital question is: How can the world’s farmers increase crop productivity, as necessitated by 
global population growth, despite the expected drag on yields caused by climate change while 
leaving the socially desirable amount of forest, grasslands, and other semi-natural land cover 
around the world (6)?  
 
Before suggesting a way forward on this issue, we first have to determine what agricultural inputs 
are most important to yield growth around the world. Here we use global yield and agricultural 
input data from 1975 to the mid-2000s to determine what agricultural production inputs were 
most responsible for the growth in global and regional yields during this time period. The inputs 
we consider include growing season weather, crop choice, investment in irrigation capability, 
land, and machinery, agricultural technology, fertilizer use, cropped footprint (7), and cropped 
soil quality. We find that improvements in agricultural technology, increased fertilizer use, and 
changes in crop mix around the world explained most of the gain in global crop yields from 1975 
to the mid-2000s. Technological improvement was a particularly important driver of yield growth 
in the temperate region and crop mix and fertilizer use were particularly important drivers of yield 
growth in the tropics. Further, the deleterious impacts of climate change on yield were small 
compared to the yield-augmenting factors noted above. Finally, cropland extensification over the 
last 40 years has dragged average global yields down as well, sometimes as much as climate 
change has.  
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Our results indicate that 1) transferring technology and other inputs to the tropics 2) encouraging 
countries to exclusively concentrate on growing the crops most suited to their soil-climate 
conditions (and trading for the rest of the crops their consumers want), and 3) increasing the 
productivity of existing cropland in lieu of additional cropland extensification will be the most 
effective ways to ameliorate climate change’s expected drag on global yields. 
 
Results 
We used two analytical methods to measure relative importance of agricultural inputs to the 
growth in global and regional crop yields between 1975 and the mid-2000s. 
 
First, we estimated country-level yield functions with a fixed-effects econometric model using a 
1975 to the mid-2000s global panel dataset (Tables S1 and S2 and Data files S1 and S2). We 
estimated country-level yield functions using both Mg ha-1 and M kcals ha-1 yield metrics: Mg or 
M kcal production across all crops in a country in year t divided by hectares of cropland in the 
country in year t. Second, we used the estimated yield functions and the 1975 to the mid-2000s 
panel data to obtain annual expected country-level yields, both in Mg ha-1 and M kcals ha-1, for 
the 1975 to the mid-2000s time period.  Third, we generated global or regional expected crop 
yield in year t by taking the weighted average of expected country-level yields in year t with 
cropped hectarage in each country in year t as weights. This process generated three expected 
“all-crop” yield curves, one for the globe, one for the temperate region, and one for the tropics 
region (see Fig. 1 for the global Mg ha-1 and M kcals ha-1 expected yield functions). 
 
Then to estimate the overall contribution of an agriculture production input or a group of inputs 
on 1975 to mid-2000s global or regional crop yield trends, we again found the expected global or 
region yield curve (as explained above) while holding the input or inputs in question fixed at 
observed 1975 levels; all other variables take on observed values. For example, when measuring 
the impact of soil quality change on yield, the “soil quality” counterfactual yield curves were 
estimated with the quality of cropped soil around the world remaining fixed at 1975 levels while 
all other inputs varied as observed. Then by integrating over the gap formed between the expected 
global or regional yield curve and the counterfactual global or regional yield curve we have 
measured the relative contribution of that input or group of inputs to 1975 to mid-2000s growth in 
global or regional yields, all else equal. The larger a counterfactual’s integral (in absolute terms), 
the greater the impact that the input or group of inputs in question had on global or regional yield 
trends from 1975 to the mid-2000s. A positive (negative) integral means that the 1975 to mid-
2000s changes in the input in question had, on net, a positive (negative) impact on average global 
or regional yield. 
 
When discussing results below, we normalize the size of a counterfactual’s integral by measuring 
its size relative to the size of the integral formed by the numeraire counterfactual. In a numeraire 
counterfactual all inputs are held at 1975 levels except growing season weather over each 
country’s crop production area, which varied as observed (the numeraire counterfactuals always 
form the largest integrals)  We refer to a numeraire counterfactual’s integral as the ‘Mg gap’ or 
the ‘kcals gap’ (Fig. 2). For example, the mean global “crop mix” counterfactual when yield is 
measured in Mg ha-1 has an integral of 9.11 over the 1975 to 2007 period (Table 2).  The mean 
global “numeraire Mg” counterfactual when yield is measured in Mg ha-1 produces an integral of 
30.53.  Thus, the mean global “crop mix” counterfactual makes up or explains 9.11 / 30.53 = 
29.83% of the 1975 to 2007 global Mg gap. The larger the percentage, positive or negative, the 
more important the counterfactual’s input or group of inputs was to determining the 1975 to mid-
2000s global or regional yield trend. 
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We also used decision tree algorithms, our second analytical method, to obtain a “second 
opinion” on which agricultural inputs were most important in explaining the growth in global and 
regional crop yields between 1975 and the mid-2000s. A decision tree segregates a process’ 
outcomes (in our case, changes in observed country-level yields) based on the attributes of a 
process (in our case, changes in country-level input levels). A tree can be interpreted as the rules 
that best map attributes of a process to the outcome of the process. In our case we find rules – 
ranges in annual changes in input levels – that predicted changes in country-level yields best 
(Figs. S1 – S12 and Data file S3). When using econometric techniques to build a yield function, 
we make several assumptions regarding the variable-generating process. In decision tree analysis, 
a machine learning algorithm, we identify key features of the data without committing to 
statistical assumptions.  
 
For each analytical method we discuss two sets of results.  In one case we derive results for the 
time period 1975 to 2007. However, this set of results does not include fertilizer as a production 
input. In the other case we derive results for the time period 1975 to 2002. This set of results does 
include fertilizer use as an explanatory variable.  The source of much of our agriculture data 
changed their fertilizer collection methods beginning in 2003 (8).  Harmonizing the two fertilizer 
databases was not practical. Below we will refer to results derived from the 1975 to 2002 dataset 
as the “wide” results and results derived from the 1975 to 2007 dataset as the “long” results. 
 
Technological and crop-mix change and increased fertilizer use has explained most recent 
yield growth 
When using either the long and wide datasets, time was the largest contributor to crop yield 
growth (both in terms of Mg ha-1 and M kcals ha-1) at the global and temperate region levels 
(Tables 1 and 2 for the wide and long results, respectively). (Unless otherwise stated, we discuss 
mean results in the text.) At the global level, the time counterfactual’s integral makes up 
approximately 57% or 72% of the Mg gap (always wide and long results, respectively, unless 
otherwise stated) and 37% or 47% of the kcal gap. In the time counterfactual we hold the year 
variable fixed at 1975. In the temperate region the time counterfactual makes up 79% or 90% of 
the Mg gap and 62% and 67% of the kcal gap.  At the other extreme, the time counterfactual only 
explains -1.5% or 24% and -12.5% or 18% of the tropic’s Mg and kcal gaps, respectively. 
 
Our econometric model’s time trend jointly captures the impact of several agricultural inputs that 
are omitted from our global panel database. Between 1975 and the mid-2000s, agricultural 
technology, agriculture management science, pesticide use, and international trade of agricultural 
commodities (variables missing from our dataset) have increased around the world (9). That 
greater technology, better management, and more pesticides have increased yield is intuitive. 
However, the impact of increasing globalization on yields was important as well.  Greater 
liberalization of agricultural domestic policy around the world and advancements in shipping 
technology meant that farmers were able to access international markets at increasingly lower 
costs (10). Greater market access spurred greater investment in farms (e.g., 11). Further, as 
cropland around the world became scarcer relative to the supply of rural labor, farmers 
increasingly became motivated to maximize yield rather than economize on labor use (e.g., 12). 
The time trend crudely accounts for the joint impact of these unobserved factors on global and 
regional yields (including fertilizer use in the long results but not in the wide results, which 
explicitly includes fertilizer use). Our results make it clear that the growth in agricultural 
technology, input use, farm management, globalization, and market liberalization 
disproportionally benefited the farmers of more developed nations in the temperate region over 
the last 40 years than it did farmers of tropical countries. 
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When using either the wide or long datasets, change in crop mix was the largest net contributor to 
yield growth in the tropics. The tropical region’s integral from the crop mix counterfactual, where 
we keep the relative mix of crop hectarage in each country frozen at 1975 levels, makes up 55% 
or 61% and 58% or 65% of the tropic’s Mg and kcals gaps, respectively. Between 1975 and 2007 
oil crops, sugarcane, roots and tubers, and fruit became a larger part of cropped area in the tropic 
region (Fig. 3). According to the estimated yield models (Tables S1 and S2), replacing wheat and 
other grain production with sugarcane, roots and tubers, and fruit production was particularly 
important to improving overall crop yield in the tropics. The gain in yield due to this crop 
switching can partly be explained by a simple substitution effect: Tropical cropland was 
increasingly used to grow denser fruits and roots and tubers versus less dense wheat.  However, 
this also reflects a comparative advantage effect, as wheat and most grains are most effectively 
grown in cooler climates while fruits are most cost-effectively grown in the tropics (13). In 
comparison to its impact in the tropics, change in crop mix in the temperate region had little 
impact on yield when measured in Mg and only slightly improved yield when measured in M 
kcals. 
 
The change in a country’s crop mix from 1975 to the mid-2000s was most likely driven by 
changes in global demand for various foodstuffs (e.g., 14, 15) and the increasing globalization of 
crop production and trade (9). As an example of the former effect, retail sales of foods with high 
oil and fat content increased dramatically in many countries from 1983 to 2002.  Further, the 
number of calories that the average global person got from cereals fell while the number of 
calories they got from fruits and vegetables rose from 1996 to 2002 (16). As an example of the 
globalization effect, consider that the reduction of several trade barriers in the early 1990s was 
largely responsible for the doubling of soybean production in Brazil (17). Other potential 
explanations for country-level changes in crop mix include farmers adapting to climate change. 
However, there is little evidence of adaptation being a large driver of crop mix change. 
 
Increasing fertilizer use across the globe from 1975 to 2002 (Table 2) was the next most 
important contributor to the steady gains in yield over that time period (only the wide dataset 
includes fertilizer data). When yield is measured in Mg ha-1, the fertilizer counterfactual makes up 
23% to 32% to 38% of the Mg gaps (the temperate, global, and tropics Mg gaps, respectively, 
using the wide dataset).  When yield is measured in M kcals ha-1, fertilizer makes up 12% to 23% 
to 42% of the kcals gaps (again, the temperate, global, and tropics Mg gaps, respectively, using 
the wide dataset). Further, the time trend no longer has a positive effect on the tropical yield when 
using the wide dataset. In fact, the time counterfactual produces a negative kcal gap in the tropics. 
In other words, the positive impact of time on tropical yield when using the long dataset is 
entirely explained by the time trend’s incorporation of fertilizer effects.        
 
Recent climate change slightly dampened yield growth 
Compared to time, crop mix, and fertilizer use, the impact of the other agricultural inputs on 
recent global and regional yield was much less significant in terms of magnitude. When using the 
long or wide datasets, recent increases in daytime growing season temperatures (DGSTs; Table 4) 
negatively affected global and regional yields. When yield is measured in Mg ha-1, the DGST 
counterfactual makes up –4% or –6% of the global Mg gap (as before, the order is always wide 
and long results, respectively, unless otherwise stated). When yield is measured in M kcals ha-1, 
the DGST counterfactual makes up –4% or –5% of the global kcals gap. In the DGST 
counterfactual we fixed DGSTs around the world at 1975-1977 averages. The negative impact of 
increasing DGSTs on global yield was almost entirely explained by its drag on tropical yields; the 
impact of increasing DGSTs on temperate region yields was almost non-existent.  
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All else equal, warm days and cool nights allow for vigorous plant growth during the day and 
efficient plant respiration at night (18–21). In contrast, warmer nighttime temperatures cause more 
wasteful respiration and less energy for growth during the day, all else equal. Therefore, we were 
surprised to find that increasing nighttime growing season temperatures (NGSTs) at the global 
and tropical region scales (Table 4) were associated with a boost in yields. The NGST 
counterfactual makes up ~10% of tropic’s Mg and kcal gaps.  However, in the temperate region 
we find evidence of the expected impact of increasing NGS temperatures on yield: the NGST 
counterfactual makes up –3% or –4% and –3% or –2% of the temperate region’s Mg and kcal 
gaps, respectively.  Changes in growing season precipitation almost had no effect across the globe 
or in either region. 
 
Recent change in cropped soil quality and cropland footprint had a negligible effect on yield 
growth 
Recent changes in the quality of land cropland around the world have had a mixed effect on yield 
growth. One way we measure a country’s change in cropland quality over time is by calculating 
the change in its cropped soil’s nutrient availability and retention capacity (22). We also measure 
a country’s extensive change in footprint by tracking its net areal change in cropland over time. 
The extensive change in cropped area is a catch-all for the change in land quality conditions not 
measured by the change in the nutrient availability and retention capacity of cropped soils. We 
assume that a country’s most productive land has long been used for crops and net growth in 
cropland extent since 1975 will have had a negative impact on yield as only more marginal lands 
were available for cropping after 1975. Most of the 1975 to mid-2000s growth in cropland extent 
has occurred in the tropics (Table 4).  Further, the decline in the overall quality of cropped soil 
has been more dramatic in the tropics as more and more tropical forest area and their poor soils 
have been used for crops since 1975 (23).  
 
A general worsening in the nutrient availability and retention capacity of cropped soils across the 
globe was associated with slightly lower yields (Tables 1 and 2). However, the extent of the loss 
was very small (the soil quality counterfactual makes up –0.2% to –1.2% of global Mg and kcal 
gaps).  As expected, net growth in cropped area was associated with a decline in global and 
tropical Mg yields. Again, however, the extent of the negative impact is relatively minor (the area 
cultivated counterfactual makes up –13% or –2% to of global Mg gaps and –7% or –5% of 
tropical Mg gaps). In contrast, and contrary to expectations, net growth in cropped area was 
associated with an increase in global and temperate region yields when measured in M kcals ha-1. 
Again, however, the extent of the gap created by net change in cropped area in these cases is 
relatively small (the area cultivated counterfactual makes up 5% or 16% of global kcals gaps and 
12% or 19% of temperate region kcals gaps). 
 
The counterintuitive positive relationship between net cropland expansion and higher M kcal ha-1 
yield in the temperate region may hold for several reasons. First, it may be that land that was 
marginal for crops grown earlier in the 20th century became more suitable for the more kcal-
denser crop mixes grown over the last 40 years.  Second, land that was marginal given earlier 
technology and cultivars may have become increasingly productive, especially for kcal-rich crops, 
with emerging technology.  Third, cropland across the world has generally become better 
connected to transportation infrastructure, thereby encouraging farmers to invest in their 
operations and potentially more than compensating for their land’s quality shortcomings (11, 24).  
Finally, we note that these counter intuitive results are less noticeable when using the wide 
dataset. In other words, the yield curves estimated with the long dataset may be biased upwards 
with respect to the area cultivated variable due to the omitted fertilizer variable.    
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Investment in land, machinery, and irrigation had little impact on recent yield growth 
Surprisingly, we found investment in irrigation capacity and investment in land and equipment 
and machinery from 1975 to the mid-2000s (Table 4) to have had very little effect on global and 
regional yields (see the irrigation capability and investment in land and equipment counterfactuals 
in Tables 1 and 2). Increases in irrigation capacity had a positive effect on Mg and kcal yield 
across the globe and in both regions but no irrigation capacity counterfactual produced an integral 
larger than 4% of a gap.  Further, investment in land and farm machinery and equipment appears 
to have contributed little to yield growth over time. Part of investment’s lack of impact on yield is 
explained by the fact that land development investment per cropped hectare only increased by 
10% around the globe between 1975 and 2007 and actually fell over this time period in the tropics 
(Table 4).  However, the lack of investment in land in the tropics was countered by a 60% 
increase in the value of farm machinery and equipment per cropped hectare in the region over the 
same time period.  The large increase in machinery use in the tropics vis-à-vis the temperate 
region may explain why the tropical integrals for the investment in land and equipment 
counterfactual are larger than the analogous integrals for the temperate region.  The investment in 
land and equipment counterfactual makes up 6% of the tropic’s Mg gap (with both the wide and 
long model estimates) and 8% or 1% of the tropic’s kcal gap (with the wide and long model 
estimates, respectively). 
 
Robustness analysis with decision trees 
Before we analyzed our panel dataset with decision trees, we first transformed the wide and long 
datasets into annual change wide and long datasets. These annual change datasets begin with each 
country’s 1975 to 1976 changes and end with each country’s 2001 to 2002 changes (wide dataset) 
or 2006 to 2007 changes (long dataset).  We transform continuous distributions of annual change 
in country-level crop yield into a discrete distribution of three tertiles; low annual change (L), 
moderate annual change (M), and high annual change (H) (see Table 5 for an exact numerical 
definition of these categories).  
 
The decision tree algorithm recursively partitions the dataset, eventually settling on n sets of 
decision sequences that predict outcomes of L, M, and H (n traversals of a tree, from the “root” 
that contains all the data to a “leaf” that contains a subset of the data) (25–27). The partitioning of 
the data can be constrained by one or more pruning rules. We prune a tree to make it easier to 
interpret and to increase our confidence in its predictive power. Here, we prune trees by 
mandating that each leaf node in a tree has at least 50 records that support the decision sequence 
leading to the leaf node. In other words, sets of country-level year-to-year changes in inputs could 
not be mapped as a branch unless at least 50 instances of that set were observed in the data.  After 
meeting the pruning rules, the decision tree algorithm has produced the sets of annual changes in 
agricultural inputs that best predict whether a country had an L, M, or H categorical change in 
annual yield. 
 
Unique combinations of yield metric {Mg ha-1, M kcals ha-1}, scale {globe, temperate, tropics}, 
and dataset {wide dataset, long dataset} mean that we create 12 unique trees (see Figs. S1 - S12). 
We summarize the 12 decision trees in several ways.  First, we report on the accuracy and 
complexity of each tree (Table 5 and Data file S3). Second, we list all of the inputs that are found 
in the first 3 levels of a tree. We highlight these inputs because they do the most towards 
explaining or predicting annual change in a country’s yield. Third, we highlight the traversal in 
each tree with the highest number of records. These traversals indicate the annual changes in 
agricultural inputs that are most common across space and time. Finally, we indicate the 
traversals that generate the greatest proportion of high (H) and low (L) annual country-level yield 
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changes in a tree. These traversals give the ranges in annual input change that, respectively, best 
predict a high and low annual yield change in a country. 
 
We find that the trees constructed from the wide dataset are simpler (fewer traversals) than those 
constructed from the long dataset and the trees constructed with the change in Mg ha-1 yield 
metric are simpler than those constructed with the change in M kcal ha-1 yield metric.  (The 
econometric analysis also indicates that the wide dataset with yield measured in Mg ha-1 has the 
best fit.)  In terms of accuracy of prediction, the trees constructed over the temperate countries are 
better than the trees generated over all countries and tropical countries only, and the trees 
generated with yield measured in M Kcals ha-1 are better than the trees generated with yield 
measured in Mg ha-1. In summary, annual yield changes in the temperate countries are explained 
by a narrower set of annual input changes than annual yield changes in the tropics. In other words, 
explanations of changes in tropical yields are messier. 
 
Next we describe the inputs found closest to the roots of trees where the root of the tree contains 
all the data and we define “close to the root” as the first three levels of a tree from its root (the 
first three decisions). Changes in a country’s crop mix – change in relative area devoted to 
sugarcane, roots and tubers, and wheat – appear close to the roots of all 12 trees.  In particular, 
sugarcane is found close to the root of all 12 trees and the roots and tubers crop category is found 
close to the root of all 3 trees formed with the long dataset when yield is measured in Mg ha-1.  
The annual change in DGSTs is close to the root of 3 of the 4 trees estimated over the tropical 
countries.  Finally, change in cultivated area is found close to the root of the two trees estimated 
over the temperate countries when yield is measured in Mg ha-1. In summary, the decision trees 
indicate that recent annual changes in yield across the globe were most associated with changes in 
crop mix and that each region had idiosyncratic drivers of yield change as well.  
 
(In the decision tree analysis we de-trend the data by using annual changes; in the fixed-effects 
analysis we de-trended the data by including time as an explanatory variable. This means the 
decision tree analysis cannot account for the various unobserved inputs that are correlated with 
time.) 
 
A gain in the proportion of a country’s crop mix devoted to sugarcane was the best predictor of 
high (H) yield change in five of the six trees created with the wide dataset and four of the six trees 
created with the long dataset.  Prediction of H became a bit more complicated in the global trees 
estimated with the long dataset.  In trees estimated with the long dataset, gains in wheat and roots 
and tubers in the proportional mix of a country’s crop profile, modest changes in sugarcane’s 
contribution to the proportional mix, and growing seasons that had cooler daytime temperatures 
than the previous growing season were most likely to have led to a high annual gain in a country’s 
yield.   
 
The best set of predictors for a negative change in annual yield (the L yield category) is a bit more 
expansive than the sets of best predictors for H annual-yield change.  Not surprisingly, losses in 
proportion of a country’s crop mix devoted to sugarcane are found in all tree branches with the 
highest proportion of L observations.  In the tropics, a one-year gain in DGSTs and NGSTs were 
also associated with yield losses from one year to the next. Finally, a gain in a country’s 
cultivated area from one year to the next was associated with a negative change in a temperate 
country’s Mg ha-1 yield.  
 
Comparing econometric results to decision tree results 
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When we compare the decision trees (Table 5) to the counterfactual analyses (Tables 1 and 2) 
several similarities and differences emerge.  First, both analyses highlight that changes in crop 
mix have has been one of the most important contributions to the gain in crop yields over the last 
40 years. The decision tree analysis also reinforces the econometric evidence that gains in DGSTs 
dampened gains in yields more in the tropics than in the temperate region. The trees, like the 
counterfactual analysis, also suggest that investment in irrigation, land, and machinery and 
equipment, and the quality of cropped soil have had little effect on yield change. The 
counterfactual and the decision tree analyses disagree on the importance of fertilizer use in 
explaining yield gains over the last 40 years, however; the counterfactual analysis deems this 
input more important than the decision tree analysis. 
 
Discussion  
Improvements in agricultural technology, management, and science, changes in crop mix, and 
increased fertilizer use were responsible for the lion’s share of yield improvement around the 
world from 1975 to 2007. The negative yield impacts associated with increases in growing season 
temperatures were smaller. In some cases the change in cropland soil quality and cropland 
footprint were just as detrimental to yields as changes in climate. 
 
Suggestions for maintaining yield growth momentum 
The downward pressure on crop yields due to climate change will worsen in the future (e.g., 28). 
We see two paths to continued yield improvements despite this growing drag on yields.  First, 
investment in agricultural technology, chemical inputs, management, and science in the tropics is 
vitally important (the so-called closing of “yield gaps;” 12).  As indicated by the “time” 
counterfactuals, the tropics have not yet experienced the technological revolution that the 
temperate region has. Second, if each country can increasingly specialize in the crops best suited 
for their (changing) climate and trade for the rest of their crop needs, then the spatial allocation of 
crops will become more efficient.  For example, our results indicate the continued divestment in 
grain production in the tropics and greater investment in grain production in the temperate zone 
would do much to boost food production in the future.  Further, greater fruit and sugarcane 
production in the tropics relative to the temperate zone would also help accelerate food production 
(29). More trade liberalization and the reduction or even elimination of national crop subsidy 
programs will make it easier for each country to grow the crops best suited for their soil-climate 
conditions (10). 
 
Several suggested paths to greater food production are not supported by our analysis. Cropland 
extensification contributed little to yield gains in the immediate past and are not likely to do so in 
the future (24). Instead, switching to more climate-appropriate crops, using more fertilizers and 
chemicals and improved cultivars, and improving the nutrient retention capability of already 
existing cropland appears to be a more effective strategy for increasing worldwide food 
production (i.e., land sparing versus land sharing; 30). This strategy would also leave more land 
for nature in an increasingly populated world.  Further, we are also skeptical that an emphasis on 
investment in infrastructure in of itself (i.e., machinery and irrigation capacity) will significantly 
increase yields in the future; these investments did not do much to boost crop production in the 
recent past. Machinery that is compatible with precision agriculture (i.e., technology) is likely to 
be more effective than just more tractors and other machinery.  Of course, the recommendation on 
investment in irrigation could change if climate change severely disrupts current rainfall patterns.      
 
Analysis limitations 
This analysis is limited by several data issues. First, our treatment of weather data (see Materials 
and Methods below) does not allow us to decompose changes in growing season weather into 
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spatial reallocation of cropland on the landscape effects and atmospheric climate change effects.  
Separating these trends would help us better understand the effect of recent climate change on 
crop yields around the world. Another shortcoming of this analysis is that it does not specifically 
account for farmer reaction to climate change; this omission could bias our results.  For example, 
if the changes in the spatial pattern of production and crop choice were partially affected by 
climate change, then we have underestimated the impact of climate change and overestimated the 
impact of crop choice and cropped-footprint change on recent yield trends. In addition, we are 
missing data for all countries that were in the Soviet Union and many Warsaw Pact countries (e.g. 
Poland, Hungary, etc.). The panel database we use does not contain a consistent set of data back 
to 1975 for these countries.  Most of these countries are in the temperate region. Therefore, our 
analysis, especially the temperate region analysis, could be biased due to the omission of these 
countries from the dataset.  Further, the source of our gridded crop maps stopped updating annual 
global grid cell maps of cropped land after releasing the 2007 data (31). Thus our dataset ends 
with 2007 data and cannot be extend into the early 2010s. Finally, to conduct this analysis, we 
either had to summarize the native grid-level data on cropped soil quality and growing season 
weather at the country level or we had to decompose the native country-level data on production, 
crop mix, and investment to the grid-cell level. We used the former approach. 
  
A limitation of our decision tree analysis is that trees are constructed in a “greedy” fashion, 
iteratively splitting on the most powerful agricultural inputs (in a predictive sense) as the branches 
are built; this can lead to suboptimal trees when there are nonlinear interactions among the 
variables. Quinlan’s C4.5 algorithm (25) for the decision tree approach strives to mitigate the 
biasing effect of the iterative tree-building approach by repeatedly building a tree with a subset of 
the data and assessing its quality on the held-out data to find the most robust trees; the RWeka 
decision-tree packaged used for this analysis is a slightly updated version of C4.5. Additionally, 
more work could be done to explore the results using different transformations of the data, for 
example, whether the trees would have greater explanatory power if change in yield outcomes 
were transformed to a discrete distribution of four categories instead of three. 
 
Materials and Methods 
Statistical analysis 
First, we use the method of least squares to estimate a fixed effects model of annual per hectare 
crop yield at the country level from years t through t .   
 

0 1 2 3 4 5 6 7 8ct c ct ct ct ct ct ct ctY A S I t FD E E E E E E E � � � � � � � � �β X β K Z   (1) 
 
where Yct is the production of all crops grown in country c in harvest year t measured either in 
metric tons (Mg) or millions of kilocalories (M kcals) divided by harvested hectares in country c 
in harvest year t (harvest year t refers to crops harvested in year t but not necessarily planted in 
year t; for example, grain can be planted in October and harvested the next March in many 
southern hemisphere countries). Further, αc is the fixed effect intercept for country c, Xct is a 
vector of harvested hectare percentages across crop or crop groups in country c in harvest year t 
(collectively Xct gives a country’s “crop mix” in harvest year t; see the supplementary methods 
for more on Xct, 8), Kct contains variables that measure investment in agricultural land and 
agricultural machinery and equipment per harvested hectare c in harvest year t (8), Act is the 
harvested or cropped hectarage in country c in year t (8), Sct summarizes the quality of soil used to 
grow crops in country c in harvest year t (22), Ict is the percentage of harvested area equipped for 
irrigation in c in harvest year t (8), Zct is a vector of statistics that summarize the weather that 
occurred over country c’s cropland during the growing season of harvest year t (32, 33), and Fct 
measures kg ha-1 of fertilizers used in country c in year t (8).  
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The land investment variable in vector Kct measures major improvements in the quantity, quality 
or productivity of land or prevention of deterioration. Activities such as land clearance, land 
contouring, creation of wells and watering holes are integral to the land improvement. The 
concept of land improvement includes 1) field improvements undertaken by farmers (e.g., making 
boundaries, irrigation channels) and 2) other activities undertaken by government and other local 
bodies such as irrigation works, soil-conservation works, and flood-control structure. The 
machinery and equipment investment variable in vector Kct measures the value of tractors, 
harvesters and thrashers, milking machines and hand tools in a country. 
 
See below for more information on how we constructed the variables in the vector Zct. 
 
In the estimate of model (1) using the “long” dataset (data file S2) Fct is not included and 
time t equals 1975 and time t equals 2007. In the estimate of model (1) using the “wide” dataset 
(data file S1) Fct is included and time t equals 1975 and time t  equals 2002.  We estimate the 
long and wide versions of model (1) with all countries, tropical countries only, and temperate 
countries only. A country’s regional affiliation is defined by the latitude of the country’s capital 
and the Tropics of Cancer and Capricorn.  Model (1) was estimated with the reg commend in 
Stata 12.1. See Tables S1 and S2 for estimates of model (1), including estimated standard errors 
and p-values. Stata code is available upon request from the authors. 
 
Estimating the overall contribution of an agriculture production input on 1975 to mid-2000s 
global or regional crop yield  
We build expected yield curves for country c, ĉtY  for years t through t , by running the country’s 
input data from years t to t through an estimate of model (1), 
 

0 1 2 3 4 5 6 7 8
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆct c ct ct ct ct ct ct ctY A S I t FD E E E E E E E � � � � � � � � �β X β K Z   (2) 

 
where a “^” indicates an estimate (see Tables S1 and S2 for estimated coefficients).  Each country 
has eight expected yield curves, one for each unique combination of yield measure {Mg ha-1, M 
kcals ha-1}, scale {globe, appropriate region}, and dataset {long, wide}. Using these country-level 
yield curves we calculated four expected global yield curves, one for each unique combination of 
yield {Mg ha-1, M kcals ha-1}  and dataset {long, wide}) and eight expected regional yield curves, 
one for each unique combination of yield measure {Mg ha-1, M kcals ha-1}, scale {temperate, 
tropics}, and dataset {long, wide}. To construct a global or regional yield curve, r̂tY  for years 

t through t , we average ĉtY  for each year t across all c in r (globe, temperate, tropics) weighed 
by each country’s cropped hectarage in year t, 
 

ˆˆ ct ct
rt c r

ct

A YY
A�

 ¦          (3) 

 
In Fig. 1 we present the global r̂tY  for years 1975 through 2007 (the long dataset) where yield is 
measured in Mg ha-1 (black solid curve in Fig. 1A) and M kcals ha-1 (black solid curve in Fig. 
1B). 
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We build counterfactual yield curves for country c, ctY  for years t through t , by running the 
country’s input data from years t to t through an estimate of model (1), holding one or more of 
c’s inputs fixed at 1975 levels (the exception is a growing season weather counterfactual; in those 
cases, we fix the appropriate input at the 1975-1977 annual average).  Each country has 84 
counterfactual yield curves for the years t through t , one for each unique combination of yield 
measure {Mg ha-1, M kcals ha-1}, scale {globe, appropriate region}, and 10 counterfactuals with 
the long dataset and 11 counterfactuals with the wide dataset. Using these country-level 
counterfactual yield curves, we calculated 42 counterfactual global-yield curves, one for each 
unique combination of yield measure {Mg ha-1, M kcals ha-1} and 10 counterfactuals with the 
long dataset and 11 counterfactuals with the wide dataset and 84 expected regional yield curves, 
one for each unique combination of yield measure {Mg ha-1, M kcals ha-1}, scale {temperate, 
tropics}, and 10 counterfactuals with the long dataset and 11 counterfactuals with the wide 
dataset. To construct a global or regional counterfactual yield curve, rtY  for years t through t , 
we average rtY  for each year t across all c in r, weighed by each country’s cropped hectarage in 
year t, 
 

ct ct
rt c r

ct

A YY
A�

 ¦          (4) 

 
where ,1975ct cA A  for all t in the numeraire and “area cultivated” counterfactuals.  In Fig. 1 we 

present the global rtY  for the numeraire counterfactual (all inputs other than weather inputs are 
fixed at 1975 levels) for years 1975 through 2007 (the long dataset) where yield is measured in 
Mg ha-1 (blue solid curve in Fig. 1A) and M kcals ha-1 (blue solid curve in Fig. 1B). 
 
In the mean columns of Tables 1 and 2 we present the counterfactual integrals, 
 

ˆt
qmrd tmrd qtmrdt t

Y YO
 

 �¦         (5) 

 
where q indexes the counterfactual, m indicates yield measure {Mg ha-1, M kcals ha-1}, r indicates 
scale {globe, temperate, tropics}, and d indicates dataset {long, wide} (Fig. 2). To normalize 
these integrals we also present the fraction of the numeraire counterfactual integral, 

, , ,counterfactual m r dO , that counterfactual q’s integral  “explains,” 
 

,

qmrd

counterfactual mrd

O
O          (6) 

 
where we call ,counterfactual mrdO  r’s “m” gap using dataset d. 
 
The counterfactual analyses were conducted with MATLAB R2013a. MATLAB code is available 
upon request from the authors. 
 
Sensitivity analyses 
We generated the “low” and “high” results for each q, m, r, and d counterfactual combination in 
the following manner (Tables 1 and 2).  First, we created 1000 unique vectors of model (1) 
coefficients by randomly drawing from the multivariate normal distribution with a mean of 
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¬ ¼β β  (the estimated vector of beta coefficients) and a covariance matrix 

of, 
 

 
2

2 vcov
N

NV
F

§ ·
¨ ¸¨ ¸
© ¹

         (7) 

 
where σ is estimated model (1)’s root mean square error, N is the number of observations in the 
dataset, 2

NF  is a random variable with a chi-square distribution with N degrees of freedom, and 
vcov is estimated model (1)’s variance-covariance matrix for all β’s. (We do not vary the 
estimated αc coefficients do not vary.) 
 
Second, using the 1000 randomly generated β coefficient vectors, we generated 1000 values of 

ĉtmdY  for all c and t for each unique m and d combination and 1000 values of qctmdY  for all c and t 
for each unique q, m, and d combination.  Third, we generated expected 25th and 75th percentile 
yield curves for each country and each unique m and d combination by selecting the 25th 
percentile and 75th percentile values of ĉtmdY  at each t.  Fourth, we generated counterfactual 25th 
and 75th percentile yield curves for each country and each unique q, m, and d combination by 
selecting the 25th percentile and 75th percentile values of qctmdY at each t.  Fifth, we calculated a 
region or the globe’s expected percentile yield in year t with, 
 

25
25

ˆˆ ct ctmd
tmrd c r

ct

A YY
A�

 ¦          (8) 

 
75

75
ˆˆ ct ctmd

tmrd c r
ct

A YY
A�

 ¦          (9) 

 
for each unique m and d combination where the superscripts “25” and “75” indicate the 25th and 
75th percentile, respectively.  Sixth, we calculated the globe or region’s counterfactual percentile 
yield in year t with, 
 

25
25 ct qctmd

qtmrd c r
ct

A Y
Y

A�
 ¦          (10) 

 
75

75 ct qctmrd
qtmrd c r

ct

A Y
Y

A�
 ¦         (11) 

for each unique q, m and d combination.  Finally, in the low and high columns of Tables 1 and 2 
we present the percentile counterfactual integrals for a given region r, 
 

25 25 25ˆt
qmrd tmrd qtmrdt t

Y YO
 

 �¦         (12) 

 
75 75 75ˆt
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Decision tree analysis 
Decision trees were constructed using the RWeka package in R and J48 classifiers in particular. 
These are a reimplementation of Quinlan’s C4.5 algorithm (25). Trees were evaluated for 
prediction accuracy using a 10-fold cross-validation strategy. Decision trees are given in Figs. S1 
– S12, and results are summarized in Table 5.  In the analysis reported here, “leaf nodes” (the 
resulting subsets of the data after the branching of the tree on decision variables) were required to 
contain at least 50 observations, using the M option to control the minimum number of instances 
per leaf. This approach was used to yield trees with higher human interpretability as well as 
higher prediction accuracy. While 50 is somewhat arbitrary, we explored other values and 
empirically found it to lead to high prediction accuracy and greater interpretability in the resulting 
trees. (Interestingly, this approach also worked better for this data than using the C option to 
control the “confidence” in the pruned trees.) 
 
Creating country-level data for crop yield model and decision tree analysis 
To create country-level summary statistics of the quality of cropped soil (Sct) and growing season 
weather over cropland (contained in vector Zct) in each country in each harvest year t we used 
annual global grid cell maps of cropped land (31) along with gridded global maps of soil quality 
(22), monthly weather (32), and growing season months (33). (Ramankutty and Foley stopped 
updating annual global grid-cell maps of cropped land after releasing the 2007 data. Thus, our 
dataset ends with 2007 data.)  By combining the gridded maps on soil, weather, and growing 
season months with gridded cropland maps we were able to create summary statistics that 
preserved the observed spatial heterogeneity in agronomic conditions across a county in any given 
year.  For example, consider the landscape in Fig. 4. Suppose the square landscape represents a 
country.  Assume the large number in each grid cell in Fig. 4A represents the number of cropland 
hectares in that cell in harvest year t (the small number in the corner of a cell is its ID number).  In 
Fig. 4B each cell’s nutrient availability score is given where a 1 indicates ‘No or slight nutrient 
constraint’, 2 indicates ‘moderate nutrient constraint’, 3 indicates ‘severe nutrient constraint’, 4 
indicates ‘very severe nutrient constraint’, and 5 indicates ‘mainly non-soil’ (in other words, 
lower scores mean better soil quality; see 22).  Nutrient availability (Nct) is decisive for successful 
low-level-input farming and, in some cases, intermediate-input-level farming.  A country’s 
composite nutrient availability score on cropland in harvest year t is the weighted average of the 
nutrient availability scores across all cropland area in the country in harvest year t or, 
 

ct jt j jtj c j c
N A N A

� �
 ¦ ¦         (14)  

 
where j c�  is the set of grid cells in country c, Nj is grid cell j’s nutrient availability score, and Ajt 
is grid cell j’s cropland area in harvest year t (31).  In the illustrative country represented in Fig. 4 
Nct is equal to, 
 

1 100 2 1000 3 500 2 100 ... 3 700 2.28
100 1000 500 100 ... 700ctN u � u � u � u � � u
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  (15) 

 
We use the same method to calculate a country’s nutrient retention score, given by Uct.  Nutrient 
retention capacity is of particular importance for the effectiveness of fertilizer applications and is 
therefore of special relevance for intermediate and high input level cropping conditions.  The 
explanatory soil statistic used in the model, Sct, is the average of Nct and Uct. 
 
The weather vector Z includes weather statistics that summarize the weather conditions over a 
country’s cropland during the growing season.  We summarize each weather variable at the 
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country level in year t with a procedure very similar to that used to find the country-level cropland 
soil statistic S.  Let DGSTjmt and NGSTjmt indicate the average daytime high and nighttime low 
temperature in grid cell j in month m of harvest year t (measured in degrees Celsius) (32).  Let 
DGSTjt and NGSTjt indicate the  average of DGSTjmt and NGSTjmt, respectively, across grid cell j’s 
growing season months of harvest year t where we use a grid cell’s growing season months for 
maize to define growing season.  Let Pjt be the total precipitation in grid cell j during the cell’s 
growing season in harvest year t (measured in millimeters). If a crop was harvested in the spring 
of year t then some of the weather that contributes to DGSTjt, NGSTjt , and Pjt occurred in the final 
months of year t – 1. Let DGSTct, NGSTct, and Pct measure the average monthly daytime high, 
monthly nighttime low, and growing season precipitation, respectively, over c’s cropland during 
the course of growing season t where weather data is weighted by cropland density in grid cell j. 
 

ct jt jt jtj c j c
DGST A DGST A

� �
 ¦ ¦       (16) 

 
 ct jt jt jtj c j c
NGST A NGST A

� �
 ¦ ¦       (17) 

 
 ct jt jt jtj c j c
P A P A

� �
 ¦ ¦        (18)  

 
where Ajt is the area of grid cell j that was cropped in year t. The weather vector Zct in model (1) 
also incudes the squares of DGSTct, NGSTct, and Pct. 
 
MATLAB code was used to construct Sct, DGSTct, NGSTct, and Pct and is available from the 
authors upon request.  
 
Maps of country-level change in agricultural inputs 
Maps of 1975 – 1977 to 2005 – 2007 country-level changes in various model (1) inputs are given 
in Figs. S13 – S21.  
 
Supplementary Materials 
Fig. S1. Decision tree for globe, yield measured in Mg ha-1, using the “long” dataset. 
 
Fig. S2. Decision tree for temperate region, yield measured in Mg ha-1, using the “long” dataset. 
 
Fig. S3. Decision tree for tropics, yield measured in Mg ha-1, using the “long” dataset. 
 
Fig. S4. Decision tree for globe, yield measured in M kcals ha-1, using the “long” dataset. 
 
Fig. S5. Decision tree for temperate region, yield measured in M kcals ha-1, using the “long” 
dataset. 
 
Fig. S6. Decision tree for tropics, yield measured in M kcals ha-1, using the “long” dataset. 
 
Fig. S7. Decision tree for globe, yield measured in Mg ha-1, using the “wide” dataset. 
 
Fig. S8. Decision tree for temperate region, yield measured in Mg ha-1, using the “wide” dataset. 
 
Fig. S9. Decision tree for tropics, yield measured in Mg ha-1, using the “wide” dataset. 
 
Fig. S10. Decision tree for globe, yield measured in M kcals ha-1, using the “wide” dataset. 
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Fig. S11. Decision tree for temperate region, yield measured in M kcals ha-1, using the “wide” 
dataset. 
 
Fig. S12. Decision tree for tropics, yield measured in M kcals ha-1, using the “wide” dataset. 
 
Fig. S13. Percentage change in 1975-1977 to 2005-2007 growing season daytime temperature by 
country. 
 
Fig. S14. Percentage change in 1975-1977 to 2005-2007 growing season nighttime temperature 
by country. 
 
Fig. S15. Percentage change in 1975-1977 to 2005-2007 growing season precipitation by country. 
 
Fig. S16. Percentage change in 1975-1977 to 2005-2007 soil score by country. 
 
Fig. S17. Percentage change in 1975-1977 to 2005-2007 hectares of irrigation capacity per 
cropped hectare by country. 
 
Fig. S18. Percentage change in 1975-1977 to 2005-2007 equipment investment ($ 2005) per 
cropped hectare by country. 
 
Fig. S19. Percentage change in 1975-1977 to 2005-2007 land investment ($ 2005) per cropped 
hectare by country. 
 
Fig. S20. Percentage change in 1975-1977 to 2005-2007 all crop M kcals per hectare yield by 
country. 
 
Fig. S21. Percentage change in 1975-1977 to 2005-2007 all crop Mg per hectare yield by country. 
 
Table S1. Econometric estimates of fixed effects model (1) with the “long” global, tropics, and 
temperate datasets. 
 
Table S2. Econometric estimates of fixed effects model (1) with the “wide” global, tropics, and 
temperate datasets. 
 
Supplementary Methods: Crop groups 
 
Data file S1. “Wide” dataset. 
 
Data file S2. “Long” dataset. 
 
Data file S3. Accuracy of decision trees. 



Page 16 of 36 
 

References
 
1.  W. Schlenker, W. M. Hanemann, A. C. Fisher, The impact of global warming on US 

agriculture: an econometric analysis of optimal growing conditions. Rev. Econ. Stat. 88.1, 
113-125 (2006). 

 
2. W. Schlenker, M. J. Roberts, Nonlinear temperature effects indicate severe damages to US 

crop yields under climate change. Proc. Natl. Acad. Sci. U.S.A. 106.37, 15594-15598 (2009). 
 
3.  O. Ashenfelter, K. Storchmann, Using hedonic models of solar radiation and weather to assess 

the economic effect of climate change: the case of Mosel valley vineyards. Rev. Econ. Stat. 
92.2, 333-349 (2010). 

 
4.  D. B. Lobell, W. Schlenker, J. Costa-Roberts, Climate trends and global crop production since 

1980. Science 333.6042, 616-620 (2011). 
 
5.  D. Tilman, C. Balzer, J. Hill, B. L. Befort, Global food demand and the sustainable 

intensification of agriculture. Proc. Natl. Acad. Sci. U.S.A. 108, 20260-20264 (2011). 
 
6.  J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. 

Mueller, C. O’Connell, D. K. Ray, P. C. West, C. Balzer, Solutions for a cultivated planet. 
Nature 478, 337-342 (2011). 

 
7.  J. M. Beddow, P. G. Pardey, Moving matters: the effect of location on crop production. J. 

Econ. Hist. 75, 219-249 (2015). 
 
8.  FAOSTAT (Food and Agriculture Organization of the United Nations). FAOStat database, 

available at http://faostat3.fao.org/home/E. (2011). 
 
9.  J. M. Alston, P. G. Pardey, Agriculture in the global economy. J. Econ. Perspect. 28.1 121-

146 (2014). 
 
10. K. Anderson, Globalization's effects on world agricultural trade, 1960–2050. Philos. T. Roy. 

Soc. B. 365, 3007-3021 (2010). 
 
11. M.D.C. Vera-Diaz, R. K. Kaufmann, D. C. Nepstad, P. Schlesinger, An interdisciplinary 

model of soybean yield in the Amazon Basin: the climatic, edaphic, and economic 
determinants. Ecol. Econ. 65.2 420-431 (2008). 

 
12. D. B. Lobell, K. G. Cassman, C. B. Field, Crop yield gaps: their importance, magnitudes, and 

causes. Annu. Rev. Environ. Resour. 34.1 179 (2009). 
 
13. A. Costinot, D. Donaldson, Ricardo’s theory of comparative advantage: old idea, new 

evidence (National Bureau of Economic Research, No. w17969, 2012). 
 
14. S. L. Pollack, Consumer demand for fruit and vegetables: the US example. Changing 

Structure of Global Food Consumption and Trade 6 49-54 (2001). 
 
 

http://faostat3.fao.org/home/E


Page 17 of 36 
 

 
15. P. Pingali, Westernization of Asian diets and the transformation of food systems: implications 

for research and policy. Food Policy 32, 281-298 (2007). 
 
16. A. Regmi, M. Gehlhar, Eds. New Directions in Global Food Markets. AIB-794. USDA/ERS 

(2005). 
 
17. R. D. Schnepf, E. Dohlman, C. Bolling, Agriculture in Brazil and Argentina: Developments 

and Prospects for Major Field Crops. Market and Trade Economics Division, Economic 
Research Service, U.S. Department of Agriculture, Agriculture and Trade Report, WRS-01-
03, (2001). 

 
18. S. Peng, J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. 

Khush, K. G. Cassman, Rice yields decline with higher night temperature from global 
warming. Proc. Natl. Acad. Sci. U.S.A. 101, 9971-9975 (2004). 

 
19. T. Fulu, M. Yokozawa, Y. Xu, Y. Hayashi, Z. Zhang, Climate changes and trends in 

phenology and yields of field crops in China, 1981–2000. Agr. Forest Meteorol. 138, 82 
(2006). 

 
20. P. Thomison, Can warm nights reduce grain yield in corn?  C.O.R.N. Newsletter- Ohio State 

University, Issue 2010, 22 (2010). 
 
21. W. R. L. Anderegg, A. P. Ballantyne, W. K. Smith, J. Majkut, S. Rabin, C. Beaulieu, R. 

Birdsey, J. P. Dunne, R. A. Houghton, R. B. Myneni, Y. Pan, J. L. Sarmiento, N. Serota, E. 
Shevliakova, P. Tans, S. W. Pacala, Tropical nighttime warming as a dominant driver of 
variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. U.S.A. 112, 15591-15596 
(2015). 

 
22. G. Fischer, F. Nachtergaele, S. Prieler, H.T. van Velthuizen, L. Verelst, D. Wiberg, Global 

Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria 
and FAO, Rome, Italy (2008). 

 
23. P. C. West, H. K. Gibbs, C. Monfreda, J. Wagner, C. C. Barford, S. R. Carpenter, J. A. Foley, 

Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural 
land. Proc. Natl. Acad. Sci. U.S.A. 107, 19645-19648 (2010).  

 
24. W. F. Laurance, J. Sayer, K. G. Cassman, Agricultural expansion and its impacts on tropical 

nature. Trends Ecol. Evol. 29.2 107-116 (2014). 
 
25. J. R. Quinlan, C4.5: Programs for machine learning. Morgan Kaufmann Publishers (1993). 
 
26. W-Y. Loh, Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining 

and Knowledge Discovery 1.1 14-23 (2011). 
 
27. H. R. Varian, Big data: New tricks for econometrics. J. Econ. Perspect. 28.2 3-27 (2014). 
 
 



Page 18 of 36 
 

 
28. A. P. K. Tai, M. V. Martin, C. L. Heald, Threat to future global food security from climate 

change and ozone air pollution. Nature Climate Change 4, 817-821 (2014). 
http://dx.doi.org/10.1038/nclimate2317.  

 
29. W. G. K. Mauser, F. Zabel, R. Delzeit, T. Hank, B. Putzenlechner, A. Calzadilla, Global 

biomass production potentials exceed expected future demand without the need for cropland 
expansion. Nature Communications 6, 8946 (2015). doi:10.1038/ncomms9946. 

 
30. A. Balmford, R. Green, B. Phalan, What conservationists need to know about farming, Philos. 

T. Roy. Soc. B. 279, 2714-2724 (2012). 
 
31. N. Ramankutty, J. Foley, Estimating historical changes in global land cover: croplands from 

1700 to 1992. Global Biogeochem. Cy. 13, 997-1028 (1999). 
 
32. I. Harris, P.D. Jones, T.J. Osborn, D. H. Lister, D.H., Updated high-resolution grids of 

monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 
(2014). doi:10.1002/joc.3711.  

 
33. W. J. Sacks, D. Deryng, J. A. Foley, N. Ramankutty, Crop planting dates: an analysis of 

global patterns. Global Ecol. Biogeogr. 19(5), 607-620 (2010). 
 

http://dx.doi.org/10.1038/nclimate2317


  
 

Page 19 of 36 
 

Acknowledgments: The authors wish to thank Jae Bradley and Clarissa Hunnewell, 
undergraduates at Bowdoin College, for help with putting datasets together and analyzing data. 
 
Funding: This work was done with no funding.  
 
Author contributions: E.J.N. did everything other than construct the decision trees. C.B.C 
constructed the decision trees. C.B.C. also wrote and edited portions of the text.  
 
Competing interests: The authors declare that they have no competing interest. 
 



Page 20 of 36 
 

Figures and Tables 
 

 
 
Fig. 1. Expected global yield given 1975-2007 spatiotemporal data (black lines where dashed 
lines indicate +/- one standard deviation) and numeraire counterfactual global yield (blue 
line where the dashed lines indicate +/- one standard deviation). The counterfactual global 
yield curves were constructed by holding all country-level agricultural inputs at 1975 levels 
explanatory except growing season weather. These graphs are based on “long” model results (the 
dataset with 1975 to 2007 data and does not include the fertilizer variable).  Expected global yield 
grew 46.5% when measured in Mg ha-1 (A) and 58.8% when measured in M kcals ha-1 (B) 
between 1975 and 2007. Under the counterfactual global yield fell by 2.1% when measured in Mg 
ha-1 (A) and 2.5% when measured in M kcals ha-1 (B).  The light gray line indicates observed 
global yields. 
 
 

 
 
Fig. 2. Measuring the impact of an agricultural input on 1975 to mid 2000s global or 
regional yields. In (A) counterfactual q (one or more inputs are held fixed at 1975 levels in each 
country) produces an estimated global yield function, measured in Mg, given by the dotted black 
line.  Assume the Riemann integral of the area between the expected global or regional yield 
curve (the solid black line) and the counterfactual global or region yield curve is 10.00. Further, 
assume the Riemann integral of the area between the expected global or regional yield curve (the 
solid black line) and the numeraire counterfactual yield curve (the solid blue line) is 30.53.  Then 
counterfactual q explains 10 / 30.53 or 33% of the “global Mg gap.” In (B) counterfactual y 
explains –5 / 30.53 or –16% of the “global Mg gap.”  
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Fig. 3. Cropped area by crop type (crop mix) across the globe (A), across countries in the temperate region (B), and across countries in 
the tropical region (C).  These graphs give the weighted average of area planted in each crop group across the globe or region over time. We use 
cropped hectarage in country c in year t as weights. Red (black) indicates a decrease (increase) in the crop or crop group’s share in the overall 
mix between 1975 and 2007.  The percentage change indicates the change between 1975 and 2007.    
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Fig. 4. Illustration of the calculation of the soil score for a country.  Harvested hectares in 
each grid cell in an illustrative country (A) where the small numbers in the corner of a grid cell 
indicate cell ID. Nutrient availability score (Nct) in each grid cell (B) where 1 indicates ‘No or 
slight nutrient constraint’, 2 indicates ‘moderate nutrient constraint’, 3 indicates ‘severe nutrient 
constraint’, 4 indicates ‘very severe nutrient constraint’, and 5 indicates ‘mainly non-soil’ 
(Fischer et al. 2008). 
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Table 1. The size of the area between the expected yield curve and a counterfactual’s yield 
curve when fertilizer is included as an input (“wide” model results). The global model uses all 
countries while the regional models only use countries in the given region.  The “Low” estimates 
are calculated with the 25th percentile annual yield estimates in each country. The “High” 
estimates are calculated with the 75th percentile annual yield estimates in each country. The cells 
in black indicate the integral if all agricultural inputs other than weather are fixed at 1975 levels 
(the numeraire counterfactuals; see Figs. 1 and 2).  All other cells have an increasingly dark shade 
of green (red) as the integrals get more positive (negative).  Pure white occurs at 0.  
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Table 2. The size of the area between the expected yield curve and a counterfactual’s yield 
curve when fertilizer is not an input (“long” model results). See Table 1’s legend for more 
details. 
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Table 3: Mean fertilizer values at the global and tropical and temperate regions levels (kg / 
cropped ha).  All averages are weighted by cropped area in each country in each year. 
 1975 – 77 average 2000 – 02 average % Change 
Globe 84.17 128.56 52.73% 

Temperate 99.64 152.82 53.37% 
Tropics 34.37 68.46 99.16% 

 
 
Table 4. Mean values at the global and tropical and temperate regions levels.  All averages 
are weighted by cropped area in each country in each year. 
 1975 – 77 

average 
2005 – 07 
average 

% Change 1975 – 77 
average 

2005 – 07 
average 

% Change 

 Hectares (Millions) Irrigation (Equipped ha / cropped ha) 
Globe 7.23 8.86 22.54% 0.199 0.253 26.87% 
Temperate 11.39 12.54 10.10% 0.233 0.318 36.55% 

Tropics 3.57 5.63 57.55% 0.099 0.122 23.91% 

 
Soil score 

(a lower score means better nutrient 
availability and retention capacity)  

Equipment investment 
($ M (2005) / 10,000 cropped ha) 

Globe 1.51 1.56 2.82% 8.41 9.19 9.30% 
Temperate 1.39 1.38 -0.38% 10.90 12.82 17.60% 

Tropics 1.89 1.92 1.63% 1.22 1.95 59.54% 

 Growing season daytime temp. 
(Celsius) 

Land development investment 
($ M (2005) / 10,000 cropped ha) 

Globe 27.68 29.06 4.98% 10.84 11.85 9.32% 
Temperate 26.88 28.06 4.40% 9.81 11.24 14.58% 

Tropics 29.87 30.90 3.45% 14.08 13.40 -4.84% 
 Growing season nighttime temp 

(Celsius) Growing season precipitation (mm) 

Globe 16.87 18.31 8.53% 115.16 113.09 -1.80% 
Temperate 15.90 17.05 7.23% 125.83 128.69 2.27% 

Tropics 19.64 20.77 5.75& 158.76 162.10 2.11% 
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Table 5. Summary of 12 decision trees. 

 Dataset 
Global Temperate Tropical 

Annual change 
in Mg ha-1 

Annual change 
in M kcals ha-1 

Annual change 
in Mg ha-1 

Annual change in M 
kcals ha-1 

Annual change 
in Mg ha-1 

Annual change 
in M kcals ha-1 

Tree accuracy: 
 
Percentage of 
predictions that are 
correct / cross-
validation accuracy 

Long 56.8 / 50.8 57.3 / 50.4 61.9 / 58.2 62.9 / 59.7 51.3 / 46.1 51.6 / 43.5 

Wide 56.6 / 50.7 57.1 / 49.4 60.7 / 59.1 63.0 / 59.7 50.0 / 42.4 51.2 / 40.5 

Number of branches on 
tree 

Long 25 29 9 10 13 19 
Wide 21 23 4 5 11 18 

Annual change 
explanatory variables 
in first 3 levels of a tree 

Long 

Sugarcane (Sugar); 
roots & tubers (R&T) 

Sugar; wheat Sugar; R&T; Area 
cultivated (A); 
Investment in land 
(Land) 

Sugar; R&T Sugar; R&T ; Daytime 
growing season 
temperature (DGST) 

Sugar; DGST 

Wide Sugar; Irrigation 
capability (I) 

Sugar; fertilizer 
(F) 

Sugar; A Sugar; I Sugar; DGST; Land Sugar; A 

Heaviest branches: 
 
Percentage of all 
observations in tree on 
that branch and all 
predictive “rules” on 
the branch 

Long 

21.8% 
 
-0.17 < Sugar ≤ 0.24 
-0.67 < R&T ≤ 1.08 
-0.35 < Wheat ≤ 0.23 
-1.04 < DGST  
NGST ≤ 0.53 
I ≤ 0.05 
Land > 0 

19.0% 
 
0.05 < Sugar 
 
 

47.3% 
 
-0.17 < Sugar ≤ 0.06 
-0.67 ≤ R&T 

29.8% 
 
-0.19 < Sugar ≤ 0.06 
-0.66 < R&T 
-0.16 < Rice ≤ 0.82 
 
 
 

30.9% 
 
Sugar ≤ 0.0 
-0.68 < R&T ≤ 0.97 
-0.06 < Oil 
-0.45 < Fruit 
-1.04 < DGST 
I ≤ 0.05 
0.00 < Land ≤ 0 

20.8% 
 
-0.13 < Sugar ≤ 0.31 
-0.06 < Oil 
Rice ≤ 0.22 
-1.09 < DGST ≤ 1.07 
A ≤ -3662 
 
 

Wide 

26.1% 
 
-0.17 < Sugar ≤ 0.29 
Fruits ≤ 2.57 
Wheat ≤ 1.25 
-0.93 < R&T 
I ≤ 0.04 
-7.75 < F  ≤ 1.77 

12.7% 
 
0.18 < Sugar 

54.8% 
 
-0.16 < Sugar ≤ 0.16 
 
 

36.2% 
 
-0.16 < Sugar ≤ 0.09 
0.00 < I 
 

26.7% 
 
0.00 < Sugar ≤ 0.01 
-0.06 < Oil 
-0.97 < Other 
-0.46 < Fruit 
-1.00 < DGST 
Land ≤ 0 
0.00 < Equipment  

9.7% 
 
-0.13 < Sugar ≤ 0.20 
-0.94 < Wheat ≤ 3.89 
-0.79 < NGST 
-6.88 < Growing 
season precipitation 
-2354 < A ≤ 128055 
0 < Land 
-8.13 < F 
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 Dataset 
Global Temperate Tropical 

Annual change 
in Mg ha-1 

Annual change 
in M kcals ha-1 

Annual change 
in Mg ha-1 

Annual change in M 
kcals ha-1 

Annual change 
in Mg ha-1 

Annual change 
in M kcals ha-1 

Branch with greatest 
proportion of ‘H’: 
 
Percentage of all 
observations in tree on 
that branch and all 
predictive “rules” on 
the branch 

Long 

1.4% 
 
-0.17 < Sugar ≤ 0.24 
-0.67 < R&T 
0.66 < Wheat 
DGST ≤ -1.04 
I ≤ 0.05 

2.3% 
 
-0.17 < Sugar ≤ 
0.05 
0.55 < Wheat 
DGST ≤ -0.82 

14.7% 
 
0.29 < Sugar 

27.8% 
 
0.06 < Sugar 

3.3% 
 
0.22 < Sugar 

2.5% 
 
0.31 < Sugar 

Wide 
9.8% 
 
0.29 < Sugar 

12.7% 
 
0.18 < Sugar 

23.4% 
 
0.16 < Sugar 

29.1% 
 
0.09 < Sugar 

6.0% 
 
0.00 < Land 

3.5% 
 
0.20 < Sugar 

Branch with greatest 
proportion of ‘L’: 
 
Percentage of all 
observations in tree on 
that branch and all 
predictive “rules” on 
the branch 

Long 

11.7% 
 
Sugar ≤ -0.17 

11.7% 
 
Sugar ≤ -0.17 
 
 

15.3% 
 
Sugar ≤ -0.17 
-9095 < A 

18.2% 
 
Sugar ≤ -0.19 
 
 
 

3.0% 
 
Sugar ≤ 0.00 
R&T ≤ -0.68 
-1.04 < DGST 
Irr ≤ 0.05 
0.00 < Land 

4.4% 
 
Sugar ≤ -0.13 

Wide 

1.0% 
 
-0.17 < Sugar ≤ 0.29 
2.57 < Fruits 
I ≤ 0.04 

12.3% 
 
Sugar ≤ -0.16 

17.5% 
 
Sugar ≤ -0.16 
-8309 < A 

21.7% 
 
Sugar ≤ -0.16 
 
 

3.5% 
 
Sugar ≤ -0.16 
-1.00 < DGST 
Land ≤ 0.00 

7.1% 
 
-0.13 < Sugar ≤ 0.20 
Wheat ≤ -0.33 
Rice ≤ 0.03 
0.13 < NGST 
A ≤ -2354 

Notes: A high yield change (“H”) in a country is given by a one year change of (0.158,10.1] Mg ha-1 or (0.354,30.2] M kcals ha-1 with the long dataset and (0.17,7.66] Mg ha-1 
or (0.401,30.2] M kcals ha-1 with the wide dataset. A low yield change (“L”) in a country is given by a one year change of ([-10.2,-0.0647] Mg ha-1 or [-30.7,-0.197] M kcals 
ha-1 with the long dataset and [-10.2,-0.0703] Mg ha-1 or [-30.7,-0.208] M kcals ha-1 with the wide dataset. Input names in black refer to crop mix inputs, names in red refer 
growing season weather inputs, and names in blue refer to other input types.  
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Supplementary Materials 
Fig. S1. Decision tree for globe, yield measured in Mg ha-1, using the “long” dataset. 
 
Fig. S2. Decision tree for temperate region, yield measured in Mg ha-1, using the “long” 
dataset. 
 
Fig. S3. Decision tree for tropics, yield measured in Mg ha-1, using the “long” dataset. 
 
Fig. S4. Decision tree for globe, yield measured in M kcals ha-1, using the “long” dataset. 
 
Fig. S5. Decision tree for temperate region, yield measured in M kcals ha-1, using the “long” 
dataset. 
 
Fig. S6. Decision tree for tropics, yield measured in M kcals ha-1, using the “long” dataset. 
 
Fig. S7. Decision tree for globe, yield measured in Mg ha-1, using the “wide” dataset. 
 
Fig. S8. Decision tree for temperate region, yield measured in Mg ha-1, using the “wide” 
dataset. 
 
Fig. S9. Decision tree for tropics, yield measured in Mg ha-1, using the “wide” dataset. 
 
Fig. S10. Decision tree for globe, yield measured in M kcals ha-1, using the “wide” dataset. 
 
Fig. S11. Decision tree for temperate region, yield measured in M kcals ha-1, using the 
“wide” dataset. 
 
Fig. S12. Decision tree for tropics, yield measured in M kcals ha-1, using the “wide” dataset. 
 
 

 
 
Fig. S13. Percentage change in 1975-1977 to 2005-2007 growing season daytime temperature 
by country. 
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Fig. S14. Percentage change in 1975-1977 to 2005-2007 growing season nighttime 
temperature by country. 
 
 

 
 
Fig. S15. Percentage change in 1975-1977 to 2005-2007 growing season precipitation by 
country. 
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Fig. S16. Percentage change in 1975-1977 to 2005-2007 soil score by country. 
 
 
 

 
 
Fig. S17. Percentage change in 1975-1977 to 2005-2007 hectares of irrigation capacity per 
cropped hectare by country. 
 
 

 
 
Fig. S18. Percentage change in 1975-1977 to 2005-2007 equipment investment ($ 2005) per 
cropped hectare by country. 
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Fig. S19. Percentage change in 1975-1977 to 2005-2007 land investment ($ 2005) per 
cropped hectare by country. 
 
 

 
Fig. S20. Percentage change in 1975-1977 to 2005-2007 all crop M kcals per hectare yield by 
country. 
 

 
 
Fig. S21. Percentage change in 1975-1977 to 2005-2007 all crop Mg per hectare yield by 
country. 
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Table S1. Econometric estimates of fixed effects model (1) with the “long” global, tropics, 
and temperate datasets. Estimated coefficients with standard errors in parentheses. Standard 
errors are robust standard errors. ‘***’ indicates statistical significance at p = 0.01, ‘**’ indicates 
statistical significance at p = 0.05, and ‘*’ indicates statistical significance at p = 0.10. Country 
fixed effect coefficients and SE are available upon request. 

 (1) (2) (3) (4) (5) (6) 
Yield Measure Mg/ha Mg/ha Mg/ha M Kcals/ha M Kcals /ha M Kcals /ha 
Scale Globe Tropics Temperate Globe Tropics Temperate 

Soil Score -7.389*** 
(2.855) 

5.759*** 
(1.541) 

-7.288** 
(3.356) 

-6.613*** 
(2.425) 

20.13*** 
(5.472) 

-6.940*** 
(1.653) 

Cropped area 
(1,000,000 ha) 

0.017** 
(0.007) 

0.037*** 
(0.007) 

0.028*** 
(0.008) 

0.095*** 
(0.002) 

0.165*** 
(0.004) 

0.009*** 
(0.001) 

Percentage of cropped 
area in fruit production 

0.052*** 
(0.017) 

0.145*** 
(0.026) 

-0.0214 
(0.027) 

0.132*** 
(0.032) 

0.319*** 
(0.081) 

0.032* 
(0.018) 

Percentage of cropped 
area in grain (less 
wheat) production 

-0.050*** 
(0.007) 

-0.034*** 
(0.006) 

-0.066*** 
(0.013) 

-0.076*** 
(0.012) 

-0.127*** 
(0.022) 

-0.030*** 
(0.010) 

Percentage of cropped 
area in oil crop 
production 

-0.033*** 
(0.007) 

2.61x10-5 
(0.007) 

-0.080*** 
(0.013) 

-0.019 
(0.013) 

-0.005 
(0.021) 

-0.031*** 
(0.012) 

Percentage of cropped 
area in rice crop 
production 

0.006 
(0.007) 

0.007 
(0.008) 

0.002 
(0.015) 

0.077*** 
(0.019) 

0.047* 
(0.028) 

0.201*** 
(0.023) 

Percentage of cropped 
area in roots and 
tubers production 

0.036*** 
(0.013) 

0.022 
(0.014) 

0.093*** 
(0.029) 

-0.061** 
(0.029) 

-0.088** 
(0.043) 

-0.057* 
(0.031) 

Percentage of cropped 
area in sugarcane 
production 

0.558*** 
(0.022) 

0.551*** 
(0.027) 

0.719*** 
(0.032) 

2.338*** 
(0.077) 

2.221*** 
(0.101) 

3.158*** 
(0.092) 

Percentage of cropped 
area in wheat 
production 

-0.043*** 
(0.008) 

-0.250*** 
(0.033) 

-0.066*** 
(0.014) 

0.037*** 
(0.013) 

-0.778*** 
(0.120) 

0.057*** 
(0.011) 

Growing season 
daytime temperature 
(degrees Celsius) 

-0.668*** 
(0.255) 

-1.422** 
(0.638) 

-0.641** 
(0.295) 

0.301 
(0.351) 

-5.101*** 
(1.880) 

0.169 
(0.327) 

The square of growing 
season daytime 
temperature 

0.009* 
(0.005) 

0.0184* 
(0.011) 

0.011* 
(0.006) 

-0.013* 
(0.007) 

0.068** 
(0.030) 

-0.006 
(0.006) 

Growing season 
nighttime temperature 
(degrees Celsius) 

0.152 
(0.188) 

0.483 
(0.372) 

-0.087 
(0.252) 

-0.709** 
(0.336) 

2.362** 
(1.138) 

-0.983*** 
(0.283) 

The square of growing 
season nighttime 
temperature 

-0.002 
(0.006) 

-0.006 
(0.010) 

-0.001 
(0.010) 

0.027** 
(0.012) 

-0.045 
(0.030) 

0.029*** 
(0.010) 

Growing season 
precipitation (mm) 

0.001 
(.001) 

0.001 
(0.002) 

0.001 
(0.002) 

0.002 
(0.005) 

0.001 
(0.006) 

0.003 
(0.005) 

The square of growing 
season precipitation 

-1.51x10-6 
(1.48x10-6) 

-1.22x10-6 
(1.43x10-6) 

-2.50x10-6 
(3.61x10-6) 

-4.16x10-6 
(4.57x10-6) 

-2.14x10-6 
(5.01x10-6) 

-1.4x10-5* 
(7.90x10-6) 

Hectares equipped for 
irrigation / cropped 
area 

0.047 
(0.235) 

1.174* 
(0.612) 

1.269*** 
(0.294) 

0.279* 
(0.160) 

2.460 
(2.261) 

1.049*** 
(0.349) 

Equipment investment 
($ M (2005) / cropped 
ha) 

22.26*** 
(7.259) 

840.3** 
(423.0) 

1.265 
(7.47) 

-32.60** 
(14.39) 

652.8 
(1206) 

-41.14*** 
(14.68) 
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 (1) (2) (3) (4) (5) (6) 
Yield Measure Mg/ha Mg/ha Mg/ha M Kcals/ha M Kcals /ha M Kcals /ha 
Scale Globe Tropics Temperate Globe Tropics Temperate 
Land development 
investment 
($ M (2005) / cropped 
ha) 

5.52*** 
(1.002) 

2.301 
(2.176) 

-115.9*** 
(20.83) 

5.063*** 
(0.831) 

-3.620 
(7.461) 

-71.69** 
(28.76) 

Year 0.042*** 
(0.002) 

0.017*** 
(0.003) 

0.071*** 
(0.004) 

0.078*** 
(0.006) 

0.041*** 
(0.010) 

0.103*** 
(0.006) 

Constant -55.87*** 
(6.874) 

-27.49*** 
(9.236) 

-112.2*** 
(8.766) 

-136.0*** 
(12.85) 

-63.45** 
(28.81) 

-185.9*** 
(11.49) 

N 4533 2182 2224 4533 2182 2224 
F-value  757.76***  639.33*** 644.00*** 675.67*** 
Root MSE 1.134 1.124 1.018 3.146 4.007 1.451 

 
 

Table S2. Econometric estimates of fixed effects model (1) with the “wide” global, tropics, 
and temperate datasets  

 (1) (2) (3) (4) (5) (6) 
Yield Measure Mg/ha Mg/ha Mg/ha M Kcals/ha M Kcals /ha M Kcals /ha 
Scale Globe Tropics Temperate Globe Tropics Temperate 

Soil Score -2.605 
(3.583) 

-0.142 
(1.972) 

-1.477 
(3.937) 

-4.526* 
(2.517) 

2.315 
(7.071) 

-4.862*** 
(1.776) 

Cropped area 
(1,000,000 ha) 

-0.009 
(0.006) 

0.030*** 
(0.008) 

-0.001 
(0.008) 

0.036** 
(0.015) 

0.112*** 
(0.034) 

0.069*** 
(0.011) 

Percentage of cropped 
area in fruit production 

0.037* 
(0.021) 

0.117*** 
(0.025) 

-0.029 
(0.028) 

0.122*** 
(0.039) 

0.213** 
(0.088) 

0.037** 
(0.017) 

Percentage of cropped 
area in grain (less 
wheat) production 

-0.035*** 
(0.007) 

-0.025*** 
(0.007) 

-0.050*** 
(0.011) 

-0.042*** 
(0.013) 

-0.094*** 
(0.023) 

0.002 
(0.011) 

Percentage of cropped 
area in oil crop 
production 

-0.021*** 
(0.007) 

-0.001 
(0.007) 

-0.063*** 
(0.012) 

-0.0004 
(0.014) 

-0.009 
(0.025) 

-0.007 
(0.012) 

Percentage of cropped 
area in rice crop 
production 

0.004 
(0.009) 

0.017 
(0.011) 

-0.024 
(0.016) 

0.066*** 
(0.024) 

0.084 
(0.039) 

0.174*** 
(0.022) 

Percentage of cropped 
area in roots and 
tubers production 

0.035** 
(0.014) 

0.059*** 
(0.015) 

0.055 
(0.036) 

-0.054 
(0.034) 

0.089* 
(0.048) 

-0.121** 
(0.033) 

Percentage of cropped 
area in sugarcane 
production 

0.535*** 
(0.034) 

0.524*** 
(0.034) 

0.747*** 
(0.046) 

2.217*** 
(0.129) 

2.048*** 
(0.129) 

3.206*** 
(0.133) 

Percentage of cropped 
area in wheat 
production 

-0.030*** 
(0.008) 

-0.221*** 
(0.037) 

-0.054*** 
(0.013) 

0.051*** 
(0.014) 

-0.712*** 
(0.138) 

0.074*** 
(0.011) 

Growing season 
daytime temperature 
(degrees Celsius) 

-0.361 
(0.237) 

-2.413*** 
(0.703) 

-0.095 
(0.273) 

0.467 
(0.431) 

-4.448* 
(2.359) 

0.576* 
(0.310) 

The square of growing 
season daytime 
temperature 

0.004 
(0.005) 

0.035*** 
(0.012) 

0.002 
(0.006) 

-0.016* 
(0.008) 

0.056 
(0.040) 

-0.010* 
(0.006) 

Growing season 
nighttime temperature 
(degrees Celsius) 

0.566*** 
(0.177) 

1.03** 
(0.418) 

0.031 
(0.233) 

0.279 
(0.398) 

2.354 
(1.452) 

-0.883*** 
(0.265) 

The square of growing 
season nighttime 
temperature 

-0.013** 
(0.006) 

-0.020* 
(0.012) 

-0.004 
(0.009) 

0.001 
(0.014) 

-0.038 
(0.041) 

0.022** 
(0.009) 
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 (1) (2) (3) (4) (5) (6) 
Yield Measure Mg/ha Mg/ha Mg/ha M Kcals/ha M Kcals /ha M Kcals /ha 
Scale Globe Tropics Temperate Globe Tropics Temperate 
Growing season 
precipitation (mm) 

0.001 
(0.001) 

0.001 
(0.002) 

0.006*** 
(0.002) 

-0.001 
(0.005) 

0.001 
(0.006) 

0.008* 
(0.004) 

The square of growing 
season precipitation 

-1.15x10-6 
(1.27x10-6) 

-9.1x10-7 
(1.39x10-6) 

-8.94x10-6** 
(3.83x10-6) 

-7.67x10-7 
(4.35x10-6) 

-7.00x10-7 
(5.06x10-6) 

-1.74x10-5** 
(7.19x10-6) 

Hectares equipped for 
irrigation / cropped 
area 

0.332** 
(0.166) 

0.943 
(0.850) 

1.220*** 
(0.374) 

0.844*** 
(0.166) 

0.521 
(3.14) 

1.41* 
(0.789) 

Equipment investment 
($ M (2005) / cropped 
ha) 

10.595 
(6.674) 

870.081 
(672.122) 

-7.621 
(7.056) 

-34.212** 
(16.038) 

3515.753 
(2452.381) 

-42.54*** 
(14.815) 

Land development 
investment 
($ M (2005) / cropped 
ha) 

-25.804*** 
(2.564) 

-24.913 
(19.505) 

-104.215*** 
(28.419) 

-34.024*** 
(5.374) 

-47.715 
(69.102) 

-92.282 
(66.691) 

Year 0.038*** 
(0.003) 

-0.001 
(0.004) 

0.070*** 
(0.004) 

0.064*** 
(0.008) 

-0.031** 
(0.015) 

0.107*** 
(0.007) 

Fertilizer (kg / ha) 0.008*** 
(0.001) 

0.017*** 
(0.002) 

0.007*** 
(0.001) 

0.016*** 
(0.002) 

0.062*** 
(0.009) 

0.007*** 
(0.001) 

The square of fertilizer -1.39x10-6*** 
(1.84x10-7) 

-4.93x10-

6*** 
(1.67x10-6) 

-1.12x10-6*** 
(1.74x10-7) 

-3.54x10-6*** 
(4.74x10-6) 

-2.08 x10-

5*** 
(6.03x10-6) 

-1.46 x10-6*** 
(1.80x10-7) 

Constant -64.962*** 
(7.698) 

32.256*** 
(11.44) 

-128.605*** 
(9.254) 

-123.322*** 
(16.228) 

110.702*** 
(38.928) 

-206.105*** 
(13.691) 

N 3611 1731 1816 3611 1731 1816 
F-value  901.38***   601.84***  
Root MSE 0.994 1.051 0.837 3.051 3.864 1.307 

 
 

Supplementary Methods: Crop groups used to define crop mix 
Rice (FAO code 27).  
 
Wheat (FAO code 15). 
 
Sugarcane (FAO code 156). 
 
Coarse grains includes crops with FAO codes 44, 677, 56, 79, 75, 71, 83, 97. 
 
Oil crops includes crops with FAO codes 265, 249, 242, 336, 263, 333, 299, 292, 254, 339, 260, 
296, 270, 280, 328, 289, 236, 267, 275, 311, and 329. 
 
Fruits (not including melons) includes crops with FAO codes 515, 526, 486, 552, 461, 591, 531, 
512, 554, 550, 577, 569, 619, 603, 549, 507, 560, 592, 497, 571, 490, 600, 534, 521, 587, 574, 
489, 536, 523, 547, 530, 541, 544, 495, and 558. 
 
Roots and tubers includes crops with FAO codes 125, 116, 149, 122, 136, 137, and 135. 
 
All other crops. 
 
See the FAOStat website for crop codes and their crop names. 
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Data file S1. “Wide” dataset. 
1. ID: UNFAO Country Code 
2. Year  
3. Tropical:  a 1 indicates that that country is a tropical country and a 0 indicates that the 

country is a temperate country 
4. tons / ha: a country's crop yield in year t in metric tons / ha (I summed all tons of crops 

produced in a country and divided by total cropped hectares in a country) 
5. million kcals / ha: a country's crop yield in year t in millions of kcals / ha (I summed all 

kcals of crops produced in a country and divided by total cropped hectares in a country) 
6. soilscore: The composite soil quality score of the land that was cropped in year t in 

country k  (on a 1 to 5 scale with lower numbers indicating better soil). 
7. ha: total cropped hectares in year t in country k 
8. rice: percentage of cropped area in rice in year t in country k 
9. wheat: percentage of cropped area in wheat in year t in country k 
10. sugar: percentage of cropped area in sugarcane in year t in country k 
11. grains: percentage of cropped area in coarse grains in year t in country k 
12. oil: percentage of cropped area in oil crops in year t in country k 
13. fruits: percentage of cropped area in fruits in year t in country k 
14. roots: percentage of cropped area in roots and tubers in year t in country k 
15. other: percentage of cropped area in all other crops in year t in country k 
16. davg: The composite average daytime temperature over cropped lands during the growing 

season year t in country k (Celsius) 
17. navg: The composite average nighttime temperature over cropped lands during the 

growing season year t in country k (Celsius) 
18. pavg: The total rainfall over cropped lands during the growing season year t in country k 

(mm) 
19. irr: Fraction of cropped lands that are equipped for irrigation in year t in country k 
20. land: total money invested in agricultural land development divided by cropped hectares  

in year t in country k (2005 constant US $ / ha) 
21. eqp: total money invested in agricultural equipment divided by cropped hectares in year t 

in country k (2005 constant US $ / ha) 
22. fert: kilograms of fertilizer used in the country divicde by cropped hectares in year t in 

country k.  
 
Data file S2. “Long” dataset. 

1. ID: UNFAO Country Code 
2. Year  
3. Tropical:  a 1 indicates that that country is a tropical country and a 0 indicates that the 

country is a temperate country 
4. tons / ha: a country's crop yield in year t in metric tons / ha (I summed all tons of crops 

produced in a country and divided by total cropped hectares in a country) 
5. million kcals / ha: a country's crop yield in year t in millions of kcals / ha (I summed all 

kcals of crops produced in a country and divided by total cropped hectares in a country) 
6. soilscore: The composite soil quality score of the land that was cropped in year t in 

country k  (on a 1 to 5 scale with lower numbers indicating better soil). 
7. ha: total cropped hectares in year t in country k 
8. rice: percentage of cropped area in rice in year t in country k 
9. wheat: percentage of cropped area in wheat in year t in country k 
10. sugar: percentage of cropped area in sugarcane in year t in country k 
11. grains: percentage of cropped area in coarse grains in year t in country k 
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12. oil: percentage of cropped area in oil crops in year t in country k 
13. fruits: percentage of cropped area in fruits in year t in country k 
14. roots: percentage of cropped area in roots and tubers in year t in country k 
15. other: percentage of cropped area in all other crops in year t in country k 
16. davg: The composite average daytime temperature over cropped lands during the growing 

season year t in country k (Celsius) 
17. navg: The composite average nighttime temperature over cropped lands during the 

growing season year t in country k (Celsius) 
18. pavg: The total rainfall over cropped lands during the growing season year t in country k 

(mm) 
19. irr: Fraction of cropped lands that are equipped for irrigation in year t in country k 
20. land: total money invested in agricultural land development divided by cropped hectares  

in year t in country k (2005 constant US $ / ha) 
21. eqp: total money invested in agricultural equipment divided by cropped hectares in year t 

in country k (2005 constant US $ / ha) 
 
Data file S3. Accuracy of decision trees. 
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